免费文献传递   相关文献

五种茄科糖苷生物碱及其混合物的抗真菌活性研究(英文)



全 文 :天然产物研究与开发 NatProdResDev2009, 21:36-43
文章编号:1001-6880(2009)01-0036-08
 
 
 ReceivedApril28, 2008;AcceptedSeptember19, 2008
 FoundationItem:ThisprojectwassupportedbySpecializedResearch
FundfortheDoctoralProgramofHigherEducation(20070200004)
andtheNaturalScienceFoundationofJilinProvince(20040546).
*CorrespondingauthorTel:86-431-85098212;E-mail:zhouyf383@
nenu.edu.cn
五种茄科糖苷生物碱及其混合物的抗真菌活性研究
赵雪淞 1, 2 ,高 聆 1 ,王 娟 1 ,徐文静 3 ,周义发 1*
1东北师范大学生命科学学院 , 长春 130024;
2阜新高等专科学校 ,阜新 123000;3吉林省农业科学院 ,长春 130124
摘 要:本文研究了五种茄科糖苷生物碱(茄碱 、查茄碱 、边缘茄碱 、澳洲茄碱和番茄碱)对两种植物病原真菌白
菜白斑病菌和葱紫斑病菌的抑制活性。结果表明番茄碱的抗真菌活性最强 , 其后依次是查茄碱 、边缘茄碱和澳
洲茄碱 , 茄碱的活性最弱;不同浓度茄碱和查茄碱(马铃薯中的两种糖苷生物碱)的混合物均具有协同抗真菌作
用 , 且低浓度的混合物产生的协同作用效果较大;边缘茄碱和澳洲茄碱(龙葵中的两种糖苷生物碱)的混合物基
本没有协同抗真菌作用;边缘茄碱和查茄碱的混合物以及澳洲茄碱和茄碱的混合物(均为来自不同植物的糖苷
生物碱的混合物)在抗真菌活性上都呈现了相加关系。
关键词:抗真菌活性;糖苷生物碱;白菜白斑病菌;葱紫斑病菌;协同作用
中图分类号:Q946.83;R282.71 文献标识码:A
AntifungalActivityofFiveSolanaceousGlycoalkaloidsandTheirMixtures
againstPhytopathogenicFungiCercosporelabrassicaeandAlternariaporri
ZHAOXue-song1, 2 , GAOLing1 , WANGJuan1 , XUWen-jing3 , ZHOUYi-fa1*
1SchoolofLifeSciences, NortheastNormalUniversity, Changchun130024 , China;2CollegeofFuxin
HigherTraining, Fuxin123000 , China;3JilinAcademyofAgriculturalSciences, Changchun130124 , China
Abstract:Theantifungalactivityoffivesolanaceaeglycoalkaloidssolanine, chaconine, solasonine, solamargineandtoma-
tineagainstphytopathogenicfungiCercosporellabrassicaeandAlternariaporrihasbeenevaluated.Tomatineshowedthe
highestantifungalactivityagainstC.brassicaeandA.porriamongfivecompounds, folowedwithchaconie, solamargine
andsolasonine, whilesolanineshowedthelowestantifungalactivity.Mixtureofpotatoglycoalkaloidssolanineandchaco-
nineproducedmarkedsynergisticantifungalactivity.Themagnitudeofsynergismsishigheratlowerconcentrationsthan
thatathigherconcentrations.TheantifungalactivityofindividualglycoalkaloidagainstA.poriwasrelativelow, evenno
activity, butthemixtureofchaconineandsolanineshowedsignificantsynergism.Therewasnosynergismbetweengly-
coalkaloidssolasonineandsolamarginefromSolanumnigrumininhibitingfungulgrowth.Themixturesofsolamargine
andchaconine, andsolasonineandsolaninebothcausedadditiveinhibitiononthegrowthoffungi.
Keywords:antifungalactivity;glycoalkaloids;Cercosporellabrassicae;Alternariaporri;synergism
Introduction
Glycoalkaloidsaresecondarymetabolitesfoundinnu-
meroussolanaceousplantspeciesincludingeggplants
(Solanummelongena), tomatoes(Lycopersiconesculen-
tum), potatoes(Solanum tuberosum)andmedicinal
plantblacknightshade(Solanumnigrum).Theyare
thoughttobeanimportantcomponentoftheplant s
chemicalarmouryagainstphytopathogens[ 1-4] .These
moleculeshaveanoligosaccharidechainatachedtothe
C-3 positionofthenitrogenoussteroidalalkaloidback-
bone(Fig.1).Insomesolanaceousspecies, thetwo
majorglycoalkaloidspresentinpairsofstructuralyre-
latedcompoundswhichshareacommonaglyconeand
diferonlyintheircarbohydratemoiety(Table1).In-
terestingly, someofthesenaturaly`paired glycoalka-
loidssharethecarbohydratemoietiesofsolanine(sola-
triose)andchaconine(chacotriose, Table1)difering
DOI :10.16333/j.1001-6880.2009.01.017
onlyinaglyconestructure, e.g.solasonineandsolamar-
gine.
Thebiologicalactivityofglycoalkaloidsislargelydue
totheirmembrane-disruptiveefectsandtheycancom-
plexwithmembranesterolsultimatelytoformaggre-
gatesandcauselossofmembraneintegrity[ 5, 6] .Usualy
chacotriose-based glycoalkaloidsare highly active
whereassolatriose-basedcompoundsshowlowerorno
membrane-disruptiveactivity[ 7, 8] .Thereisevidencetoo
thatsuch“paired”glycoalkaloidsmayinteractsynergis-
ticaly.Somepairsofsteroidalglycoalkaloidsthathave
acommonaglyconebutdiferinthecompositionof
theirsugarchainsshowsynergismintheirmembrano-
lyticactivity[ 9] .
Thereseachabouttheactivityofglycoalkaloidsissig-
nificanttotheexploitationofplantresourcessuchas
thedevelopmentofagriculturalfungicide.Theactivity
ofglycoalkaloidshasbeenstudiedforoveronecentury
inabroad.Buttherearenoreportabouttheantifungal
activityofthefiveglycoalkaloidsandtheirmixturesa-
gainstCercosporelabrasicaeHoehnelandAlternaria
poriCif.Inaddition, litleinformationisavailableon
thesecompoundsinChina.Therefore, thispapertest
theantifungalactivityoffivekindsofglycoalkaloids
chaconine, solanine, soalmargine, solasonineandtoma-
tine(Fig.1)andtheirmixtureagainsttwophytopatho-
genicfungiCercosporelabrassicaeHoehnelandAlter-
nariaporriCifinvitro.
Table1 Structuresandoriginsofglycoalkaloids
Glycoalkaloid Aglycone Glycosidemoiety Origin
α-solanine solanidine solatriose Solanumtuberosumetc.
α-chaconine solanidine chacotriose Solanumtuberosumetc.
α-solasonine solasodine solatriose Solanumnigrumetc.
α-solamargine solasodine chacotriose Solanumnigrumetc.
α-tomatine tomatidine lycotetraoseLycopersicumesculentumMill
Fig.1 Structuresofα-solamargine, α-solasonine, α-chaconine, α-solanineandα-tomatine
MaterialsandMethods
Testcompounds
AuthenticglycoalkaloidswerepurchasedfromSigma.
α-solamargine, α-solasonine, α-chaconine, α-solanine
andα-tomatineusedintestwereextractedfromSola-
numnigrumberiesandpotatosproutsandtomatoleav-
es, andpurifiedbysilicagelcolumnchromatography,
folowedbyrepeatedcrystalizations.Thepurecom-
poundswereidentifiedbyTLC, HPLCand13CNMR
spectra(BrukerAv600 NMRspectrometer, dimethyl-
sulfoxid-D6 assolvent).
37Vol.21       ZHAOXue-song, etal:AntifungalActivityofFiveSolanaceousGlycoalkaloidsandTheirMixtures 
TLCwasdoneusingsilicagelG60plateandadevelo-
pingsolventconsistingofchloroform, methanoland
28% ammoniumhydroxide(50∶30∶4 or65∶35∶3, v/
v/v).Theplatewasstainedbysprayingsaturatedanti-
monytrichlorideinchloroform, andthenheatingat100
℃ for5 min.HPLCanalysiswasconductedusinga
DIKMAInertsilODS-3 column(4.6mm×150 mm)
connectedtotheHPLCsystemconsistingoftwoLC-
10ATvppumpsandaSPD-10AvpdetectorfromShi-
madzu, Japan.Thecolumnwaselutedat1.0mL/minwith
acetonitrileandNH4H2PO4-H3PO4 bufer(pH3.5, 25∶75,
v/v)andmonitoredbyabsorbanceat200nm.
The13CNMRspectraldataofα-chaconine(dimethyl-
sulfoxid-D, 150 MHz)δ:37.59(C-1), 31.47 (C-2),
76.90 (C-3), 39.90 (C-4), 140.21 (C-5), 121.4
(C-6), 32.89 (C-7), 31.21 (C-8), 49.63 (C-9),
36.81 (C-10), 20.38 (C-11), 39.9 (C-12), 39.91
(C-13), 56.92 (C-14), 36.11 (C-15), 68.63 (C-
16), 62.47 (C-17), 16.58 (C-18), 18.92 (C-19),
36.34 (C-20), 18.27 (C-21), 76.67 (C-22), 28.99
(C-23), 30.65 (C-24), 30.93 (C-25), 59.52 (C-
26), 19.35 (C-27), 98.20 (C-l′), 74.01 (C-2′),
76.11 (C-3′), 76.31 (C-4′), 74.01 (C-5′), 60.00
(C-6′), 100.20 (C-l″), 70.41 (C-2″), 70.55 (C-
3″), 71.88 (C-4″), 67.90 (C-5″), 17.76 (C-6″),
100.50(C-l ), 70.69 (C-2 ), 70.55 (C-3 ), 71.88
(C-4 ), 68.36 (C-5 ), 17.72 (C-6 ).
The13CNMRspectraldataofα-solanine(dimethylsul-
foxid-D, 150 MHz)δ:37.52 (C-l), 31.54 (C-2),
76.90 (C-3), 39.91 (C-4), 140.33 (C-5), 121.39
(C-6), 36.16 (C-7), 31.26 (C-8), 49.70 (C-9),
36.91(C-10), 20.44 (C-11), 39.91 (C-12 ), 39.78
(C-13), 56.99 (C-14), 36.16 (C-15), 68.41 (C-
16), 60.58 (C-17), 16.68 (C-18), 18.95 (C-19),
36.41 (C-20), 17.81 (C-21), 74.65 (C-22), 28.97
(C-23), 30.69 (C-24), 30.98 (C-25), 59.58 (C-
26), 19.40 (C-27), 98.42 (C-l′), 73.43 (C-2′),
83.58 (C-3′), 67.81 (C-4′), 72.93(C-5′), 68.41
(C-6′), 100.41 (C-l″), 69.76 (C-2″), 70.43 (C-
3″), 72.52 (C-4″), 60.91 (C-5″), 18.32 (C-6″),
103.95 (C-1 ), 72.05 (C-2 ), 74.06 (C-3 ),
69.96 (C-4 ), 76.00 (C-5 ), 62.52(C-6 ).
The13CNMRspectradataofα-solamargine(dimethyl-
sulfoxid-D, 150MHz)δ:36.77 (C-1), 28.29 (C-2),
76.20 (C-3), 37.58 (C-4), 140.29 (C-5), 121.22
(C-6), 31.70 (C-7), 30.99 (C-8), 53.00 (C-9),
36.37 (C-10), 20.30 (C-11), 40.22 (C-12), 40.41
(C-13), 55.83 (C-14), 35.79 (C-15), 76.65 (C-
16), 61.62 (C-17), 15.84 (C-18), 18.54 (C-19),
41.09 (C-20), 15.02 (C-21), 97.62 (C-22), 30.78
(C-23), 29.00 (C-24), 31.44 (C-25), 49.44 (C-
26), 18.96 (C-27), 98.16 (C-1′), 75.24 (C-2′),
76.10 (C-3′), 75.24 (C-4′), 76.99 (C-5′), 59.97
(C-6′), 100.50 (C-1″), 70.41 (C-2″), 70.65 (C-
3″), 70.70 (C-4″), 68.63 (C-5″), 17.76 (C-6″),
100.28 (C-1 ), 70.36 (C-2 ), 70.59 (C-3 ),
71.93 (C-4 ), 67.92(C-5 ), (C-6 ).
The13CNMRspectradataofα-solasonine(dimethyl-
sulfoxid-D, 150MHz)δ:36.91 (C-1), 29.06 (C-2),
76.00 (C-3), 37.52 (C-4), 140.33 (C-5), 121.39
(C-6), 31.54 (C-7), 30.98 (C-8), 49.70 (C-9),
36.41 (C-10), 20.44 (C-11), 40.16 (C-12), 40.41
(C-13), 55.99 (C-14), 31.26 (C-15), 79.32 (C-
16), 62.52 (C-17), 16.63 (C-18), 18.32 (C-19),
40.91 (C-20), 15.40 (C-21), 97.48 (C-22), 28.97
(C-23), 32.94 (C-24), 30.69 (C-25), 46.39 (C-
26), 18.95 (C-27), 98.42 (C-1′), 72.93 (C-2′),
83.58 (C-3′), 67.81 (C-4′), 74.65 (C-5′), 60.58
(C-6′), 103.95 (C-1″), 73.43 (C-2″), 76.90 (C-
3″), 76.06 (C-4″), 69.76 (C-5″), 60.91 (C-6″),
100.40 (C-1 ), 70.50 (C-2 ), 70.43 (C-3 ),
72.05 (C-4 ), 67.96(C-5 ), 17.81 (C-6 ).
The13CNMRspectradataofα-tomatine(dimethylsul-
foxid-D, 150 MHz)δ:38.50 (C-1), 26.06 (C-2),
80.15 (C-3), 36.49 (C-4), 47.16(C-5), 35.31(C-
6), 31.60 (C-7), 29.01 (C-8), 55.09 (C-9), 34.01
(C-10), 20.62 (C-11), 40.11 (C-12), 40.62 (C-
13), 59.44 (C-14), 31.85 (C-15), 81.87 (C-16),
65.85 (C-17), 14.37 (C-18), 18.30 (C-19), 44.02
(C-20), 12.07 (C-21), 95.84 (C-22), 27.21 (C-
23), 25.00 (C-24), 28.25 (C-25), 53.61 (C-26),
16.87 (C-27), 98.35 (C-1′), 73.49 (C-2′), 74.26
(C-3′), 79.05 (C-4′), 73.49 (C-5′), 60.77 (C-
6′), 102.44 (C-1″), 79.44 (C-2″), 85.00 (C-3″),
69.46 (C-4″), 76.00 (C-5″), 61.32 (C-6″), 100.91
(C-1 ), 73.57 (C-2 ), 76.58 (C-3 ), 69.57(C-
38 NatProdResDev                      Vol.21
4 ), 68.80(C-5 ), 103.3(C-1″), 75.88(C-2″″),
71.48(C-3″″), 76.38(C-4″), 76.98(C-5″″), 61.09
(C-6″).
Fungalstrainsandmedia
ThefungiusedwereCercosporelabrasicaeHoehnel
andAlternariaporiCif.Theywereobtainedfromthe
JilinAcademyofAgriculturalSciencesandmaintained
onPotatoDextroseAgar(PDA)in9 cmPetridishesin
thedarkat25 ℃.
Antifungalassay
Theglycoalkaloidswereassayedfortheirantifungalac-
tivitiesontheradialgrowthofmycelium, usinganagar
dilutionmethod.Fungiweregrownin6 cmdiameter
shalowpetridishescontainingapprox.7 mLofPDA
containingglycoalkaloids.First, glycoalkaloidwaspre-
paredas600 μMstocksolutionsbydissolvinginthe
minimumvol.of0.1MHClandmakingtovolumewith
distiledwater.Then, themediumcontainingglycoalka-
loidatvariousconcentrationstextedwaspreparedby
admixinganappropriatevolumeofglycoalkaloidstock
solutionandanappropriatevolumeofPDAconcentrat-
edsolutionmaintainedinmoltenstate.Finaly, thepH
wasadjustedtopH6.1 withacidoralkaliandtheme-
diumautoclavedat121 ℃ for15 min.Foreachfun-
gus, theinoculumusedforsetingupexperimentswasa
5 mmdiametercorecutfromtheperimeterofastock
culturewithasterilecorkborer.Thiswasplacedcen-
tralyina6 cmdiametershalowpetridish.Testcul-
tureswereincubatedinthedarkat25 ℃ for5
(A.pori)and6 d(C.brasicae), beingtheapproxi-
matetimesforcontrolgrowth to fil the Petri
dish.Growthwasasessedbymeasuringcolonydiame-
ter.Becausegrowthwasnotalwaysregularlyconcen-
tric, 3 diametermeasurementsweremadeat-120°to
eachotherandtheirmeancalculated.Growthinhibition
wasexpressedasapercentageofthecontrols.The
efectoftheglycoalkaloidswasevaluatedbytheper-
centagemyceliagrowthinhibition, usingtheformula:
(dc-dt)/(dc-5mm)×100%(dc=meanfungal
colonydiameterofcontrol;dt=meanfungalcolony
diameterwithglacoalkaloidstreatment).
Replicationandstatisticalanalyses
Eachtreatmentcomprised3replicatesandeachexperi-
mentwascariedoutatthreetimes.Reportedvalues
aretheaverageofthesethreeasays.Thedatafromal
experimentsweresubjectedtoanalysisusingaSPSS
statisticspackage.
ResultsandDiscussion
Compoundsidentification
Thefivecompoundschaconine, solanine, solamargine,
solasonineandtomatineweretentativelyidentifiedby
TLC.ChaconineandsolaninehadtheRfof0.87 and
0.38 inchloroform/methanol/28% ammoniumhydrox-
ide(50∶30∶4, v/v/v), respectively.Solamargine, solas-
onineandtomatinehadtheRfof0.33, 0.12 and0.25
inchloroform/ methanol/ 28% ammoniumhydroxide
(65∶35∶3, v/v/v), respectively.Thesevalueswerei-
denticalwiththatofthepurchasedauthenticsam-
ples.HPLCanalysisshowedthateachofthefivegly-
coalkaloidshadasinglepeakhavingthesameretention
timeasauthenticsamples(internalstandardmethod),
respectively(Fig.2).Usingthepublisheddataoffive
glycoalkaloidschaconine, solanine, solamargine, solaso-
nineandtomatineasreferences[ 10-15] , thesignalsinthe
13CNMRspectrumofeachglycoalkaloidwascompared
welwiththeliterature.Aldataaboveconfirmedthe
purityandcharacterizationofthefiveglycoalkaloids.
Fig.2 HPLCanalysisofthepurifiedglycoalkaloids
Antifungalactivityoftheglycoalkaloids
Theefectsofglycoalkaloidsonthegrowthoffungihas
longbeenrecognizedasbeingcharacteristicalypHde-
pendent[ 16, 17] .Glycoalkaloidshavealsoshownquite
diferentlyticefectsagainstliposomemembranesover
thepH range5-9[ 18] .Ourpreliminaryexperiments
39Vol.21       ZHAOXue-song, etal:AntifungalActivityofFiveSolanaceousGlycoalkaloidsandTheirMixtures 
demonstratedthattheefectsofglycoalkaloidsonthe
growthofthetwofungiinourtestincreasedmarkedly
whenthepH≥6, butthesolubilityoftheglycoalkaloid
inwatermarkedlyreducedwhenthepH increased.
Basedonthesefindings, growthinhibitionofeachtest
funguswasdeterminedatpH6.1.
Theglycoalkaloidsshowedapronouncedconcentration
dependencyintheirinhibitionofphytopathgenicfungal
growth.BothfungiC.brasicaeandA.poriwerepro-
gressivelyinhibitedbyglycoalkaloidswithincreasing
concentration.Theresults(Table2)showedthatthe
antifungalactivitiesoftomatineagainstthetwofungi
wereboth highest, with IC50 (50% inhibitionof
growth)valuesforC.brasicaeof158 μMandA.pori
of97 μM, folowedbychaconineandsolamargine, the
efectsofsolanineandsolasonineagainstthetwofungi
werelessdramatic, withIC50 valuesforC.brassicaeof
419and318 μM, andA.poritotalyunafectedbyup
to500μM.Theresponsesofbothfungiusedinourtest
toglycoalkaloidswerediferent.A.poriislowersensi-
tivethanC.brasicae.
Table2 Growthinhibition(relativetothecontrol)of
C.brassicaeandA.porribyglycoalkaloids
Isolate GlycoalkaloidsIC50(μM)ChaconineSolanineSolamargineSolasonineTomatine
Cercosporelabrasicae 222 419 236 318 158
Alternariaporri 260 >1000 284 662 97
Tomatinecontainingfourcarbohydrateresidues(tet-
rasaccharide)hadgreaterantifungalactivitythanthe
otherfourglycoalkaloidswhichhavethreecarbohydrate
residues(chacotrioseandsolatriose).Theantifungal
activity ofthe chacotriose-containingglycoalkaloid
(chaconineandsolamargine)washigherthansolatri-
ose-containingglycoalkaloids(solanineandsolasonine)
.Theseresultssuggestedthatthecarbohydratemoiety
ofglycoalkaloidsplayedimportantroleintheirbiologi-
calactivity.Chaconineexertsgreaterantifungalactivity
thansolamargineindicatesthatthenatureoftheagly-
cone(solanidaneandspirosolanerespectively, Fig.1)
alsomakesanimportantcontributiontobiologicalac-
tivity.Thebiologicalactivityofglycoalkaloidsispre-
sumed largely due to theirmembrane-disruptive
efects.theycancomplexwithmembranesterolsulti-
matelytoformaggregatesandcauselossofmembrane
integrity[ 5, 6] .ThegreatersensitivityofC.brassicaethan
A.poritoglycoalkaloidsindicatedthatthetypeanda-
mountofsterolinC.brasicaemembranemaybedifer-
entfromthatinA.pori.Morecomparativeworkinthis
areaisrequired.
Antifungalactivityofglycoalkaloidmixtures
Antifungalactivityofpotatoglycoalkaloidschaconine
andsolanineincombination
Ithasbeenreportedthatsynergismofantifungalefects
ofglycoalkaloidsusualyismosteficientintheratioin
whichthesteroidalglycoalkaloidsoccurnaturalyin
plant[ 5] .Ourextractedresultshowedtheratioofchaco-
ninetosolanineinpotatoisabout3∶2, therefore,
chaconineandsolanineweretestedaloneandin3∶2
combinationattotalconcentration50, 75, 100 and150
μM(Fig.3).
Thediferentialantifungalactivityofthetwocom-
poundsisagainconfirmedbythedatainFig.3 which,
additionaly, revealpronouncedsynergismsinthecom-
binedtreatments.Theinhibitioncausedbytheglycoal-
kaloidmixturearealhigherthanexpectedvalues
(basedonsummingtheindividualactivities).The
magnitudeofsynergismsvariedwiththeconcentration
andfungus.Atlowerconcentrations, thelevelofsyner-
gismsishigherthan athigherconcentrations.In
A.pori, individualglycoalkaloidefectswererelative
low, evennoactivity.However, thechaconineandsola-
ninemixturesproducedsignificantsynergism.
Alisonetal[ 16] .hasreportedthatsolanineandchaco-
nineinhibitedfungalgrowthsynergisticaly.Itsuggested
thattheglycoalkaloidsinsomesolanaceaceplants
probablyprotectthemselvessynergisticaly.Inthispa-
per, diferentfungiareusedtotestactivityofsolanine
andchaconinemixtures.Theresultswasconsistentwith
Alisonetal.Itisnotablethatacombinationofmuch
lowerlevelsofsolanineandchaconine(e.g.20 μMso-
lanineand30 μMchaconine)stilcausedpowerfulin-
hibitionofmycelialgrowth(Fig.3).Thismeansthata
significantsavinginmetaboliccostisavailabletothe
plantthroughtheoperationofthesynergism.Additionaly,
thisfindingcouldbeofimportanceinresistancetofun-
40 NatProdResDev                      Vol.21
galatack, sinceitisalsointerestingtospeculate
whetherthelessefectivesolanineisthemoreprimitive
ofthetwoglycoalkaloidsanditsretentionisduetoits
abilitytosynergizewithchaconineratherthanitslimit-
edinhibitoryefects.Uptodate, veryfewstudieshave
actualybeenconductedinthisarea.Thequestionsa-
boutthenatureofthissynergismareyetunanswered.
Fig.3 Effectofsolanineandchaconineindividuallyandina3∶2 combinationonthegrowthofC.brassicaeandA.porriat
pH 6.1(S, C =solanine, chaconine;number=concentration(μM))
AntifungalactivityofS.nigrumglycoalkaloidssolamar-
gineandsolasonineincombination
Ourextractedresultshowedtheratioofsolamargine
andsolasonineinS.nigrumisabout7∶3.Therefore, so-
lamargineandsolasonineweretestedaloneandin7∶3
combinationattotalconcentration50, 75, 100 and150
μM(Fig.4).Itisfoundinthisapproachnoevidenceof
synergismbetweensolamargineandsolasonineinal
testgroups.Thegrowthinhibitioncausedbythegly-
coalkaloidmixturewasequivalentwiththeexpected
values(basedonsummingtheindividualactivities).
Themixturesofsolasonineandsolamargineproduced
additiveefects.
Solasonineandsolamargineshowmanyresemblancesto
solanineandchaconinerespectively.Thecarbohydrate
moeitiesofsolasonineandsolanineareidentical, asare
thecarbohydratemoeitiesofsolamargineandchaco-
nine.Thetwosetsofanalogsdiferonlyintheirsteroid
aglycone(solasodineandsolanidine, respectively).
Thus, weexpectedantifungalactivityofsolasonineand
solamarginetoparalelthatofsolanineandchaco-
nine.Althoughweobservedtheexpectedgreaterdegree
ofactivityforsolamarginecomparedtosolasonine, we
didnotobservesynergism.Theresultshereareconsist-
entwithfindingsofCipolinietal[ 13] , butnotconsistent
withAlison sfinding[ 17] .Acomparisonoftheefectsof
solamargineandsolasoninemixturereportedinthispa-
perwiththoseofreportedinliteratures[ 17, 19] suggests
thatefectofthetwoglycoalkaloidsmixtureonfungal
growthvarieswiththeconcentrations, pH, fungalspe-
ciesandnutrientprofilesusedintest.Itislikelytoo
thatforthemixtureofsoalmargineandsolasonine, there
trulyisnosynergisminactivitytowardthefungi.
Antifungalactivityofsolatriose-basedglycoalkaloidsso-
lanineandsolasonineincombinationandchacotriose-
basedglycoalkaloidschaconineandsolamargineincom-
bination
Fromastructuralstandpoint(Fig.1), itwasdecidedto
studywhethertheglycoalkaloidssolanineandchaco-
ninewerecapableofinteractingwithitscounterpartso-
lasonineandsolamargine.thesolatriose-basedglycoal-
kaloidssolanineandsolasonineweretestedaloneand
in7∶3 combinationattotalconcentration100 μMand
in1∶1 combinationattotalconcentration150 μMon
41Vol.21       ZHAOXue-song, etal:AntifungalActivityofFiveSolanaceousGlycoalkaloidsandTheirMixtures 
fungalgrowthinhibitionasinFig.5.Eachofthecom-
binationscontaining both glycoalkaloids produced
growthinhibitionwhichequivalentwiththesumming
efects of each glycoalkaloid individualy elici-
ted.Additiveinhibitionsoffungalgrowthwerepro-
ducedbythecombinationsofsolanineandsolasonine.
Fig.4 Effectsofsolasonineandsolamargineindividuallyandina7∶3combinationonthegrowthofC.brassicaeandA.porri
atpH 6.1(SM=solamargine;SS=solasonine;number=concentration(μM)
Fig.5 Effectsofsolanineandsolasonineindividually
andina7∶3 combinationor1∶1 combination
onthegrowthofC.brassicaeandA.porriat
pH 6.0(Sol=solanine;SS=solasonine)
Thecombinationsofsolamargineandchaconinetested
alhadatotalglycoalkaloidstrengthof150 μMindif-
ferentratios(Fig.6).Althecombinationsofthetwo
glycoalkaloidsproducedadditiveefect.Theadditive
efectbetween
Fig.6 Growthinhibition(relativetothecontrol)of
C.brassicaeandA.porribydifferentconcentra-
tionsofchaconineandsolamargineindividually
andbycombinationsoftheglycoalkaloids, at
pH 6.1(Thetotalglycoalkaloidstrengthinal
combinationtreatmentswas150 μM, C, S =
chaconine, solamargine)
thechacotriose-basedglycoalkaloidschaconineandso-
lamargineandbetweenthesolatriose-basedglycoalka-
loidssolanineandsolasonineonfungalgrowthinhibi-
tionsuggestthatacontrasting/complementarycarbohy-
dratemoietyappearstobeanabsoluteprerequisitefor
synergicinteractions, andthisinteractionisreliantona
complementationbetweensolatrioseandchacotriose
42 NatProdResDev                      Vol.21
glycoalkaloids, irrespectiveoftheaglycone.Morework
isstilneededtoclarifythenatureoftheseglycoalka-
loidsinteractions.
Inconclusion, theresultsreportedinthispapercould
beofpotentialsignificancebothcommercialyandeco-
logicaly.Theseresultsmaybeprovidethefoundation
forusingglycoalkaloidsaspathogenicfungicontroling
materialanddevelopmentofcompositefungicidefrom
plant.
References
1 OsbournAE.Saponinsandplantdefence—asoap sto-
ry.TrendsPlantSci, 1996, 1:4-9.
2 ArnesonPA, DurbinRD.Thesensitivityoffungitoα-toma-
tine.Phytopathology, 1968, 58:536-537.
3 FriedmanM.Tomatoglycoalkaloids:roleintheplantandin
thediet.JAgricFoodChem, 2002, 50:5751-5780.
4 RoddickJG.Steroidalglycoalkaloids:Natureandconse-
quencesofbioactivity.In:WallerGRandYamasakiK.eds,
SaponinsUsedinTraditionalandModernMedicine.New
York:PlenumPress, 1996.271-295.
5 MorrisseyJP, OsbournAE.Fungalresistancetoplantantibi-
oticsasamechanism ofpathogenesis.MicrobiolMolBiol
Rev, 1999, 63:708-724.
6 SteelCC, DrysdaleRB.Electrolyteleakagefromplantand
fungaltissuesanddisruptionofliposomemembranesbyα-toma-
tine.Phytochemistry, 1988, 27:1025-1030.
7 KeukensEA, deVrijeT, vandenBoomC, etal.Molecular
basisofglycoalkaloidinducedmembranedisruption.Biochim
BiophysActa, 1995, 1240:216-228.
8 RoddickJG, AnnaL, Rijnenberg, etal.Alterationstotheper-
meabilityofliposomemembranesbythesolasodine-based
glycoalkaloidssolasonineandsolamargine.Phytochemistry,
1992, 31:1951-1954.
9 RoddickJG, RijnenbergAL, OsmanSF.Synergisticinterac-
tionbetweenthepotatoglycoalkaloidsα-solanineandα-
chaconineinrelationtodestabilizationofcelmembrances:
ecologicalimplications.JChemEcol, 1988, 14:889-902.
10 PuriR, WongTC, PuriRK.1Hand13CNMRassignments
andstructuraldeterminationofanovelglycoalkaloidfromSo-
lanumplatanifolium.JNatProd, 1994, 57:587-596.
11 MahatoSB, SahuNP, GangulyAN, etal.Steroidalalkaloids
fromSsolanumkhasianum:applicationof13CNMRspectros-
copytotheirstructuralelucidation.Phytochemistry, 1980, 19:
2017-2020.
12 LawsoDR, GreenTP, HaynesLW, etal.Nuclearmagnetic
resonancespectroscopyandmassspectrometryofsolanidine,
leptinidine, andacetyleptinidine.steroidalalkaloidsfromSo-
lanumchacoenseBiter.JAgricFoodChem, 1997, 45:4122-
4126.
13 MorilloM, LequartV, GrandE, etal.Synthesisofperacety-
latedchacotriose.CarbohydrRes, 2001, 334:281-287.
14 RadegliaR, AdemxG, RippergerH.13CNMRSpectroscopy
ofsolanum steroidalkaloids.TetrahedronLett, 1977, 903-
906.
15 AbouzidS, FawzyN, DarweeshN, etal.Steroidalglycoalka-
loidsfromtheberriesofSolanumdistichum.NatProdRes,
2008, 22:147-153.
16 FewelAM, RoddickJG.Interactiveantifungalactivityofthe
glycoalkaloidsolanineandchaconine.Phytochemistry, 1993,
33:323-328.
17 FewellAM, RoddickJG, WeissenbergM.interactionsbe-
tweentheglycoalkaloidssolasonineandsolamargineinrela-
tiontoinhibitionoffungalgrowth.Phytochemistry, 1994, 37:
1007-1011.
18 KeukensEAJ, DeVrijeT, FabrieCHJP, etal.Dualspecifici-
tyofsterol-mediatedglycoalkaloidinducedmembranedisrup-
tion.BiochimBiophysActa, 1992, 1110:127-136.
19 CipoliniML, LeveyDJ.Antifungalactivityofsolanumfruit
glycoalkaloids:implicationsforfrugivoryandseeddispersal.Ecol-
ogy, 1997, 78:799-809.
43Vol.21       ZHAOXue-song, etal:AntifungalActivityofFiveSolanaceousGlycoalkaloidsandTheirMixtures