免费文献传递   相关文献

Research on the photoprotection and photosynthesis characteristics of young cotton leaves under field conditions

田间条件下棉花幼叶光合特性及光保护机制


通过比较棉花(Gossypium hirsutum)幼叶和完全展开叶气体交换参数及叶绿素荧光特性的差异, 探讨高光强下幼叶的光抑制程度及明确光保护机制间的协调机理。在田间自然条件下, 以棉花刚展平的幼嫩叶片(幼叶)和面积已达到最大的完全展开叶片为研究对象, 通过测定不同发育阶段叶片气体交换参数及叶绿素a荧光参数的变化, 并运用Dual-PAM100对不同发育阶段的叶片进行快速光响应曲线的拟合。结果表明: 幼叶和完全展开叶片在光合、荧光特性方面表现出明显的差异。与完全展开叶相比, 较低的叶绿素(Chl)含量和气孔导度(Gs)是幼叶较低净光合速率(Pn)的限制因素, 从而直接导致其光系统II(PSII)实际光化学效率(ΦPSII)和光化学猝灭系数(qP)的降低。在1 800 μmol·m-2·s-1光强以下, 完全展开叶具有较强的围绕PSI循环的电子流(CEF), 有利于合成ATP, 是其具有较高光合能力的原因之一。相同光强下, 幼叶较低的光饱和点(LSP)更易受光抑制, 但其PSII原初光化学效率(Fv/Fm)的日变化幅度显著小于完全展开叶, 说明强光下幼叶通过类胡萝卜素(Car)猝灭单线态氧、光呼吸(Pr)、热耗散(NPQ)以及PSI-CEF等光保护机制能有效地耗散过剩的光能, 从而避免其光合机构发生光抑制。

Aims Differences of photosynthesis and chlorophyll fluorescence characteristics between flat young leaves (young leaves) and fully grown leaves (mature leaves) of cotton were compared to study the adaptation mechanisms of photoinhibition and photoprotection on young leaves under strong sunlight.
Methods We measured gas-exchange and chlorophyll fluorescence of young and mature leaves of cotton under field conditions and obtained rapid light curves with a Dual-PAM100 using an internal program.
Important findings There were significant differences between young and mature leaves in photosynthesis and fluorescence characteristics. Young leaves had lower chlorophyll content (Chl) and stomatal conductance (Gs), which accounted for lower net photosynthetic rate (Pn), which in turn resulted in lower actual photochemical efficiency (ΦPSII) and photochemical quenching (qP) in photosystem II (PSII). Below 1 800 μmol·m-2·s-1, the higher cyclic electron flow (CEF) that was useful for composing ATP is one of the reasons for higher photosynthetic capacity in mature leaves. Lower light saturation point (LSP) was more susceptible to photoinhibition in young leaves under the same light; however, the magnitude of diurnal variation of its maximum photochemical efficiency of PSII (Fv/Fm) was significantly less than that of mature leaves. We suggest that photoprotective mechanisms, including direct quenching of reactive oxygen species by abundant carotenoids, photorespiration (Pr), non-photochemical quenching (NPQ) and the cyclic electron flow around PSI (PSI-CEF), can effectively dissipate the excess energy in young leaves to avoid photoinhibition under high irradiance.


全 文 :植物生态学报 2012, 36 (7): 662–670 doi: 10.3724/SP.J.1258.2012.00662
Chinese Journal of Plant Ecology http://www.plant-ecology.com
——————————————————
收稿日期Received: 2011-12-29 接受日期Accepted: 2012-05-02
* 通讯作者Author for correspondence (E-mail: zhwf_agr@shzu.edu.cn; zwf_shzu@163.com)
田间条件下棉花幼叶光合特性及光保护机制
李 维 张亚黎 胡渊渊 杨美森 吴 洁 张旺锋*
石河子大学农学院/新疆生产建设兵团绿洲生态农业重点实验室, 新疆石河子 832003
摘 要 通过比较棉花(Gossypium hirsutum)幼叶和完全展开叶气体交换参数及叶绿素荧光特性的差异, 探讨高光强下幼叶
的光抑制程度及明确光保护机制间的协调机理。在田间自然条件下, 以棉花刚展平的幼嫩叶片(幼叶)和面积已达到最大的完
全展开叶片为研究对象, 通过测定不同发育阶段叶片气体交换参数及叶绿素a荧光参数的变化, 并运用Dual-PAM100对不同
发育阶段的叶片进行快速光响应曲线的拟合。结果表明: 幼叶和完全展开叶片在光合、荧光特性方面表现出明显的差异。与
完全展开叶相比, 较低的叶绿素(Chl)含量和气孔导度(Gs)是幼叶较低净光合速率(Pn)的限制因素, 从而直接导致其光系统II
(PSII)实际光化学效率(ΦPSII)和光化学猝灭系数(qP)的降低。在1 800 μmol·m–2·s–1光强以下, 完全展开叶具有较强的围绕PSI循
环的电子流(CEF), 有利于合成ATP, 是其具有较高光合能力的原因之一。相同光强下, 幼叶较低的光饱和点(LSP)更易受光抑
制, 但其PSII原初光化学效率(Fv/Fm)的日变化幅度显著小于完全展开叶, 说明强光下幼叶通过类胡萝卜素(Car)猝灭单线态
氧、光呼吸(Pr)、热耗散(NPQ)以及PSI-CEF等光保护机制能有效地耗散过剩的光能, 从而避免其光合机构发生光抑制。
关键词 叶绿素荧光, 棉花, 气体交换, 完全展开叶, 光保护, 幼叶
Research on the photoprotection and photosynthesis characteristics of young cotton leaves
under field conditions
LI Wei, ZHANG Ya-Li, HU Yuan-Yuan, YANG Mei-Sen, WU Jie, and ZHANG Wang-Feng*
Key Laboratory of Oasis Ecol-agriculture of Xinjiang Production and Construction Crop, College of Agricultural, Shihezi University, Shihezi, Xinjiang
832003, China
Abstract
Aims Differences of photosynthesis and chlorophyll fluorescence characteristics between flat young leaves
(young leaves) and fully grown leaves (mature leaves) of cotton were compared to study the adaptation mecha-
nisms of photoinhibition and photoprotection on young leaves under strong sunlight.
Methods We measured gas-exchange and chlorophyll fluorescence of young and mature leaves of cotton under
field conditions and obtained rapid light curves with a Dual-PAM100 using an internal program.
Important findings There were significant differences between young and mature leaves in photosynthesis and
fluorescence characteristics. Young leaves had lower chlorophyll content (Chl) and stomatal conductance (Gs),
which accounted for lower net photosynthetic rate (Pn), which in turn resulted in lower actual photochemical effi-
ciency (ΦPSII) and photochemical quenching (qP) in photosystem II (PSII). Below 1 800 μmol·m–2·s–1, the higher
cyclic electron flow (CEF) that was useful for composing ATP is one of the reasons for higher photosynthetic ca-
pacity in mature leaves. Lower light saturation point (LSP) was more susceptible to photoinhibition in young
leaves under the same light; however, the magnitude of diurnal variation of its maximum photochemical effi-
ciency of PSII (Fv/Fm) was significantly less than that of mature leaves. We suggest that photoprotective mecha-
nisms, including direct quenching of reactive oxygen species by abundant carotenoids, photorespiration (Pr),
non-photochemical quenching (NPQ) and the cyclic electron flow around PSI (PSI-CEF), can effectively dissipate
the excess energy in young leaves to avoid photoinhibition under high irradiance.
Key words chlorophyll fluorescence, cotton, gas-exchange, mature leaf, photoprotection, young leaf

在植物叶片个体发育期, 刚伸出的幼叶单位面
积叶绿素含量较低, 无法有效地利用捕获的光能,
造成幼叶比完全展开叶可能存在更多的过剩激发
能(Bertamini & Nedunchezhian, 2003), 从而导致光
抑制的发生, 降低植物的光合生产力(蔡志全等 ,
2003)。光抑制发生在类囊体膜上, 尤其是光系统II
李维等: 田间条件下棉花幼叶光合特性及光保护机制 663

doi: 10.3724/SP.J.1258.2012.00662
(PSII)的反应中心(Cleland et al., 1986), 光抑制实质
上是一种PSII的临时可逆下调(Critchley & Russell,
1994)。植物在进化过程中形成了多种光保护机制。
研究表明, PSII的下调和热耗散是植物抵御高光强
的光保护措施(Aro et al., 1993; Gilmore & Björk-
man, 1994); 同时类胡萝卜素在由过量激发能产生
的活性氧自由基清除中起到一定的作用(Bartley &
Scolnik, 1995)。光呼吸被认为在耗散过剩光能, 保
护光合机构免于破坏中也起到重要作用(Cornic &
Briantis, 1991; 孟庆伟等, 1996)。围绕PSI的循环电
子流也是一种光保护机制(Heber & Walker, 1992;
Kim et al., 2001; Huang et al., 2010)。研究表明, 一
些灌木的上部幼叶在高光强下很容易引起光抑制,
强光下幼叶具有较高的α胡萝卜素、玉米黄质(叶黄
素循环组分之一), 但将幼叶放置于低光环境下光
抑制很快被解除(Krause et al., 1995; Da Matta et al.,
1997)。然而 , 姜闯道等 (2005)研究认为 , 大豆
(Glycine max)幼叶可以通过叶片形态上的偏向日性
运动以及生理功能上的光呼吸和热耗散等途径的
协同作用来减轻光抑制。
新疆是我国最重要的商品棉生产基地, 棉花
(Gossypium hirsutum)生长季节光照时间长、光热资
源丰富, 但在田间条件下可以观察到, 在逐渐展开
过程中棉花幼叶即具有叶片横向日性运动特性
(Zhang et al., 2009), 并认为提高了碳同化和水分利
用效率, 但并未增加叶片的光抑制。那么, 棉花幼
叶的光合机构是如何构建的?光抑制特性如何?
光合机构有哪些光保护机制可减少或避免光抑制
的发生? 有关自然条件下棉花幼叶光合特性及光
保护机制的研究报道较少。本研究针对新疆棉花大
田生长条件下棉苗易遭受强光环境的现象, 选取冠
层顶部刚展平的幼嫩叶片和面积达到最大的完全
展开叶片为研究对象, 比较棉花幼叶和完全展开叶
光合能力的差异, 分析幼叶的光抑制特性及光合机
构的光保护机制, 并探讨不同发育阶段叶片吸收的
能量在PSII和PSI两个系统间的分配规律, 揭示棉
花幼叶适应强光的光合生理特性。
1 材料和方法
试验于2010–2011年在石河子大学农学试验站
(45°19′ N, 86°03′ E)进行。供试品种选用北疆棉区大
面积种植的棉花品种‘新陆早13号’。4月17日布设滴
灌带、铺膜后, 在膜上人工点播, 一天后补出苗水。
田间种植方式及管道铺设方法同大田膜下滴灌棉
花, 每hm–2留苗1.8 × 105株, 其他管理措施同一般
大田管理。
在棉花开花期, 选取长势整齐一致的棉株, 对
植株上部刚展平的幼嫩叶片和已完全展开叶片(叶
片面积已达到最大)进行挂牌标记, 在晴朗无风的
天气进行各项生理指标的测定。
1.1 气体交换参数和光呼吸速率的测定
采用LI-6400便携式光合测定系统和 6400-
02LED红蓝光源叶室(LI-COR, Lincoln, USA)测定
所标记叶片的气体交换参数, 大气湿度、CO2浓度、
叶室温度等; 参考Bulley等(1969)方法, 略有改动,
具体如下: 用2% O2、98% N2、390 μmol·mol–1 CO2
和空气配置成的低氧气体, 在低氧和正常条件下分
别测定叶片光合速率, 两者之差即为光呼吸速率,
测定时内外界空气保持一致。按 0、200、400、600、
800、1 200、1 600、1 800和2 000 μmol·m–2·s–1等光
强作光响应曲线。不同处理叶片采用循环测定方式;
利用LI-6400便携式光合测定系统的光量子探头同
步测定外界环境光合有效辐射(PAR)的日变化。
1.2 叶绿素荧光参数的测定
1.2.1 叶绿素荧光和P700氧化还原态的测定
清晨将所标记的叶片剪取5片迅速带到室内,
采用Dual-PAM100荧光仪 (WALZ, Effeltrich, Ger-
many)进行叶绿素荧光参数测定, 测定前对叶片进
行充足的暗适应。先测定初始荧光产量(F0)和最大
荧光产量(Fm), 用Bal进行平衡, 测定P700中最大光
氧化量子产量(Pm)和光下最大量子产量(Pm′), 随后
打开光化光, 光强度为1 030 μmol·m–2·s–1, 待荧光
信号到达稳态后(4–5 min)打开饱和脉冲光, 测定任
意时间的实际荧光产量(Ft)和光适应下的最大荧光
产量(Fm′); 然后测定快速光曲线, 共10个光强梯度,
从低到高为27、58、100、171、278、435、665、
1 033、1 599和1 957 μmol·m–2·s–1, 每个光强梯度照
射样品20 s后打开饱和脉冲光进行荧光猝灭分析,
记录快速光响应曲线。具体操作按Dual-PAM 100使
用说明, 测定参考Klughamme和Schreiber (1994)、
Kramer等(2004)和Schreiber (2004):
Y (II) = (Fm′–F)/ Fm′
Y (II) + Y (NPQ) + Y (NO) = 1
Y (I) = (Pm′ – P)/Pm
664 植物生态学报 Chinese Journal of Plant Ecology 2012, 36 (7): 662–670

www.plant-ecology.com
Y (I) + Y (ND) + Y (NA) = 1
ETR(I) = Y(I) × PAR × 0.5 × 0.84; ETR(II) = Y
(II) × PAR × 0.5 × 0.84
其中, ETR为电子传递速率, Y(I)为光系统I光化学量
子产量, Y(II)为光系统II光化学量子产量, Y(ND)为
PSI中依赖于非光化学能力耗散的供体侧限制 ,
Y(NA)为PSI中依赖于非光化学能力耗散的受体侧限
制, Y(NO)为PSII中荧光和不依赖光的基础热耗散量
子产量, Y(NPQ)为PSII中△pH和叶黄素调节的热耗
散量子产量, 0.5是假设吸收的光被两个光系统均分
得到的参数, 0.84为吸光系数(Schreiber et al., 1994)。
1.2.2 叶绿素荧光参数日变化的测定
采用PAM-2100便携式调制荧光仪和2030-B光
适应叶夹测定所标记叶片叶绿素荧光参数的日变
化。所测定叶片与测定气交换参数的叶片相同, 不
同处理分别选取5个叶片, 具体操作参考张亚黎等
(2008)。叶片接受光合有效辐射(PAR)由PAM-2100
自带光适应叶夹2030-B微型光量子传感器在测定
叶片叶绿素荧光参数时自动记录。荧光参数按下列
公式计算:
(1) PSII的最大光化学效率 Fv/Fm = (Fm –Fo) / Fm
(2)有效光化学效率ΦPSII = (Fm′ – Ft)/Fm′ (Genty
et al., 1989)
(3)光化学猝灭系数qP = (Fm′ – Ft)/(Fm′ – F0′)
(Krause & Weis, 1991), 其中F0′ = F0/(Fv/Fm + F0 /
Fm′) (Oxborough & Baker, 1997)
(4)非光化学猝灭系数 NPQ = (Fm – Fm′) / Fm′
(Bilger & Björkman, 1990)
1.3 光合色素测定
打孔器(直径0.5 cm)打取6个圆片放入25 mL具
塞试管中, 用10 mL 80%丙酮提取色素。试管套黑
塑料袋并置暗处浸提, 定时振荡至各器官圆片呈白
色时 , 混匀后用UV-2041型分光光度计 (Pharma
Spec., Tokyo, Japan)测定, 于663和645 nm波长下测
定OD值, 用80%丙酮调零。
叶绿素含量= C (20.29 × D645 + 8.04 × D663) × V/S;
类胡萝卜素含量= 4.7 × D440 – 0.27 ×叶绿素含量
其中, C是叶绿素浓度, D为相应波长对应的吸光度
值, V代表提取液的体积, S是样品的面积。
2 结果
2.1 光合色素含量及气体交换参数的变化
叶绿素(Chl)是植物光合色素中最重要的一类
色素, 在植物的光合作用中对光能的吸收、传递
和转化起着极为重要的作用; 类胡萝卜素(Car)是
植物光合作用色素蛋白复合体不可缺少的组分, 它
们不仅可以作为捕光色素, 而且在保护光合器官免
受单线态氧的伤害中起重要作用(Bartley & Scolnik,
1995)。从表1可看出, 幼叶在单位面积上的总Chl、
Car含量均显著低于完全展开叶 , 然而幼叶的
Car/Chl比值显著高于完全展开叶; 幼叶气孔导度
(Gs)显著小于完全展开叶, 而胞间CO2浓度(Ci)高于
完全展开叶。
2.2 叶绿素荧光参数的变化
Fv/Fm表示PSII的最大光化学量子产量, 即原初
光化学的最大产量, 是衡量植物光合性能的重要指
标(Genty et al., 1989)。试验表明, 棉花幼叶的Fv/Fm
显著低于完全展开叶(表2), 但幼叶的Fv/Fm也在0.8
以上。ΦPSII反映了PSII的有效光化学效率(Schreiber,
2004), 试验表明, 幼叶的ΦPSII显著低于完全展开
叶; qP与PSII的光化学反应有关, 它反映了光系统II
稳定性原初电子受体QA的氧化还原状态(Krause &
Weis, 1991); 在PAR为1 957 μmol·m–2·s–1下幼叶的qP
显著低于完全展开叶。NPQ表示非光化学猝灭系数,
反映了PSII反应中心中发生非化学过程而引起的荧
光产量下降情况(Gilmore & Yamamoto, 1993)。幼叶
的NPQ显著低于完全展开叶。
2.3 光合-光响应曲线的变化
光补偿点(LCP)和光饱和点(LSP)是植物光合能
力的重要体现。LCP能够反映不同品种对弱光的适

表1 棉花幼叶和完全展开叶光合色素含量、气体交换参数的变化(平均值±标准偏差)
Table 1 Changes of chlorophyll content and gas exchange parameter in young and mature leaves of cotton (mean ± SD)
叶型
Leaf type
叶绿素 Chl a + b
(mg·dm–2)
类胡萝卜素 Car
(mg·dm–2)
Car/Chl a + b

气孔导度 Gs
(mol H2O·m–2·s–1)
胞间CO2浓度 Ci
(μmol·mol–1)
净光合速率 Pn
(μmol CO2·m–2·s–1)
YL 2.53 ± 0.07b 0.41 ± 0.02b 0.20 ± 0.01a 0.45 ± 0.01b 283.13 ± 0.23a 21.09 ± 0.058 3b
ML 4.3 ± 0.13a 0.51 ± 0.05a 0.15 + 0.01b 0.64 ± 0.08a 235.82 ± 1.17b 37.61 ± 0.027 1a
ML, 完全展开叶片; YL, 幼嫩叶片。同一列不同字母表示差异显著(p < 0.05)。
Car, carotinoid; Chl, chlorophyll; Ci, intercellular CO2 concentration; Gs, stomatal conductance; ML, mature leaf; Pn, net photosynthetic rate; YL,
young leaf. Different letters within a column indicate significant different (p < 0.05).
李维等: 田间条件下棉花幼叶光合特性及光保护机制 665

doi: 10.3724/SP.J.1258.2012.00662
表2 棉花幼叶和完全展开叶中叶绿素荧光参数的比较(平均值±标准偏差) (PAR = 1 957 μmol·m–2·s–1)
Table 2 Comparison of chlorophyll fluorescence parameters in young and mature leaves of cotton (mean ± SD) (PAR = 1 957
μmol·m–2·s–1)
叶型
Leaf type
最大光化学效率
Fv/Fm
有效光化学效率
ΦPSII
光化学猝灭系数
qP
非光化学猝灭系数
NPQ
YL 0.812 ± 0.01b 0.30 ± 0.02b 0.52 ± 0.04b 2.84 ± 0.03a
ML 0.840 ± 0.05a 0.35 ± 0.003a 0.57 ± 0.01a 2.15 ± 0.01b
ML, 完全展开叶片; PAR, 光合有效辐射; YL, 幼嫩叶片。同一列不同字母表示差异显著(p < 0.05)。
Fv/Fm, maximum photochemical efficiency of PSII; ML, mature leaf; NPQ, non-photochemical quenching; PAR, photosynthetic active radiating; qP,
photochemical quenching; YL, young leaf; ΦPSII, effective photochemical efficiency of PSII. Different letters within a column indicate significant
different (p < 0.05).


应能力, LSP能够反映不同品种对强光的适应能力
(张其德等, 1992)。对不同发育阶段叶片光合-光响
应曲线 (图1)进行拟合得出 , 幼叶的LSP为2 298
μmol·m–2·s–1, 完全展开叶为2 434 μmol·m–2·s–1, 但
幼叶的LCP (162.96 μmol·m–2·s–1)显著高于完全展开
叶(87.35 μmol·m–2·s–1)。
2.4 光合速率及最大光化学效率的日变化
幼叶和完全展开叶均表现出相同程度的叶片
横向日性运动(Zhang et al., 2009)。随着日进程的推
进, 幼叶与完全展开叶所接受的外界光强PAR无明
显差异(图2B); 且幼叶和完全展开叶的Pn变化趋势
一致, 均呈抛物线趋势变化(图2A), 先缓慢增加后
随着PAR降低至14:00–18:00快速降低, 14:00达最大
值, 且幼叶的Pn始终显著低于完全展开叶; 之后随
着PAR降至450 μmol·m–2·s–1, 两者Pn无显著差异。
Fv/Fm反映了PSII最大光化学效率, 是衡量植物
光合性能的重要指标(Genty et al., 1989)。凌晨幼叶
和完全展开叶的Fv/Fm均在0.8以上, 之后逐渐降低,
14:00达最低值, 至日落前已基本恢复到凌晨值(图
3); 但幼叶的Fv/Fm一天当中变化幅度较小, 完全展
开叶变化幅度较大。
光呼吸是C3植物体内重要的代谢过程, 是光合
作用非环式电子流分配的主要途径之一(Cornic &
Fresneau, 2002)。幼叶的光呼吸显著低于完全展开
叶(低36.7%), 而光呼吸与总光合速率的比值(Pr/Pm)
较后者高22.4% (图4)。
2.5 叶绿素荧光快速光响应曲线的变化
如图5A所示, 在低光强下(<500 μmol·m–2·s–1),
棉花幼叶和完全展开叶的ETR(II)无显著性差异; 随
着PAR升高, 幼叶的ETR(II)显著低于完全展开叶。
围绕PSI循环电子流(PSI-CEF)可以形成较高的跨膜
质子梯度, 有助于ATP的合成(Heber & Walker,
1992; Bendall & Manasse, 1995)以及PSII的修复

图1 棉花幼叶与完全展开叶的光合-光响应曲线(平均值±
标准偏差)。PAR, 光合有效辐射; Pn, 净光合速率.
Fig. 1 Light response curves in young and mature leaves of
cotton (mean ± SD). PAR, photosynthetic active radiation; Pn,
net photosynthetic rate.


(Allakhverdiev et al., 2005)。ETR(I)/ETR(II)的比值超
过1表示光合系统出现环式电子流(Miyake et al.,
2005)。从图5B可知, 随PAR的增强, 两者的CEF均
呈增强趋势, 且完全展开叶的CEF高于幼叶。
按Kramer等(2004)和Schreiber (2004)的方法计
算PSI和PSII的能量分配比例。Y(NPQ)代表ΔpH和叶
黄素调节的热耗散比例; Y(NO)代表荧光和不依赖
光的基础热耗散比例。如图6所示, 幼叶的Y(II)低于
完全展开叶, 而Y(NPQ)显著高于完全展开叶, 两者
的Y(NO)无明显差异。Y(I)表示光系统I的光化学量
子效率, 幼叶的Y(I)低于完全展开叶片。Y(ND)和
Y(NA)均代表光系统 I的非光化学量子效率 , 但
Y(ND)表示的是PSI供体侧的限制, Y(NA)表示的是
受体侧的限制。从图6中可以看出, 幼叶的Y(ND)高
于完全展开叶, 两者的Y(NA)无明显差异。
666 植物生态学报 Chinese Journal of Plant Ecology 2012, 36 (7): 662–670

www.plant-ecology.com

图2 棉花幼叶和完全展开叶Pn和PAR的日变化(平均值±标准偏差)。PAR, 光合有效辐射; Pn, 净光合速率。
Fig. 2 Diurnal variations of Pn and PAR in young and mature leaves of cotton (mean ± SD). PAR, photosynthetic active radiation;
Pn, net photosynthetic rate.


图3 棉花幼叶和完全展开叶PSII最大光化学效率(Fv/Fm)的
日变化(平均值±标准偏差)。
Fig. 3 Diurnal changes of maximum photochemical effi-
ciency of PSII (Fv/Fm) in young and mature leaves of cotton
(mean ± SD).

3 讨论
棉花叶片的光合功能逐渐建成, 幼叶光合能力
并未发育完善(Wullschleger & Oosterhuis, 1990)。研
究结果表明, 棉花幼叶的光合速率显著低于完全展
开叶(表1), Chl作为植物光合色素中最重要的一类
色素, 在光合作用中对光能的吸收、传递和转化起
着极为重要的作用。Chl随叶片的发育建成而逐渐
积累(Drumm-Herrel & Mohr, 1985)。幼叶较低的Chl
含量是其Pn较低的直接原因之一。对叶片Gs的分析
表明, 幼叶的Gs较低, 可能导致外界CO2扩散到羧

图4 1 800 μmol·m–2·s–1光照下棉花幼叶和完全展开叶光呼
吸(Pr)、光呼吸与总光合速率比例(Pr/Pm)的变化(平均值±标
准偏差)。
Fig. 4 Variation of photorespiration (Pr) and ratio of photo-
respiration/mass photosynthesis (Pr/Pm) in young and mature
leaves of cotton under 1 800 μmol·m–2·s–1 irradiance (mean ±
SD).


化部位的阻力较大, 将限制碳的固定; 然而幼叶中
Ci却较高(表1), 这表明, Gs并不是影响幼叶碳同化
能力的因素。叶片发育过程中, 气孔的大小和密度
也在逐渐变化(Nobel et al., 1975; Marchi et al.,
2008)。有研究表明: 随着叶龄的增长, 在接近光辐
射饱和点时幼叶和完全展开叶的光合能力和Gs呈
李维等: 田间条件下棉花幼叶光合特性及光保护机制 667

doi: 10.3724/SP.J.1258.2012.00662

图5 棉花幼叶和完全展开叶PSI和PSII中ETRs快速光响应曲线(平均值±标准偏差)。ETR(I)、ETR(II), 光系统I、光系统II电子
传递速率; PAR, 光合有效辐射。
Fig. 5 Rapid light response curves of the ETRs around PSI and PSII in young and mature leaves of cotton (mean ± SD). ETR(I),
ETR(II), apparent electron transport rate at PSI and PSII. PAR, photosynthetic active radiation.

图6 棉花幼叶和完全展开叶中PSII和PSI量子产量随光合有效辐射(PAR)升高的转化(平均值±标准偏差)。Y(I), 光系统I光化学
量子产量; Y(II), 光系统II光化学量子产量; Y(ND), PSI中依赖于非光化学能力耗散的供体侧限制; Y(NA), PSI中依赖于非光化
学能力耗散的受体侧限制; Y(NO), PSII中荧光和不依赖光的基础热耗散量子产量; Y(NPQ), PSII中ΔpH和叶黄素调节的热耗
散量子产量。
Fig. 6 Conversion of quantum yields in PSII and PSI in young and mature leaves of cotton with increasing photosynthetic active
radiation (PAR) (mean ± SD). Y(I), photochemical quantum yields in PSI; Y(II), photochemical quantum yields in PSII; Y(ND), quan-
tum yield of non-photochemical energy dissipation in PSI due to donor side limitation; Y(NA), quantum yield of non-photochemical
energy dissipation in PSI due to acceptor side limitation; Y(NO), quantum yield of fluorescence and light-independent constitution
thermal dissipation; Y(NPQ), quantum yield of ΔpH-and xanthophyll-regulated thermal dissipation.
668 植物生态学报 Chinese Journal of Plant Ecology 2012, 36 (7): 662–670

www.plant-ecology.com
降低趋势, 但与Pn相比, 幼叶Gs随着叶龄增长的下
降趋势更为突出(Vos & Oyarzun, 1987; Kositsup et
al., 2010), 这表明气孔的发育可能快于光合机构的
建成 , Liu等 (1994)研究表明 , 耐热性的海岛棉
(Gossypium barbadense)具有较高的Gs, 这可能有利
于叶片通过气孔进行蒸腾作用来降低叶片的温度
(Warren, 2006)。从表2中可以看出, 幼叶的Fv/Fm低
于完全展开叶, 同时从图6中可以看出, 幼叶主要
受到 PSI 供体侧电子流的限制 , 而受体侧的
Calvin-Benson循环并未受限制, 这些结果表明, 幼
叶中较低的实际光化学效率和光合电子传递速率
较低(图5A)与其光合机构本身未发育完善有关, 最
终表现为幼叶碳同化率较低(表2; 图5)。同时幼叶
的光合机构反应中心易处于氧化态(表2), 不利于光
合电子流的传递(王可玢等, 1997; Lepeduš et al.,
2010), 导致幼叶的光合能力较低(图2A)。
从图1可知, 棉花幼叶具有相对较低的LSP, 因
此, 当幼叶和完全展开叶暴露在相同光强时, 前者
较 易 发 生 光 抑 制 (Bertamini & Nedunchezhian,
2003)。同时考虑到幼叶较弱的光合能力(图2A)以及
棉花叶片横向日性运动的特性(Zhang et al., 2009),
推测幼叶可能通过叶片形态上的调整来避免光抑
制。然而, 在田间条件下, 日进程中幼叶并未减弱
其横向日性能力, 且与完全展开叶接受了相同的光
能(图2B), 但幼叶的Fv/Fm日变化幅度较小(图3), 表
明幼叶的光抑制程度并未增加。那么幼叶是如何通
过生理功能上的光保护途径来减弱光抑制程度呢?
当植物光合作用所吸收的光能不能完全转化成化学
能贮存在体内时, 有相当部分以各种形式耗散掉以
保证光合作用的正常进行; 通常植物体通过光呼吸、
循环电子流、热耗散和类胡萝卜素的积累等方式来
耗散过剩的光能(Demmig-Adams & Adams, 1992; 阳
成伟和陈贻竹, 2000; Miyake et al., 2004)。
孟庆伟等(1996)认为晴天中午强光和高温下光
呼吸即可使CO2同化量子效率维持在相对稳定的水
平, 又可消耗光合机构吸收的过剩光能。本研究表
明虽然幼叶的光呼吸低于完全展开叶, 但幼叶的
Pr/Pm明显高于完全展开叶(图4), 说明幼叶可以通
过光呼吸防止PSI与PSII的电子载体过度还原, 从
而保证电子的正常传递。
试验表明, 随着PAR增加, 幼叶和完全展开叶
围绕PSI的循环电子流(CEF-PSI)均增加, 但后者的
增加幅度高于前者(图6)。CEF的加快运行有助于卡
尔文循环所需化学能ATP的合成(Heber & Walker,
1992; Bendall & Manasse, 1995), 这表明完全展开
叶通过提高CEF为其较高的光合能力提供足够能
量; 且随着光强的进一步升高(>1 800 μmol·m–2·s–1),
幼叶的CEF快速升高, 说明高光下幼叶中较高的
CEF有利于其光合机构免受强光破坏, 这与Huang
等(2010)认为植物中较高的CEF是其适应逆境的一
种保护机制结论一致。CEF-PSI使得跨膜质子梯度
(ΔpH)维持在较高水平, ΔpH可驱动叶绿素荧光热耗
散的有效形成(Heber & Walker 1992; Miyake et al.,
2004)。Y(NPQ)代表ΔpH和叶黄素调节的热耗散路
径。与Y(NPQ)相比, 由于NPQ是没有上限的荧光参
数 , NPQ通常过分高估热耗散在光保护的作用
(Hendrickson et al., 2004)。试验表明, 与完全展开叶
相比, 幼叶具有更高的Y(NPQ) (图6), 一方面表明幼
叶接受的光强过剩, 另一方面则说明植物仍可以通
过调节(如将过剩光能耗散为热)来保护自身, 且通
过热耗散可耗散过剩的光能来减弱PSII的光抑制
(Demming-Adams & Adams, 1996; Niyogi et al., 1998;
Yamamoto et al., 1999)。叶黄素循环是非辐射能量耗
散的主要过程(Jahns & Krause, 1994; 董高峰等 ,
1999), 叶黄素是类胡萝卜素(Car)的主要成分, 从表
1可以看出, 幼叶具有较高的Car含量, 表明幼叶的
叶黄素库较大。 Krause 等 (1995) 及 Bertamini 和
Nedunchezhian (2003)研究得出光下幼叶中积累较
多的脱环氧化组分, 可以以热的形式将多余能量耗
散掉, 同时降低了PSII反应中心1O2的大量积累。
综上所述, 棉花幼叶利用强光的能力依赖于其
光保护机制的建成早于光合机构的构建。在光合机
构和光合功能尚未完善的时候, 棉花幼叶的热耗
散、光呼吸以及环式电子流等光保护机制即已建成,
协同减弱了光合机构的光抑制, 从而保护了光合机
构的正常运行。
致谢 国家自然科学基金项目(31060176)和国家科
技支撑计划项目 (2007BAD44B07和 2006BAD21-
B02-1)资助。
参考文献
Allakhverdiev SI, Nishiyama Y, Takahashi S, Miyairi S, Su-
zuki I, Murata N (2005). Systematic analysis of the rela-
tion of electron transport and ATP synthesis to the photo-
damage and repair of photosystem II in synechocystis.
李维等: 田间条件下棉花幼叶光合特性及光保护机制 669

doi: 10.3724/SP.J.1258.2012.00662
Plant Physiology, 137, 263–273.
Aro EM, Virgin I, Andersson B (1993). Photoinhibition of
photosystem II. Inactivation, protein damage and turnover.
Biochimica et Biophysica Acta, 1143, 113–134.
Bartley GE, Scolnik PA (1995). Plant carotenoids: pigments for
photoprotection, visual attraction, and human health. Plant
Cell, 7, 1027–1038.
Bendall DS, Manasse RS (1995). Cyclic photophosphorylation
and electron transport. Biochimica et Biophysica Acta,
1229, 23–38.
Bertamini M, Nedunchezhian N (2003). Photoinhibition of
photosynthesis in mature and young leaves of grapevine
(Vitis vinifera L.). Plant Science, 164, 635–644.
Bilger W, Björkman O (1990). Role of the xanthophyll cycle in
photoprotection elucidated by measurements of light-
induced absorbance changes, fluorescence and photosyn-
thesis in leaves of Hedera canariensis. Photosynthesis
Research, 25, 173–185.
Bulley NR, Nelson CD, Tregunna EB (1969). Photosynthesis:
action spectra for leaves in normal and low oxygen. Plant
Physiology, 44, 678–684.
Cai ZQ (蔡志全), Cao KF (曹坤芳), Qi X (齐欣) (2003). Photo-
inhibition of photosynthesis in leaves of two developing
stages of a tropical rain forest canopy tree, Pometia to-
mentoscs. Acta Phytoecologica Sinica (植物生态学报),
27, 210217. (in Chinese with English abstract)
Cleland RE, Melis A, Neale PJ (1986). Mechanism of photoin-
hibition: photochemical reaction center inactivation in
system II of chloroplasts. Photosynthesis Research, 9,
79–88.
Cornic G, Briantais JM (1991). Partitioning of photosynthetic
electron flow between CO2 and O2 reduction in a C3 leaf
(Phaseolus vulgaris L.) at different CO2 concentrations
and during drought stress. Planta, 183, 178–184.
Cornic G, Fresneau C (2002). Photosynthetic carbon reduction
and carbon oxidation cycles are the main electron sinks for
photosystem II activity during a mild drought. Annals of
Botany, 89, 887–894.
Critchley C, Russell AW (1994). Photoinhibition of photosyn-
thesis in vivo: the role of protein turnover in photosystem
II. Physiologia Plantarum, 92, 188–196.
Da Matta FM, Maestri M, Barros RS (1997). Photosynthetic
performance of two coffee species under drought. Photo-
synthetica, 34, 257–264.
Demmig-Adams B, Adams WW III (1992). Photoprotection
and other responses of plants to high light stress. Annual
Review of Plant Physiology and Plant Molecular Biology,
43, 599–626.
Demming-Adams B, Adams WW III (1996). Xanthophyll cycle
and light stress in nature: uniform response to excess di-
rect sunlight among higher plant species. Planta, 198,
460–470.
Dong GF (董高峰), Chen YZ (陈贻竹), Jiang YM (蒋跃明)
(1999). Plant xanthophyll cycle and radiationless energy
dissipation. Plant Physiology Communications (植物生理
学通讯), 35, 141–144. (in Chinese with English abstract)
Drumm-Herrel H, Mohr H (1985). Photosensitivity of seedlings
differing in their potential to synthesize anthocyanin.
Physiologia Plantarum, 64, 60–66.
Genty B, Briantais JM, Baker NR (1989). The relationship
between the quantum yield of photosynthetic electron
transport and quenching of chlorophyll fluorescence. Bio-
chimica et Biophysica Acta, 990, 87–92.
Gilmore AM, Björkman O (1994). Adenine nucleotides and the
xanthophyll cycle in leaves. Planta, 192, 526–536.
Gilmore AM, Yamamoto HY (1993). Linear models relating
xanthophylls and lumen acidity to non-photochemical
fluorescence quenching. Evidence that antheraxanthin
explains zeaxanthin-independent quenching. Photosyn-
thesis Research, 35, 67–78.
Heber U, Walker D (1992). Concerning a dual function of cou-
pled cyclic electron transport in leaves. Plant Physiology,
100, 1621–1626.
Hendrickson L, Furbank RT, Chow WS (2004). A simple al-
ternative approach to assessing the fate of absorbed light
energy using chlorophyll fluorescence. Photosynthesis
Research, 82, 73–81.
Huang W, Zhang SB, Cao KF (2010). Stimulation of cyclic
electron flow during recovery after chilling-induced
photoinhibition of photosystem II. Plant and Cell Physi-
ology, 51, 1922–1928.
Jahns P, Krause GH (1994). Xanthophyll cycle and energy-
dependent fluorescence quenching in leaves from pea plants
grown under intermittent light. Planta, 192, 176–182.
Jiang CD (姜闯道), Gao HY (高辉远), Zou Q (邹琦), Jiang
GM (蒋高明), Li LH (李凌浩) (2005). The co-operation
of leaf orientation, photorespiration and thermal dissipa-
tion alleviate photoinhibition in young leaves of soybean
plants. Acta Ecologica Sinica (生态学报), 25, 319–325.
(in Chinese with English abstract)
Kim SJ, Lee CH, Hope AB, Chow WS (2001). Inhibition of
photosystems I and II and enhanced back flow of photo-
system I electrons in cucumber leaf discs chilled in the
light. Plant and Cell Physiology, 42, 842–848.
Klughammer C, Schreiber U (1994). An improved method,
using saturating light pulses, for the determination of
photosystem I quantum yield via P700+-absorbance
changes at 830 nm. Planta, 192, 261–268.
Kositsup B, Kasemsap P, Thanisawanyangkura S, Chairungsee
N, Satakhun D, Teerawatanasuk K, Ameglio T, Thaler P
(2010). Effect of leaf age and position on light-saturated
CO2 assimilation rate, photosynthetic capacity, and
stomatal conductance in rubber trees. Photosynthetica, 48,
67–78.
Kramer DM, Johnson G, Kiirats O, Edwards GE (2004). New
fluorescence parameters for the determination of QA redox
670 植物生态学报 Chinese Journal of Plant Ecology 2012, 36 (7): 662–670

www.plant-ecology.com
state and excitation energy fluxes. Photosynthesis Re-
search, 79, 209–218.
Krause GH, Virgo A, Winter K (1995). High susceptibility to
photoinhibition of young leaves of tropical forest trees.
Planta, 197, 583–591.
Krause GH, Weis E (1991). Chlorophyll fluorescence and pho-
tosynthesis: the basics. Annual Review of Plant Physiology
and Plant Molecular Biology, 42, 313–349.
Lepeduš H, Jurković V, Štolfa I, Ćurković-Perica M, Fulgosi
H, Cesar V (2010). Changes in photosystem II photo-
chemistry in senescing maple leaves. Croatica Chemica
Acta, 83, 379–386.
Liu ZM, Radin JW, Turcotte EL, Percy R, Zeiger E (1994).
High yields in advanced lines of pima cotton are associ-
ated with higher stomatal conductance, reduced leaf area
and lower leaf temperature. Physiologia Plantarum, 92,
266–272.
Marchi S, Tognetti R, Minnocci A, Borghi M, Sebastiani L
(2008). Variation in mesophyll anatomy and photosyn-
thetic capacity during leaf development in a deciduous
mesophyte fruit tree (Prunus persica) and an evergreen
sclerophyllous Mediterranean shrub (Olea europaea).
Trees, 22, 559–571.
Meng QW (孟庆伟), Zhao SJ (赵世杰), Xu CC (许长成)
(1996). Photoinhibition of photosynthesis and protective
effect of photorespiration in winter wheat leaves under
field conditions. Acta Agronomica Sinica (作物学报), 22,
470–475. (in Chinese with English abstract)
Miyake C, Miyata M, Shinzaki Y, Tomizawa K (2005). CO2
response of cyclic electron flow around PSI (CEF-PSI) in
tobacco leaves-relative electron fluxes through PSI and
PSII determine the magnitude of non-photochemical
quenching (NPQ) of Chl fluorescence. Plant Cell Physi-
ology, 46, 629–637.
Miyake C, Shinzaki Y, Miyata M, Tomizawa K (2004). En-
hancement of cyclic electron flow around PSI at high light
and its contribution to the induction of non-photochemical
quenching of Chl fluorescence in intact leaves of tobacco
plants. Plant and Cell Physiology, 45, 1426–1433.
Niyogi KK, Grossman AR, Björkman O (1998). Arabidopsis
mutants define a central role for the xanthopylls cycle in
the regulation of photosynthetic energy conversion. Plant
Cell, 10, 1121–1134.
Nobel PS, Zaragoza LJ, Smith WK (1975). Relation between
mesophyll surface area, photosynthetic rate, and illumina-
tion level during development for leaves of Plectranthus
parviflorus Henckel. Plant Physiology, 55, 1067–1070.
Oxborough K, Baker NR (1997). Resolving chlorophyll a fluo-
rescence images of photosynthetic efficiency into photo-
chemical and non-photochemical components―calcula-
tion of qP and Fv/Fm′; without measuring Fo′. Photosyn-
thesis Research, 54, 135–142.
Schreiber U (2004). Pulse-amplitude modulation (PAM)
fluorom ETRy and saturation pulse method. In: Papageor-
giou G, Govindjee eds. Chlorophyll Fluorescence: a Sig-
nature of Photosynthesis. Kluwer Academic Publishers,
Dordrecht, The Netherlands. 279–319.
Schreiber U, Bilger W, Neubauer C (1994). Chlorophyll fluo-
rescence as a nonintrusive indicator for rapid assessment
of in vivo photosynthesis. In: Schulze ED, Caldwell MM
eds. Ecophysiology of Photosynthesis. Springer-Verlag,
Berlin.
Vos J, Oyarzún PJ (1987). Photosynthesis and stomatal con-
ductance of potato leaves―effects of leaf age, irradiance,
and leaf water potential. Photosynthesis Research, 11,
253–264.
Wang KB (王可玢), Xu CH (许春辉), Zhao FH (赵福洪),
Tang CQ (唐崇钦), Dai YL (戴云玲) (1997). The effects
of water stress on some in vivo chlorophyll a fluorescence
parameters of wheat flag leaves. Acta Biophysica Sinica
(生物物理学报), 13, 273–278. (in Chinese with English
abstract)
Warren CR (2006). Estimation the internal conductance to CO2
movement. Functional Plant Biology, 33, 431–442.
Wullschleger SD, Oosterhuis DM (1990). Photosynthetic car-
bon production and use by developing cotton leaves and
bolls. Crop Science, 30, 1259–1264.
Yamamoto HY, Bugos RC, Hieber AD (1999). Biochemistry
and molecular biology of the xanthophyll cycle.
Biomedical and Life Sciences, 8, 293–303.
Yang CW (阳成伟), Chen YZ (陈贻竹) (2000). The mecha-
nism of photoprotection during light energy transforma-
tion associated with metabolism of dissipating energy in
photosynthesis. Journal of Tropical and Subtropical Bot-
any (热带亚热带植物学报), 8, 346–352. (in Chinese with
English abstract)
Zhang QD (张其德), Lu CM (卢从明), Kuang TY (匡廷云)
(1992). Effects of the rising CO2 levels on photosynthesis.
Chinese Bulletin Botany (植物学通报), 9(4), 18–23. (in
Chinese with English abstract)
Zhang YL (张亚黎), Luo HH (罗宏海), Fan DY (樊大勇), He
ZJ (何在菊), Bai HD (白慧东), Zhang WF (张旺锋)
(2008). Effects of water deficit on photochemical activity
and excitation energy dissipation of photosynthetic appara-
tus in cotton leaves during flowering and boll-setting stages.
Journal of Plant Ecology (Chinese Version) (植物生态学
报), 32, 681–689. (in Chinese with English abstract)
Zhang YL, Zhang HZ, Feng GY, Tian JS, Zhang WF (2009).
Leaf diaheliotropic movement can improve carbon gain
and water use efficiency and not intensify photoinhibition
in upland cotton (Gossypium hirsutum L.). Photosyn-
thetica, 47, 609–615.
责任编委: 蒋高明 责任编辑: 李 敏