免费文献传递   相关文献

Study on chemical constituents in shells of Juglans sigillata

泡核桃壳的化学成分研究



全 文 :中草药 Chinese Traditional and Herbal Drugs 第 44 卷 第 12 期 2013 年 6 月

·1534·
泡核桃壳的化学成分研究
彭友伦,李冬梅*,刘光明
大理学院药学与化学学院,云南 大理 671000
摘 要:目的 研究泡核桃 Juglans sigillata 壳的化学成分。方法 采用硅胶、反相 RP18、Sephadex LH-20、MCI 等色谱柱
以及半制备 HPLC 柱及制备薄层等方法对泡核桃壳的化学成分进行分离纯化,根据理化性质与波谱数据对所分离到的化合
物进行结构鉴定。结果 从泡核桃壳 95%乙醇提取物中共分离鉴定 15 个化合物,其中包括 7 个酚苷类化合物:它乔糖苷(1)、
牡丹酚苷 A(2)、4-O-β-D-glucopyranosylvanillc acid(3)、breynioside A(4)、1-O-香草酰-β-D-葡萄糖苷(5)、6′-O-
vanilloyltachioside(6)、6′-O-vanilloylisotachioside(7);3 个苯丙酸类化合物:6-O-feruloyl-D-glucopyranose(8)、methyl-
4-O-coumaroylquinate(9)、5-p-cis-coumaroylquinic acid(10);2 个萘酮类化合物:胡桃苷 A(11)、胡桃苷 E(12);1 个降
倍半萜苷类化合物:长春花糖苷(13);1 个黄酮类化合物:二氢槲皮素(14);1 个脱落酸衍生物:二氢红花菜豆酸-4′-O-β-D-
吡喃葡萄糖苷(15)。结论 除化合物 14 外,其他化合物均为首次从该植物中分离得到,其中化合物 1~4、13、15 为首次
从该属植物中分离得到。
关键词:泡核桃;它乔糖苷;牡丹酚苷 A;胡桃苷 A;长春花糖苷;二氢红花菜豆酸-4′-O-β-D-吡喃葡萄糖苷
中图分类号:R284.1 文献标志码:A 文章编号:0253 - 2670(2013)12 - 1534 - 05
DOI: 10.7501/j.issn.0253-2670.2013.12.003
Study on chemical constituents in shells of Juglans sigillata
PENG You-lun, LI Dong-mei, LIU Guang-ming
College of Pharmacy and Chemistry, Dali University, Dali 671000, China
Abstract: Objective To investigate the chemical constituents in the shells of Juglans sigillata. Methods The chemical constituents
were isolated by silica gel, RP18, Sephadex LH-20, and MCI column chromatography and semi-preparative HPLC and so on. The
structures were identified on the basis of spectroscopic analysis and chemical evidence. Results Fifteen compounds were isolated and
identified in the 70% ethanol extract from the shells of J. sigillata including seven phenolic glycosides: tachioside (1), mudanoside A
(2), 4-O-β-D-glucopyranosylvanillc acid (3), breynioside A (4), 1-O-vanilloyl-β-D-glucose (5), 6′-O-vanilloyltachioside (6), and
6′-O-vanilloylisotachioside (7); three phenylpropanoide acid glycosides: 6-O-feruloyl-D-glucopyranose (8), methyl-4-O-
coumaroylquinate (9), and 5-p-cis-coumaroylquinic acid (10); two tetralone glycosides: juglanin A (11) and juglanin E (12); one
norsesquiterpenes glycoside: roseoside (13); one flavone: toxifolin (14); and one glucosylated abscisic acid derivate: (1′R, 3′R, 5′R,
8′S)-epi-dihydrophaseic acid β-D-glucoside (15). Conclusion Except compound 14, the other compounds are isolated from the shells
of J. sigillata for the first time. And compounds 1—4, 13, and 15 are reported for the first time from the plants in genus of Juglans L.
Key words: Juglans sigillata Dode; tachioside; mudanoside A; juglanoside A; roseoside; (1′R, 3′R, 5′R, 8′S)-epi-dihydrophaseic acid
β-D-glucoside

泡核桃 Juglans sigillata Dode 系胡桃科胡桃属
植物,又名漾濞核桃、茶核桃(云南)、铁核桃(四
川、云南)等,落叶乔木,产于云南、贵州、四川
西部、西藏雅鲁藏布江中下游地区[1]。云南大理漾
濞县泡核桃树种植面积约有 700 km2,年产泡核桃 3
万余吨,是当地农民的主要经济来源,但是这些核
桃经过加工后,剩余核桃壳成了废弃物,没有得到
充分利用;同时,胡桃属植物有很高的药用价值,
其中泡核桃同属植物核桃楸的青果皮始载于《开宝
本草》,古代诸家多以其清热解毒、祛风疗癣、止痛
止痢等功效入药[2],而泡核桃相关化学成分的研究
还未见报道。为了对该植物的进一步开发利用研

收稿日期:2013-01-14
作者简介:彭友伦(1986—),男,云南昭通人,在读硕士研究生,主要从事天然药物的研究。
*通信作者 李冬梅 Tel: 13988507082 E-mail: ldm200805@163.com
中草药 Chinese Traditional and Herbal Drugs 第 44 卷 第 12 期 2013 年 6 月

·1535·
究提供科学依据,本实验对泡核桃壳的化学成分进
行了研究,从中分离并鉴定了 15 个化合物,其中包
括 7 个酚苷类化合物:它乔糖苷(tachioside,1)、
牡丹酚苷 A ( mudanoside A , 2 )、 4-O-β-D-
glucopyranosylvanillc acid(3)、breynioside A(4)、
1-O- 香草酰 -β-D- 葡萄糖苷( 1-O-vanilloyl-β-D-
glucose,5)、6′-O-vanilloyltachioside(6)和 6′-O-
vanilloylisotachioside(7);3 个苯丙酸类化合物:
6-O-feruloyl-D-glucopyranose ( 8 )、 methyl-4-O-
coumaroylquinate(9)、5-p-cis-coumaroylquinic acid
(10);2 个萘酮类化合物:胡桃苷 A(juglanoside A,
11)、胡桃苷 E(juglanoside E,12);1 个降倍半萜
苷类化合物:长春花糖苷(roseoside,13);1 个黄
酮类化合物:二氢槲皮素(toxifolin,14);1 个脱
落酸衍生物:二氢红花菜豆酸-4′-O-β-D-吡喃葡萄糖
苷 [(1′R, 3′R, 5′R, 8′S)-epi-dihydrophaseic acid β-D-
glucoside,15]。除化合物 14 外,其余化合物均为
首次从该植物中分离得到,其中化合物 1~4、13、
15 为首次从该属植物中分离得到。
1 仪器及试剂
Bruker AV—600 型及 Bruker AV—400 型核磁共
振仪(瑞士布鲁克公司);VG Auto Sec—300 型质谱
仪;柱色谱硅胶、硅胶 G、GF254 薄层色谱硅胶预制
板(青岛海洋化工厂);Sephadex LH-20(Pharmacia 公
司);MCI-gel CHP 20P(日本三菱化学公司);实验
用石油醚、氯仿、醋酸乙酯、丙酮、甲醇为工业试剂
经重蒸后使用,其他试剂均为分析纯。
泡核桃壳采自云南省大理州漾濞县,由大理学
院药学与化学学院生药教研室周浓副教授鉴定为
胡桃科胡桃属植物泡核桃 Juglans sigillata Dode 的
果壳。
2 提取与分离
干燥泡核桃壳 20 kg,粉碎后用 5 倍量 95%乙
醇冷浸提取 3 次,每次浸泡 24 h,提取液经减压浓
缩后得浸膏 651 g。取浸膏 645 g,经硅胶柱色谱,
依次用石油醚、氯仿、醋酸乙酯、丙酮和甲醇洗脱,
分别回收溶剂得到石油醚部位87.3 g、氯仿部位22.0
g、醋酸乙酯部位 132.5 g、丙酮部位 69.6 g、甲醇部
位 100.0 g。取醋酸乙酯部位浸膏,先经硅胶柱色谱,
石油醚-丙酮(0∶1→1∶1)梯度洗脱,收集各组分,
经反复硅胶柱色谱、MCI 柱色谱、反相 RP18 柱色谱、
Sephadex LH-20 柱色谱以及制备薄层、半制备型高
效液相等方法进行化合物的分离纯化,共得到 15
个化合物:化合物 1(32.8 mg)、2(46.9 mg)、3
(15.2 mg)、4(31.2 mg)、5(5.1 mg)、6(38.1 mg)、
7(22.7 mg)、8(12.7 mg)、9(7.0 mg)、10(60 mg)、
11(4.5 mg)、12(63.5 mg)、13(15.0 mg)、14(56
mg)、15(4.9 mg)。
3 结构鉴定
化合物 1:无色针晶(氯仿-甲醇),ESI-MS m/z:
302,分子式为 C13H18O8。 1H-NMR (400 MHz,
CD3OD) δ: 9.01 (1H, s, Ph-OH), 6.59 (1H, d, J = 8.6
Hz, H-3), 6.47 (1H, d, J = 2.6 Hz, H-5), 6.70 (1H, d,
J = 2.6 Hz, H-6), 4.63 (1H, d, J = 7.2 Hz, H-1′), 4.81
(1H, d, J = 4.6 Hz, 2′-OH), 4.63 (1H, d, J = 4.7 Hz,
3′-OH), 4.68 (1H, d, J = 4.6 Hz, 4′-OH), 3.20~3.21
(3H, m, H-2′~4′), 4.45 (1H, t, J = 5.8 Hz, 6′-OH),
3.64~3.42 (2H, m, H-6′), 3.72 (3H, s, 2-OCH3);
13C-NMR (100 MHz, CD3OD) δ: 142.8 (C-1), 149.3
(C-2), 103.7 (C-3), 152.8 (C-4), 109.9 (C-5), 115.9
(C-6), 103.7 (C-1′), 74.9 (C-2′), 78.1 (C-3′), 71.5
(C-4′), 78.0 (C-5′), 62.6 (C-6′), 56.3 (2-OCH3)。上述
数据与文献报道基本一致[3],故鉴定化合物 1 为它
乔糖苷。
化合物 2:淡黄色粉末,ESI-MS m/z: 330,分
子式为 C14H18O9。1H-NMR (400 MHz, CD3OD) δ:
7.88 (1H, dd, J = 8.6, 1.6 Hz, H-6), 7.60 (1H, d, J =
1.6 Hz, H-2), 6.84 (1H, d, J = 1.6 Hz, H-5), 5.72 (1H,
d, J = 3.28 Hz, H-1′β), 5.15 (1H, d, J = 8.2 Hz,
H-1′α), 4.90 (2H, d, J = 12.1 Hz, H-6′β), 4.83 (1H, d,
J = 5.0 Hz, H-6′α), 4.59 (1H, d, J = 8.2 Hz, H-5′α),
4.54 (1H, d, J = 8.2 Hz, H-3′α), 4.42 (1H, d, J = 8.2
Hz, H-3′β), 4.41 (1H, d, J = 8.2 Hz, H-5′β), 4.40 (1H,
d, J = 8.0, 3.6 Hz, H-2′α), 4.39 (1H, d, J = 8.2 Hz,
H-4′α), 4.39 (1H, d, J = 8.2 Hz, H-4′β), 4.38 (1H, d,
J = 8.2 Hz, H-2′β), 3.88 (3H, s, 3-OCH3);13C-NMR
(100 MHz, CD3OD) δ: 168.1 (C-7), 152.8 (C-4), 148.7
(C-3), 125.2 (C-6), 122.5 (C-1), 116.2 (C-5), 113.4
(C-2), 98.2 (C-1′β), 94.0 (C-1′α), 77.9 (C-3′β), 76.2
(C-2′β), 75.5 (C-2′α), 74.8 (C-3α), 73.8 (C-5′β), 72.1
(C-4′α), 71.8 (C-4′β), 65.2 (C-6′α), 65.1 (C-6′β), 56.5
(3-OMe)。该化合物苷元与糖所连接的位置为葡萄
糖的 6 位,因此葡萄糖在溶液中以 α 和 β 两种构型
存在。以上数据与文献报道基本一致[4],故鉴定化
合物 2 为牡丹酚苷 A。
化合物 3:白色针状结晶(氯仿-甲醇),ESI-MS
中草药 Chinese Traditional and Herbal Drugs 第 44 卷 第 12 期 2013 年 6 月

·1536·
m/z: 330,分子式为 C14H18O9。1H-NMR (400 MHz,
CD3OD) δ: 7.61 (1H, d, J = 1.8 Hz, H-2), 7.64 (1H,
dd, J = 8.4, 1.8 Hz, H-6), 7.19 (1H, d, J = 8.4 Hz,
H-2), 5.02 (1H, d, J = 7.4 Hz, H-1′), 3.88 (1H, dd, J =
9.7, 7.4 Hz, H-6′), 3.54 (1H, d, J = 9.7, 7.4 Hz, H-2′),
3.47 (1H, dd, J = 9.7, 7.4 Hz, H-3′), 3.46 (1H, ddd,
J = 9.7, 7.4, 2.0 Hz, H-5′), 3.43 (1H, dd, J = 9.7, 7.4
Hz, H-4′);13C-NMR (100 MHz, CD3OD) δ: 170.0
(C-7) 152.0 (C-4), 150.3 (C-3), 126.0 (C-1), 124.7
(C-6), 116.3 (C-5), 114.3 (C-2), 101.9 (C-1′β), 78.2
(C-3′), 77.8 (C-5′), 74.7 (C-2′), 71.2 (C-4′), 56.6
(3-OCH3)。以上数据与文献报道基本一致[5],故鉴
定化合物 3 为 4-O-β-D-glucopyranosylvanillc acid。
化合物 4:白色粉末,ESI-MS m/z: 392,分子
式为 C19H20O9。1H-NMR (400 MHz, CD3OD) δ: 7.89
(2H, d, J = 8.7 Hz, H-2″, 6″), 6.92 (2H, d, J = 8.8 Hz,
H-2, 6), 6.84 (2H, d, J = 8.7 Hz, H-3″, 5″), 6.59 (2H,
d, J = 8.7 Hz, H-3, 5), 4.72 (1H, d, J = 7.2 Hz, H-1′),
4.65 (1H, dd, J = 10.1, 1.6 Hz, H-6′β), 4.33 (1H, d,
J = 7.6 Hz, H-6′α), 3.69 (1H, ddd, J = 10.1, 8.7, 2.0
Hz, H-5′), 3.39 (2H, s, H-2′, 3′);13C-NMR (100 MHz,
CD3OD) δ: 167.9 (C-7′), 163.6 (C-4′), 153.8 (C-4),
152.2 (C-1), 132.9 (C-2″, 6″), 122.1 (C-1″), 119.4
(C-2, 6), 116.5 (C-3, 5), 116.2 (C-3″, 5″), 103.5
(C-1′), 77.9 (C-3′), 75.5 (C-5′), 74.9 (C-2′), 72.0 (C-
4′), 65.0 (C-6′)。以上数据与文献报道基本一致[6],
故鉴定化合物 4 为 breynioside A。
化合物 5:黄色粉末,ESI-MS m/z: 330,分子
式为 C14H18O9。1H-NMR (400 MHz, CD3OD) δ: 7.65
(1H, dd, J = 8.0, 2.2 Hz, H-6), 7.64 (1H, d, J = 2.2
Hz, H-2), 6.90 (1H, d, J = 8.0 Hz, H-5), 4.89 (1H, d,
J = 7.2 Hz, H-1′), 3.92 (3H, s, 3-OCH3), 3.86 (1H, dd,
J = 10.1, 1.6 Hz, H-6′β), 3.73 (1H, dd, J = 10.1, 1.6
Hz, H-6′α), 3.45 (4H, overlapped, H-2′~ 5′) ;
13C-NMR (100 MHz, CD3OD) δ: 166.8 (C-7), 153.4
(C-4), 148.8 (C-3), 125.7 (C-6), 121.9 (C-1), 116
(C-5), 114.1 (C-2), 101.9 (C-1′), 78.8 (C-3′), 78.1
(C-5′), 74.0 (C-2′), 71.1 (C-4′), 56.5 (3-OCH3)。以上
数据与文献报道基本一致[7],故鉴定化合物 5 为
1-O-香草酰-β-D-葡萄糖苷。
化合物 6:淡黄色粉末,ESI-MS m/z: 452,分
子式为 C21H24O11。1H-NMR (400 MHz, CD3OD) δ:
7.58 (1H, dd, J = 8.3, 2.0 Hz, H-6″), 7.56 (1H, d, J =
1.9 Hz, H-2″), 6.87 (1H, d, J = 8.3 Hz, H-5″), 6.71
(1H, d, J = 2.0 Hz, H-2), 6.57 (1H, dd, J = 8.3, 2.0
Hz, H-6), 6.57 (1H, d, J = 2.0 Hz, H-2), 4.79 (1H, d,
J = 7.4 Hz, H-1′), 4.73 (1H, dd, J = 11.8, 2.0 Hz,
H-6′), 4.39 (1H, dd, J = 11.8, 2.0 Hz, 4′-OH), 3.77
(1H, dd, J = 10.1, 1.6 Hz, H-6′α), 3.65 (1H, dd, J =
10.1, 1.6 Hz, H-6′β), 3.85 (3H, s, 3′-OCH3), 3.46~
3.42 (3H, overlapped, H-2′ ~ 4′), 3.70 (3H, s,
3″-OCH3);13C-NMR (100 MHz, CD3OD) δ: 167.9
(C-6″), 152.5 (C-4″), 152.9 (C-1), 149.2 (C-3″), 148.7
(C-3), 143 (C-4), 125.3 (C-5″), 122.4 (C-1″), 116.0
(C-5), 115.9 (C-4″), 113.7 (C-2″), 110.0 (C-2), 104.9
(C-1′), 103.6 (C-6), 77.9 (C-3′), 75.6 (C-2′), 74.9
(C-4′), 72.5 (C-5′), 72.5 (C-5′), 56.5 (3-OCH3), 56.3
(3″-OCH3)。以上数据与文献报道基本一致[8],故鉴
定化合物 6 为 6′-O-vanilloyltachioside。
化合物 7:无色固体,ESI-MS m/z: 480,分子
式为 C21H24O11。1H-NMR (400 MHz, CD3OD) δ: 7.55
(1H, dd, J = 8.5, 1.9 Hz, H-6″), 7.52 (1H, d, J = 1.9
Hz, H-3), 7.51 (1H, d, J = 1.9 Hz, H-2″), 7.39 (1H, d,
J = 8.5 Hz, H-5), 7.08 (1H, d, J = 7.4 Hz, H-6), 6.82
(1H, d, J = 7.4 Hz, H-5″), 5.01 (1H, d, J = 7.3 Hz,
H-1′), 4.64 (1H, dd, J = 11.8, 1.8 Hz, H-6′), 4.28 (3H,
s, 3-OCH3), 3.85 (1H, s, 3″-OCH3), 3.81 (1H, m,
H-5′), 3.50 (1H, dd, J = 9.1, 9.1 Hz, H-6′), 3.40 (1H,
dd, J = 11.8, 1.8 Hz, H-3′), 3.38 (1H, dd, J = 11.8, 1.8
Hz, H-4′);13C-NMR (100 MHz, CD3OD) δ: 167.9
(C-7″), 153.1 (C-4″), 151.1 (C-1), 150.3 (C-2), 148.6
(C-3″), 127.9 (C-4), 125.2 (C-6″), 124.4 (C-5), 122.4
(C-1″), 116.6 (C-5″), 113.9 (C-2″), 102.0 (C-1′), 77.8
(C-3′), 75.8 (C-5′), 74.8 (C-2′), 72.5 (C-4′), 65.1
(C-6′), 56.7 (3-OCH3), 56.6 (3″-OCH3)。以上数据与
文献报道基本一致[5],故鉴定化合物 7 为 6′-O-
vanilloylisotachioside。
化合物 8:淡黄色粉末,ESI-MS m/z: 356,分
子式为 C16H20O9。1H-NMR (400 MHz, CD3OD) δ:
7.62 (1H, d, J = 15.8 Hz, H-7), 7.18 (1H, s, H-2), 7.06
(1H, d, J = 8.0 Hz, H-6), 8.14 (1H, d, J = 8.0 Hz,
H-5), 6.35 (1H, d, J = 11.5 Hz, H-8), 5.1 (1H, d, J =
3.6 Hz, H-1′α), 4.5 (1H, d, J = 7.9 Hz, H-1′β), 4.46
(1H, dd, J = 12.0, 1.8 Hz, H-6′α), 4.44 (1H, dd, J =
12.0, 6.2 Hz, H-6′β), 4.32 (1H, d, J = 7.3 Hz, H-1′β),
4.29 (1H, d, J = 3.6 Hz, H-6′α), 4.02 (1H, t, J = 9.1
中草药 Chinese Traditional and Herbal Drugs 第 44 卷 第 12 期 2013 年 6 月

·1537·
Hz, H-4′β), 3.88 (3H, s, 3-OCH3), 3.69 (1H, t, J = 9.1
Hz, H-3′α), 3.53 (1H, m, H-5′β), 3.38 (5H, overlapped,
H-4′α, 2′α, 3′β, 5′α, 2′β); 13C-NMR (100 MHz,
CD3OD) δ: 169.0 (C-9), 152.7 (C-4), 149.3 (C-3),
147.1 (C-7), 127.6 (C-1), 124.1 (C-6), 116.8 (C-5),
115.2 (C-8), 111.6 (C-2), 98.3 (C-1′β), 94.0 (C-1′α),
77.9 (C-3′β), 76.2 (C-2′β), 75.4 (C-5′), 74.7 (C-3′α),
73.7 (C-2′α), 72.0 (C-5′α), 71.7 (C-4′α), 70.77 (C-4′β),
64.8 (C-6′β), 64.8 (C-6′α), 56.4 (3-OCH3)。以上数据
与文献报道基本一致[9],故鉴定化合物 8 为 6-O-
feruloyl-D-glucopyranose。
化合物 9:无色固体,ESI-MS m/z: 352,分子
式为 C17H20O8。1H-NMR (400 MHz, CD3OD) δ: 7.71
(1H, d, J = 15.9 Hz, H-7), 7.46 (2H, d, J = 8.5 Hz,
H-2, 6), 6.80 (2H, d, J = 12.8 Hz, H-3, 4), 6.42 (1H, d,
J = 15.9 Hz, H-7), 5.10 (1H, d, J = 15.9 Hz, H-8), 5.02
(1H, s, 1′-OH), 4.78 (1H, dd, J = 8.7, 2.7 Hz, 5′-OH),
4.3 (1H, d, J = 5.6 Hz, 3′-OH), 4.28 (2H, m, H-3′, 4′),
4.22 (1H, d, J = 4.5 Hz, 4′-OH), 3.72 (3H, s, 7′-
OCH3), 2.14 (1H, dd, J = 12.5, 2.1 Hz, H-6′eq), 2.05
(2H, m, H-2′), 1.99 (1H, dd, J = 12.5, 2.1 Hz,
H-6′ax); 13C-NMR (100 MHz, CD3OD) δ: 175.7
(C-7′), 168.9 (C-9), 161.4 (C-4), 146.7 (C-7), 131.1
(C-2, 6), 127.2 (C-1), 116.6 (C-3, 5), 115.3 (C-2), 78.5
(C-5′), 76.4 (C-1′), 68.9 (C-3′), 65.7 (C-4′), 52.8
(7′-OCH3), 42.1 (C-6′), 38.4 (C-2′)。以上数据与文献
报道基本一致[10],故鉴定化合物 9 为 methyl-4-O-
comaroylquinate。
化合物 10:无色固体,ESI-MS m/z: 338,分子
式为 C16H18O8。1H-NMR (400 MHz, CD3OD) δ: 7.69
(1H, d, J = 15.9 Hz, H-7), 7.50 (2H, d, J = 8.5 Hz,
H-2, 6), 6.81 (2H, d, J = 12.8 Hz, H-3, 5), 6.33 (1H, d,
J = 15.9 Hz, H-8), 4.32 (1H, m, H-4′), 4.3 (1H, d, J =
5.6 Hz, 3′-OH), 4.28 (2H, m, H-3′, 5′);13C-NMR (100
MHz, CD3OD) δ: 179.2 (C-7′), 168.3 (C-9), 161.2
(C-4), 147.4 (C-7), 131.4 (C-2, 6), 127.2 (C-1), 116.6
(C-3, 5), 114.7 (C-8), 77.8 (C-5′), 75.3 (C-1′), 70.2
(C-3′), 64.8 (C-4′), 37.8 (C-6′), 36.8 (C-2′)。以上数据
与文献报道基本一致 [11],故鉴定化合物 10 为
5-p-cis-coumaroylquinic acid。
化合物 11:白色粉末,ESI-MS m/z: 324,分子
式为 C16H20O7。1H-NMR (400 MHz, CD3OD) δ: 7.98
(1H, d, J = 15.9 Hz, H-8), 7.71 (H, d, J = 8.5 Hz,
H-5), 7.64 (1H, t, J = 7.2 Hz, H-6), 7.49 (1H, t, J =
7.5 Hz, H-7), 5.10 (1H, d, J = 2.1 Hz, H-4), 4.36 (1H,
d, J = 7.9 Hz, H-1′), 3.94 (1H, dd, J = 8.7, 2.7 Hz,
H-6′), 3.71 (1H, d, J = 5.6 Hz, H-6′), 3.22~3.33 (3H,
overlapped, H-3′~5′), 3.04 (1H, m, H-2ax), 2.60 (1H,
m, H-2eq), 2.44 (1H, m, H-3ax), 2.36 (1H, m, H-3eq);
13C-NMR (100 MHz, CD3OD) δ: 200.2 (C-1), 143.7
(C-10), 134.8 (C-6), 132.9 (C-9), 130.2 (C-5), 129.8
(C-7), 127.9 (C-8), 103.1, C-1′), 78.1 (C-3′), 78.0
(C-5′), 75.2 (C-4), 74.8 (C-2′), 71.7 (C-4′), 62.9 (C-6′),
35.3 (C-2′), 31.4 (C-3′)。以上数据与文献报道基本一
致[12],故鉴定化合物 11 为胡桃苷 A。
化合物 12:白色粉末,ESI-MS m/z: 356,分子
式为 C16H20O9。1H-NMR (400 MHz, CD3OD) δ: 7.50
(1H, d, J = 9.1 Hz, H-6), 6.84 (2H, d, J = 9.1 Hz,
H-7), 4.80 (1H, t, J = 3.2 Hz, H-4), 4.77 (1H, d, J =
7.9 Hz, H-1′), 3.85 (1H, dd, J = 8.7, 2.8 Hz, H-6′),
3.67 (1H, d, J = 5.6 Hz, H-6′), 3.50 (1H, overlapped,
H-3′), 3.43 (1H, d, J = 5.6 Hz, H-4′), 3.03 (1H, m,
H-2ax), 3.52 (1H, m, H-2eq), 2.22 (1H, m, H-3ax),
2.18 (1H, m, H-3eq);13C-NMR (100 MHz, CD3OD) δ:
206.5 (C-1), 159.1 (C-10), 134.8 (C-5, C-10), 128.5
(C-6), 119.0 (C-7), 114.8 (C-9), 104.7, (C-1′), 78.4
(C-5′), 78.0 (C-3′), 75.4 (C-2′), 71.4 (C-4′), 62.6
(C-6′), 61.4 (C-4), 33.6 (C-2′), 30.3 (C-3′)。以上数据
与文献报道基本一致[12],故鉴定化合物 12 为胡桃
苷 E。
化合物 13:白色粉末,ESI-MS m/z: 386,分子
式为 C19H30O8。1H-NMR (400 MHz, CD3OD) δ:
5.83~5.91 (3H, overlapped, H-4, 7, 8), 4.43 (1H, m,
H-9), 4.35 (1H, d, J = 7.9 Hz, H-1′), 3.84 (1H, dd, J =
8.7, 2.6 Hz, H-6′), 3.62 (1H, d, J = 5.6 Hz, H-6′), 3.35
(1H, overlapped, H-3′), 3.32 (1H, d, J = 5.6 Hz, H-4′),
3.25 (1H, d, J = 5.6 Hz, H-5′), 3.19 (1H, d, J = 5.61
Hz, H-2′), 1.94 (3H, s, 13-CH3), 1.50 (3H, s, 11-CH3),
1.31 (3H, s, 10-CH3), 1.05 (3H, s, 12-CH3);13C-NMR
(100 MHz, CD3OD) δ: 201.1 (C-3), 167.2 (C-5), 135.3
(C-8), 131.5 (C-7), 127.1 (C-4), 102.7 (C-1′), 80
(C-6), 78.1 (C-5′), 78.0 (C-3′), 77.0 (C-9), 75.2 (C-2′),
71.6 (C-4′), 62.8 (C-6′), 50.7 (C-2), 42.4 (C-1), 24.7
(C-12), 21.2 (C-12), 19.5 (C-12)。以上数据与文献报
道基本一致[13],故鉴定化合物 13 为长春花糖苷。
化合物 14:白色粉末,ESI-MS m/z: 304,分子
中草药 Chinese Traditional and Herbal Drugs 第 44 卷 第 12 期 2013 年 6 月

·1538·
式为 C15H12O7。1H-NMR (400 MHz, CD3OD) δ: 11.73
(1H, Ph-OH), 6.87 (1H, d, J = 8.2 Hz, H-6′), 6.82 (1H,
d, J = 8.2 Hz, H-5′), 5.92 (1H, d, J = 2.0 Hz, H-8),
5.85 (3H, d, J = 8.1 Hz, H-6), 5.75 (1H, d, J = 5.6 Hz,
3-OH), 4.94 (1H, overlapped, H-2), 4.51 (1H, d, J =
11.5 Hz, H-3);13C-NMR (100 MHz, CD3OD) δ: 198.4
(C-4), 168.7 (C-7), 165.2 (C-5), 164.5 (C-9), 147.1
(C-4′), 146.3 (C-3′), 129.9 (C-1′), 120.9 (C-6′), 116.1
(C-2′), 115.9 (C-5′), 101.8 (C-10), 97.3 (C-6), 96.3
(C-8), 85.1 (C-2), 73.68 (C-3)。以上数据与文献报道
基本一致[14],故鉴定化合物 14 为二氢槲皮素。
化合物 15:白色粉末,ESI-MS m/z: 444,分子
式为 C21H32O10。1H-NMR (400 MHz, CD3OD) δ: 7.95
(1H, d, J = 16.0 Hz, H-4), 6.45 (1H, d, J = 16.0 Hz,
H-5), 6.58 (1H, s, H-2), 4.37 (1H, overlapped, H-1″),
4.24 (1H, m, H-3′), 3.97 (1H, d, J = 11.8 Hz, H-6″),
3.79 (1H, dd, J = 13.9, 6.6 Hz, H-3″), 3.75 (1H, m,
H-7′), 3.29 (3H, overlapped, H-1′, 4″, 5″), 3.79 (1H,
dd, J = 13.9, 6.6 Hz, H-3″), 3.10 (1H, t, J = 8.2 Hz,
H-2″), 2.17 (1H, m, H-4′), 2.05 (3H, s, 6-CH3), 1.90
(1H, m, H-2′), 1.18 (3H, s, 9′-CH3), 0.95 (3H, s,
10′-CH3);13C-NMR (100 MHz, CD3OD) δ: 148.3
(C-3), 133.6 (C-5), 132.3 (C-4), 122.0 (C-2), 103.1
(C-1″), 87.7 (C-5′), 83.2 (C-8′), 78.1 (C-5″), 78.0
(C-3″), 77.1 (C-7′), 75.1 (C-7′), 74.0 (C-3′), 71.7
(C-4″), 62.8 (C-6″), 49.3 (C-1′), 42.9 (C-4′), 42.1
(C-2′), 21.1 (6-CH3), 19.7 (9′-CH3), 16.3 (10′-CH3)。以
上数据与文献报道基本一致[15],故鉴定化合物 15
为二氢红花菜豆酸-4′-O-β-D-吡喃葡萄糖苷。
参考文献
[1] 中国科学院中国植物志编辑委员会. 中国植物志 [M].
第 1 版. 北京: 科学出版社, 1979.
[2] 全国中草药汇编编写组. 全国中草药汇编 [M]. 北京:
人民卫生出版社, 1975.
[3] Zhong X N, Hideaki O, Toshinori I, et al. Hydroquinone
diglycoside acyl esters from the leaves of Myrsine seguini
[J]. Phytochemistry, 1999, 52: 923-927.
[4] Ding H Y, Wu Y C, Lin H C, et al. Glycosides from Paeonia
suffruticosa [J]. Chem Pharm Bull, 1999, 47(5): 652-655.
[5] Cui C B, Tezuka Y, Yamashita H, et al. Isolation and
tructures of davallin, a new tetrameric proanthocyanidin,
and two new phenolic glycosides [J]. Chem Pharm Bull,
1993, 41(9): 1491-1497.
[6] 周思祥. 山绿茶的化学成分和生物活性研究 [D]. 北
京: 中国协和医科大学, 2007.
[7] Klick S, Herrmann K. Glucosides and glucose esters of
hydroxybenzoic acids in plants [J]. Phytochemistry, 1988,
27(7): 2177-2180.
[8] Yang X W, Wang J S, Ma Y L, et al. Bioactive phenols
from the leaves of Baccaurea ramiflora [J]. Nat Prod
Chem, 2007, 73(13): 1415-1417.
[9] D′Abrosca B, Fiorentino A, Ricci A, et al. Structural
characterization and radical scavenging activity of
monomeric and dimeric cinnamoyl glucose esters from
Petrorhagia velutina leaves [J]. Phytochem Lett, 2010,
3(1): 38-44.
[10] Wu P L, Hsu Y L, Zao C W, et al. Constituents of vittaria
anguste-elongata and their biological activities [J]. J Nat
Prod, 2005, 68(8): 1180-1184.
[11] Lu Y, Sun Y, Foo L Y, et al. Phenolic glycosides of forage
legume Onobrychis viciifolia [J]. Phytochemistry, 2000,
55(1): 67-75.
[12] Liu L J, Li W, Koike K, et al. New a-tetralonyl glucosides
from the fruit of Juglans mandshurica [J]. Chem Pharm
Bull, 2004, 52(5): 566-569.
[13] Mohamed K M, Mohamed M H, Ohtani K, et al.
Megastigmane glycosides from seeds of Trifolium
alexandrinum [J]. Phytochemistry, 1999, 50: 859-862.
[14] 李彤梅, 余竞光. 鹰爪叶化学成分研究 [J]. 药学学报,
1998, 33(8): 591-596.
[15] Ramos M R, Socorro G J, Villanueva S, et al. Two
glucosylated abscisic acid derivates from avocado seeds
(Persea americana Mill. Lauraceae cv. Hass) [J].
Phytochemistry, 2004, 65(7): 955-962.