免费文献传递   相关文献

Effects of irrigation on accumulation and distribution of dry matter and grain yield in winter wheat in arid regions of China

灌溉对干旱区冬小麦干物质积累、分配和产量的影响


为探明灌溉对干旱区冬小麦(Triticum aestivum)产量、水分利用效率(WUE)、干物质积累及分配等的影响, 以甘肃河西走廊冬小麦适宜种植品种‘临抗2号’为材料进行了研究。在冬季灌水180 mm的条件下, 生育期以灌水量和灌水次数等共设置5个处理, 分别为: 拔节期灌水量165 mm (W1)、拔节期灌水量120 mm +抽穗期灌水量105 mm (W2)、拔节期灌水量105 mm+抽穗期灌水量105 mm +灌浆期灌水量105 mm (W3)、拔节期灌水量75 mm +抽穗期灌水量75 mm +灌浆期灌水量75 mm(W4)、拔节期灌水量105 mm +抽穗期灌水量75 mm +灌浆期灌水量45 mm (W5)。结果表明: 随着生育期的推进, 土壤有效含水量(AWC)受灌水次数及灌水量影响更加明显; W3、W4处理的土壤各层AWC在灌浆期均较高; 叶面积指数(LAI)下降慢, 延缓了生育后期的衰老; 生育后期干物质积累增加, 提高了穗粒数、千粒重和籽粒产量。籽粒产量以W3处理最高, 但W4具有最高的WUE, 且籽粒产量与W3无显著差异, 但W4较灌溉总量相同的W2和W5以及灌水量最少的W1具有明显的指标优势。W1、W2、W5处理灌浆期各层土壤AWC均较低, 花后LAI下降快, 干物质积累减少, 灌浆持续期缩短, 穗粒数和千粒重减少, 最终表现为籽粒产量和WUE下降。灌浆期水分胁迫可促进花前储存碳库向籽粒的再转运, 并随着干旱胁迫的加重而提高, 对籽粒产量起补偿作用; 水分胁迫提高了灌浆速率, 但缩短了灌浆持续期。相关性分析表明, 灌浆持续期、有效灌浆持续期、有效灌浆期粒重增加值和最大籽粒灌浆速率出现时间与千粒重和籽粒产量均呈正相关。综合考虑, 拔节、抽穗及灌浆期各灌溉75mm是高产高WUE的最佳灌水方案。

Aims Our objective was to determine the effects of irrigation schedule on grain yield, water use efficiency (WUE), and accumulation and distribution of dry matter in winter wheat (Triticum aestivum) ‘Lingkang-2’ in the arid Hexi corridor of Northwest China.
Methods Based on pre-winter irrigation quota of 180 mm, we set up five irrigation treatments, i.e., irrigation quota of 165 mm at the jointing stage (W1), irrigation quota of 120 mm at the jointing stage and 105 mm at the heading stage (W2), irrigation quota of 105 mm at the jointing, heading and grain filling stages, respectively (W3), irrigation quota of 75 mm at the jointing, heading and grain filling stages, respectively (W4), and irrigation quota of 105 mm at the jointing stage, 75 mm at the heading stage, and 45 mm at the grain filling stage (W5).
Important findings Available soil water content (AWC) in the 0-150 cm layer across different irrigation treatments changed with wheat growth stages. The grain yield in both W3 and W4 treatments was obviously improved by higher leaf area index (LAI) and dry matter accumulation. Higher AWC was found in the W3 and W4 treatments, but there was no significant difference in the grain yield between the two treatments. Nevertheless, the highest water use efficiency (WUE) in the W4 treatment was associated with its higher value of growth index than those in the W1, W2 and W5 treatments. In contrast, LAI in the W1, W2 and W5 treatments quickly decreased after anthesis, corresponding to lower dry matter accumulation, shorter grain filling duration and fewer numbers of spike and lower 1000-grain weight. We also observed that drought stress after anthesis promoted dry matter translocation from vegetative organs to grains, with a complementary effect on grain yield occurring as drought stress increased. In the grain filling stage, drought stress stimulated average filling rate, but shortened the duration of grain filling. The duration of grain filling, effective period of grain filling, the value of increases in grain weight during effective period of grain filling, and the timing of the maximum filling rate were positively correlated with 1000-grain weight and grain yield of winter wheat (p < 0.05). In consideration of all results, winter wheat should be irrigated at 75 mm at the jointing, heading and filling stages to achieve reasonable water use efficiency and grain yield. Our findings may help with the decision makers by providing hydrological and ecological evidence in development of sustainable agriculture in arid regions.


全 文 :植物生态学报 2014, 38 (12): 1333–1344 doi: 10.3724/SP.J.1258.2014.00128
Chinese Journal of Plant Ecology http://www.plant-ecology.com
——————————————————
收稿日期Received: 2014-07-07 接受日期Accepted: 2014-11-06
* 通讯作者Author for correspondence (E-mail: sxchai@126.com)
灌溉对干旱区冬小麦干物质积累、分配和产量的影响
黄彩霞1,2 柴守玺1* 赵德明3 康燕霞2
1甘肃农业大学农学院干旱生境国家重点实验室, 兰州 730070; 2甘肃农业大学工学院, 兰州 730070; 3甘肃省政府投资项目评审中心, 兰州 730040
摘 要 为探明灌溉对干旱区冬小麦(Triticum aestivum)产量、水分利用效率(WUE)、干物质积累及分配等的影响, 以甘肃河
西走廊冬小麦适宜种植品种‘临抗2号’为材料进行了研究。在冬季灌水180 mm的条件下, 生育期以灌水量和灌水次数等共设
置5个处理, 分别为: 拔节期灌水量165 mm (W1)、拔节期灌水量120 mm +抽穗期灌水量105 mm (W2)、拔节期灌水量105 mm
+抽穗期灌水量105 mm +灌浆期灌水量105 mm (W3)、拔节期灌水量75 mm +抽穗期灌水量75 mm +灌浆期灌水量75 mm
(W4)、拔节期灌水量105 mm +抽穗期灌水量75 mm +灌浆期灌水量45 mm (W5)。结果表明: 随着生育期的推进, 土壤有效含
水量(AWC)受灌水次数及灌水量影响更加明显; W3、W4处理的土壤各层AWC在灌浆期均较高; 叶面积指数(LAI)下降慢, 延缓
了生育后期的衰老; 生育后期干物质积累增加, 提高了穗粒数、千粒重和籽粒产量。籽粒产量以W3处理最高, 但W4具有最
高的WUE, 且籽粒产量与W3无显著差异, 但W4较灌溉总量相同的W2和W5以及灌水量最少的W1具有明显的指标优势。W1、
W2、W5处理灌浆期各层土壤AWC均较低, 花后LAI下降快, 干物质积累减少, 灌浆持续期缩短, 穗粒数和千粒重减少, 最终
表现为籽粒产量和WUE下降。灌浆期水分胁迫可促进花前储存碳库向籽粒的再转运, 并随着干旱胁迫的加重而提高, 对籽粒
产量起补偿作用; 水分胁迫提高了灌浆速率, 但缩短了灌浆持续期。相关性分析表明, 灌浆持续期、有效灌浆持续期、有效
灌浆期粒重增加值和最大籽粒灌浆速率出现时间与千粒重和籽粒产量均呈正相关。综合考虑, 拔节、抽穗及灌浆期各灌溉75
mm是高产高WUE的最佳灌水方案。
关键词 干物质, 灌浆, 籽粒产量, 灌溉, 冬小麦
Effects of irrigation on accumulation and distribution of dry matter and grain yield in winter
wheat in arid regions of China
HUANG Cai-Xia1,2, CHAI Shou-Xi1*, ZHAO De-Ming3, and KANG Yan-Xia2
1Agronomy College, Gansu Agricultural University, Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China; 2The Engineering
College, Gansu Agricultural University, Lanzhou 730070, China; and 3Gansu Government Project Approval Center, Lanzhou 730040, China
Abstract
Aims Our objective was to determine the effects of irrigation schedule on grain yield, water use efficiency
(WUE), and accumulation and distribution of dry matter in winter wheat (Triticum aestivum) ‘Lingkang-2’ in the
arid Hexi corridor of Northwest China.
Methods Based on pre-winter irrigation quota of 180 mm, we set up five irrigation treatments, i.e., irrigation
quota of 165 mm at the jointing stage (W1), irrigation quota of 120 mm at the jointing stage and 105 mm at the
heading stage (W2), irrigation quota of 105 mm at the jointing, heading and grain filling stages, respectively
(W3), irrigation quota of 75 mm at the jointing, heading and grain filling stages, respectively (W4), and irrigation
quota of 105 mm at the jointing stage, 75 mm at the heading stage, and 45 mm at the grain filling stage (W5).
Important findings Available soil water content (AWC) in the 0–150 cm layer across different irrigation treat-
ments changed with wheat growth stages. The grain yield in both W3 and W4 treatments was obviously improved
by higher leaf area index (LAI) and dry matter accumulation. Higher AWC was found in the W3 and W4 treat-
ments, but there was no significant difference in the grain yield between the two treatments. Nevertheless, the
highest water use efficiency (WUE) in the W4 treatment was associated with its higher value of growth index than
those in the W1, W2 and W5 treatments. In contrast, LAI in the W1, W2 and W5 treatments quickly decreased
after anthesis, corresponding to lower dry matter accumulation, shorter grain filling duration and fewer numbers
of spike and lower 1000-grain weight. We also observed that drought stress after anthesis promoted dry matter
translocation from vegetative organs to grains, with a complementary effect on grain yield occurring as drought
stress increased. In the grain filling stage, drought stress stimulated average filling rate, but shortened the duration
1334 植物生态学报 Chinese Journal of Plant Ecology 2014, 38 (12): 1333–1344

www.plant-ecology.com
of grain filling. The duration of grain filling, effective period of grain filling, the value of increases in grain weight
during effective period of grain filling, and the timing of the maximum filling rate were positively correlated with
1000-grain weight and grain yield of winter wheat (p < 0.05). In consideration of all results, winter wheat should
be irrigated at 75 mm at the jointing, heading and filling stages to achieve reasonable water use efficiency and
grain yield. Our findings may help with the decision makers by providing hydrological and ecological evidence in
development of sustainable agriculture in arid regions.
Key words dry matter, grain filling, grain yield, irrigation, winter wheat

长期以来 , 农业用水约占全国用水总量的
74.7%, 约有49%的耕地必须依靠灌溉发展农业(康
绍忠, 1998)。提高用水效率是农业高效用水的最主
要途径, 尤其在水资源极度短缺的干旱地区。用水
效率的提高既可通过增加灌溉面积的外延式发展方
式, 亦可通过科技进步和种植业结构调整为主的内
涵式发展模式实现。然而, 多年来人们过分地片面
强调外延式发展, 不注重科技进步与现有耕地农业
生产潜力的挖掘, 忽视了提高经济效益的重要性,
致使部分地区生态环境日益恶化, 农作物产量低下,
严重制约了干旱区农业经济的发展(姜逢清, 1999)。
河西走廊是我国西北内陆著名的绿洲农业区,
水资源十分紧缺(尉元明等, 2004; 吴建民和高焕文,
2006)。该区域也是沙尘暴的重灾区和我国三大沙尘
源区之一(康尔泗等, 2004)。水资源矛盾是西部农业
生态环境问题的主要矛盾(袁家祖和闵庆文, 2001;
秦大河, 2002)。气候变化使水旱灾害频发, 进一步
加剧了农业用水和粮食安全问题(任国玉等, 2008;
吴普特和赵西宁, 2010)。合理的水资源利用, 可以
改善土壤结构, 增加粮食单产, 改善绿洲内外生态
环境, 扩大绿洲面积, 防治沙漠化(瓦哈甫·哈力克
等, 2004)。小麦(Triticum aestivum)是甘肃省主要作
物, 种植面积约96万hm2, 以冬小麦为主, 90%的冬
小麦主要分布在旱地。近年来, 随着气候变暖, 冬小
麦种植带逐渐由东向西延伸。这一举措增加了冬春
季地面覆盖, 有效地减缓了沙尘暴的发生。但目前
对该区域冬麦西移后的高产高效栽培体系尚未形
成, 因此, 亟待探索既有利于生态环境保护, 又有
利于冬小麦节水增产的栽培措施。
水是作物生长的重要生态条件。作物在生长发
育过程中, 同化物在植株各器官不断地进行着转化
与分配, 并且受土壤水分状况的影响较大(秦舒浩
和李玲玲, 2005) 。研究表明, 干旱胁迫能促进光合
产物向当时的生长中心分配(谷艳芳等, 2010), 并提
高花前储存碳库和花后干物质向籽粒的转运
(Bahrani et al., 2011; Maghsoudi Moud & Islami,
2011; Sanjari Pireivatlou et al., 2011), 提高籽粒灌浆
速率(Sanjari Pireivatlou et al., 2011), 对干旱导致光
合作用下降引起的产量损失起着重要的补偿作用,
有利于籽粒产量和水分利用效率(WUE)的提高(范
雪梅等, 2005; 崔欢虎等, 2009)。以往的研究表明,
不同生育时期水分亏缺产生的影响结果也不尽一
致。小麦生长前期水分的相对不足或有限度的亏缺,
有利于同化物向籽粒调运, 提高经济系数; 而在整
个小麦生育期都保持充足的水分容易造成营养生长
过盛, 使经济系数降低(陈晓远和罗远培, 2001)。春
小麦分蘖前期适度的水分亏缺灌溉, 有增加小穗
数、结实穗数和穗粒数的作用, 拔节前期适度的水
分亏缺可提高结实小穗数和千粒重(石培泽和杨秀
英, 1998)。更多的试验表明, 小麦灌浆时期干旱处
理有利于促进同化物的运输, 提高千粒重、收获指
数和WUE (盛宏达, 1983; Yang et al., 2001)。
甘肃河西走廊地区光照充足、昼夜温差大、气
候异常干燥, 内陆性气候强烈, 是西北干旱内陆绿
洲农业区的典型代表。尉元明等(2004)研究表明, 河
西绿洲区春小麦全生育期灌溉定额在3 450–4 050
m3·hm–2之间最适宜; 当灌溉定额低于3 000 m3·hm–2
时, 春小麦会因缺水而减产, 2 250和1 500 m3·hm–2
灌溉定额的春小麦产量较灌溉定额3 000 m3·hm–2的
分别减产 15%和 26%; 当灌溉定额超过 4 050
m3·hm–2时, 又会产生深层渗漏, 使地下水位升高,
作物受到渍害而减产。尽管目前国内外对亏缺灌溉
和灌溉时期等都有了相关研究, 但对亏缺灌溉的关
键时期及灌溉定额意见不一。贾树龙等(1995)指出,
拔节期至孕穗期水分胁迫对产量的影响最为严重;
居辉等(2000)认为, 雌雄蕊分化期后灌水提高了花
后群体生长率, 增加了花后物质积累量, 提高了穗
粒数、千粒重和经济系数; 在节水灌溉条件下, 保
黄彩霞等: 灌溉对干旱区冬小麦干物质积累、分配和产量的影响 1335

doi: 10.3724/SP.J.1258.2014.00128
证小麦关键时期用水(冬水和孕穗水), 则可保证产
量(于振文, 2001)。王晨阳等(2004)研究表明, 在花
前限量灌水(135 mm)条件下, 花后灌水(45–90 mm)
可显著提高小麦籽粒产量。李全起等(2011)指出, 在
总灌溉量为120 mm的情况下, 冬小麦以拔节期和
抽穗期各灌溉60 mm的水分利用效率和产量最高。
可见, 灌水定额、灌水次数和灌水时期对作物产量
及其形成过程有不同影响。本研究以河西走廊为研
究样地, 通过不同灌水时期、灌水频率和灌水定额
组合设计了不同灌水处理, 研究不同灌水处理下冬
小麦不同生育时期干物质积累和产量形成的关系,
为有限供水条件下冬小麦建立高产栽培技术体系提
供理论依据, 为干旱区绿洲水资源合理利用、减缓
沙尘暴发生提供科学依据。
1 材料和方法
1.1 试验条件
试验在武威市凉州区黄羊镇甘肃农业大学试验
农场进行。该试验区位于甘肃省河西走廊东端
(37.87° N, 102.85° E), 海拔1 776 m。土壤质地为灌
淤土, 中等肥力, 播种前测定土壤基本理化性质,
土壤测定深度为30 cm。土壤基本理化性质为: 土壤
容重 1.26 g·cm–3, 田间持水量 24.4%, 全氮 0.77
g·kg–1, 碱解氮59.36 mg·kg–1, 全磷0.14 g·kg–1, 速效
磷9.11 mg·kg–1, 速效钾93.95 mg·kg–1, 耕层土壤含
有机质15.7 g·kg–1, pH值8.50。
利用田间气象数据采集系统对冬小麦播种(9月
14日)到收获(7月14日)的降水数据进行了田间条件
下的采集, 具体降水量见图1, 冬小麦生育期间的降
水量与需水量呈现明显的“错峰”现象。播种期到返
青期降水量为21.77 mm; 拔节期到开花期降水量为
23.6 mm; 而开花期到灌浆期的降水量仅为7.6 mm,
占总降水量的7.3%; 灌浆后期到成熟期降水量最
多, 为38 mm, 占总降水量的36.8%
1.2 试验设计
试验在冬灌水180 mm基础上, 分别设拔节期灌
水165 mm (W1)、拔节期灌水120 mm +抽穗期灌水
105 mm (W2)、拔节期灌水105 mm +抽穗期灌水105
mm +灌浆期灌水105 mm (W3)、拔节期灌水75 mm +
抽穗期灌水75 mm +灌浆期灌水75 mm (W4)、拔节期
灌水105 mm +抽穗期灌水75 mm +灌浆期灌水45
mm (W5), 共5个灌水处理。灌水方法采用低压管


图1 2009–2010年冬小麦生育期间降水量变化趋势。
Fig. 1 Trend of change in precipitation in the growing season
of winter wheat during 2009–2010.


道畦灌技术, 各生育期灌水量一次灌完, 水表计量。
每个试验小区的面积为27.5 m2 (5.0 m × 5.5
m), 3次重复, 随机区组排列, 共15个小区。小区与
小区之间留1.2 m的隔离带, 以减少相邻小区间灌
溉的影响, 隔离带种植豌豆(Pisum sativum)。
供试材料为冬小麦品种‘临抗2号’。试验于2009
年9月17日播种, 基本苗为600万株·hm–2, 2010年7月
4日收获。总施肥量折合为纯N 285 kg·hm–2, P2O5
180 kg·hm–2, 其中, 60%作为基肥一次施入, 40%拔
节期追加。其余田间管理与当地大田水平一致。
1.3 土壤含水量(SWC)和土壤有效含水量(AWC)的
测定
用烘干法测定土壤质量含水量, 全生育期每隔
10天测定0–10、10–30、30–60、60–90、90–120和
120–150 cm的土壤含水量(SWC), 播种前、收获后和
降水后分别加测。土壤永久萎蔫水分含量(PWP)为
土壤水势在–1.5 MPa时的含水量 , 土壤水势由
GQT1-WP4露点水势速测仪 (GQT1-WP4C, Deca-
gon, California, USA)测定。土壤有效含水量(AWC) =
SWC – PWP (Yang et al., 2006)。
1.4 叶面积指数(LAI)的测定
分别于抽穗期、开花期、灌浆早期和中期, 取
长势一致的单茎50个, 将茎叶分开, 用LP-80冠层分
析系统(LP-80, Decagon, California, USA)测定。
1.5 干物质积累与分配
于开花期和成熟期取样, 每个处理取20个单茎,
重复3次, 分叶、茎+叶鞘、穗轴+颖壳和籽粒4个部
1336 植物生态学报 Chinese Journal of Plant Ecology 2014, 38 (12): 1333–1344

www.plant-ecology.com
分, 称鲜质量后, 于80 ℃烘箱烘至恒重, 称干质量。
相关计算公式(姜东等, 2004)如下: 营养器官开花前
贮藏干物质转运量=开花期干质量–成熟期营养器
官干质量; 营养器官开花前贮藏干物质转运率(%)
=开花前贮藏干物质转运量/开花期干质量× 100; 花
前贮藏干物质转运量对籽粒的贡献率(%) =开花前
贮藏干物质转运量/成熟期籽粒干质量× 100; 开花
后干物质积累量(g·株–1)=成熟期总干质量–开花期
干质量; 花后贮藏干物质转运量对籽粒的贡献率
(%) =花后干物质积累量/成熟期籽粒干质量× 100。
1.6 籽粒灌浆特征参数
在小麦扬花期选取开花时间一致、长相基本相
同的主茎挂牌定穗。花后3天开始取样, 每3天观察1
次, 每个处理每次取样10穗, 取每穗中部小穗籽粒
10粒, 共100粒, 称籽粒鲜质量。105 ℃杀青15 min,
75 ℃烘干至恒重, 称重(张凯等, 2006)。
本试验采用三次多项式方程对粒重的增长进程
(即灌浆进程)进行拟合。即(1)式: f(x) = ax3 + bx2 + cx
+ d, 式中, f(x)为粒重, x为小麦开花后的天数, a、b、
c、d分别为模拟方程的系数。由这些参数可确定灌
浆持续期、最大灌浆速率、平均灌浆速率、最大粒
重等灌浆特征参数。详细计算过程(Ma et al., 2005)
如下:
对(1)式求导数得灌浆方程(2)式: f′(x) = 3ax2 +
2bx + c, 并令f′(x) = 0, 求得灌浆起始、终止的时间
x1和x2 (x1 < x2), 则籽粒灌浆持续期(T) = x2 – x1; 将
籽粒灌浆终止时间x2代入(1)式可得理论最大粒重
(W) = ax23 + bx22 + cx2 + d; 平均灌浆速率(R) =
W/T; 对(1)式二次求导并令导数为0, 求得x = –b/3a,
即为最大籽粒灌浆速率出现时间(TRmax); 将TRmax
作为自变量代入(2)式即可求得最大灌浆速率(Rmax);
把籽粒灌浆曲线的线性增长阶段定义为该曲线的斜
率≥1的部分(李世清等, 2003), 令(2)式f′(x) = 3ax2 +
2bx + c = 0.1, 求得x1′和x2′ (x1′ < x2′), 则有效灌浆持
续期(Te) = x2′ – x1′, 有效灌浆持续期粒重增加值
(We) = (ax2′3 + bx2′2 + cx 2′+ d) – (ax1′3 + bx1′2 + cx1′ +
d)和有效灌浆持续期灌浆速率(VRe) (VRe = We/Te)。
1.7 产量及水分利用效率
冬小麦产量数据采用全区收获法确定, 脱粒后
晒干称重, 计算产量, 其籽粒含水量约为12.5%。同
时各小区随机取20株室内测定穗粒数、千粒重等农
艺指标。成熟前一周每小区选3点测定单位面积穗
数。水分利用效率WUE = Y/ET (kg·hm–2·mm–1是
WUE的单位)。其中, Y (kg·hm–2)为经济产量, ET
(mm)为作物生长期间的蒸散量。ET = I + P + ΔW –
R – Dp, I (mm)是作物生长期间的灌水量, P (mm)是
作物生长期间的降水量, ΔW (mm)是土体贮水量变
化, R (mm)为径流量、Dp (mm)为土体下边界净通量
(山仑, 2000)。本研究中, 地下水位埋深10 m 以下,
所以不存在向上的水分流量, 在节水灌溉条件下,
水分渗漏量和径流量忽略不计。因此, 作物水分利
用效率按下式计算: WUE = Y /(I + P + ΔW)。
1.8 统计分析
采用Person相关分析对冬小麦各性状间的相关
关系进行了分析。各处理间的差异采用单因素方差
分析(one-way ANOVA)进行检验, 对差异显著的性
状用最小显著差数法(LSD)进行多重比较。使用
SPSS 16.0进行上述统计分析, 用SigmaPlot 12.3绘
图。
2 结果
2.1 灌溉对干旱区冬小麦土壤有效含水量(AWC)
的影响
图2表明, 返青期各土层AWC都较低, 尤其是
0–60 cm土层AWC仅为2.84 mm; 拔节期, 各处理同
时进行了不同量的灌水, 各层AWC较返青期明显增
加, 灌水量多者具有较高的AWC; 此后, 随生育期
推进及灌水差异, 各层AWC总体呈下降趋势, 处理
间差异逐步明确。开花期W1和W4处理0–60 cm及
60–150 cm土层AWC均极显著低于其他处理, 灌浆
期W1和W2处理0–60 cm及60–150 cm土层AWC均显
著低于其他处理, 尤其是W1处理0–60 cm土层AWC
出现负值, 说明该层土壤含水量处于萎蔫点以下,
作物受到严重的水分胁迫。
2.2 灌溉对冬小麦籽粒产量及水分利用效率
(WUE)的影响
不同灌水处理对冬小麦籽粒产量、水分利用效
率(WUE)、穗粒数、千粒重均具有显著的影响(表1)。
W3、W4籽粒产量均较高 , 分别为6 296 .52和
6 240.37 kg·hm–2, 无显著差异; W2、W5次之, W1最
低, 籽粒产量在4 674.65–5 803.28 kg·hm–2之间。产
量构成要素中, 千粒重可以反映籽粒的饱满度, 与
小麦受水分胁迫程度密切相关, W3处理千粒重最高
为53.125 g, W1最低为47.65 g, 相差11.48%, 达极
黄彩霞等: 灌溉对干旱区冬小麦干物质积累、分配和产量的影响 1337

doi: 10.3724/SP.J.1258.2014.00128


图2 灌溉对不同生育时期0–60 cm和60–150 cm土层土壤有效含水量(AWC)的影响(平均值±标准误差)。不同的小写字母表示
5%水平上差异显著。W1, 拔节期灌溉165 mm; W2, 拔节期灌溉120 mm +抽穗期灌溉105 mm; W3, 拔节期灌溉105 mm +抽穗
期灌溉105 mm +灌浆期灌溉105 mm; W4, 拔节期灌溉75 mm +抽穗期灌溉75 mm +灌浆期灌溉75 mm; W5, 拔节期灌溉105
mm +抽穗期灌溉75 mm +灌浆期灌溉45 mm。
Fig. 2 Available soil water content (AWC) in the 0–60 cm and 60–150 cm soil layers during different growth stages (mean ± SE).
Different lowercase letters indicate significant differences at p < 0.05. W1, irrigation quota of 165 mm at the jointing stage; W2, irri-
gation quota of 120 mm at the jointing stage and 105 mm at the heading stage; W3, irrigation quota of 105 mm at the jointing, head-
ing and grain filling stages, respectively; W4, irrigation quota of 75 mm at the jointing, heading and grain filling stages, respectively;
W5, irrigation quota of 105 mm at the jointing stage, 75 mm at the heading stage and 45 mm at the grain filling stage.


表1 不同灌溉处理下冬小麦产量、产量构成要素和水分利用效率(WUE)的比较(平均值±标准误差)
Table 1 Water use efficiency (WUE), grain yield and yield components in different irrigation treatments (mean ± SE)
处理
Treatment
单位面积穗数
SPN (104·hm–2)
穗粒数
GNS (number·plant–1)
千粒重
TWG (g)
籽粒产量
GY (kg·hm–2)
水分利用效率
WUE (kg·hm–2·mm–1)
W1 839 ± 45.33a 19 ± 0.82b 48 ± 0.89b 4 675 ± 127.35c 6.3 ± 0.17b
W2 860 ± 43.03a 22 ± 0.52a 5 ± 2.64ab 5 803 ± 151.76b 7.4 ± 0.83ab
W3 928 ± 22.51a 22 ± 0.04a 53 ± 1.12a 6 297 ± 220.91a 7.5 ± 0.27a
W4 878 ± 15.4a 23 ± 0.04a 53 ± 0.41ab 6 240 ± 58.48a 7.9 ± 0.07a
W5 895 ± 40.19a 22 ± 0.33a 507 ± 1.68b 5 305 ± 56.58b 6.9 ± 0.07b
不同的小写字母表示5%水平上差异显著。W1, 拔节期灌溉165 mm; W2, 拔节期灌溉120 mm +抽穗期灌溉105 mm; W3, 拔节期灌溉105 mm +
抽穗期灌溉105 mm +灌浆期灌溉105 mm; W4, 拔节期灌溉75 mm +抽穗期灌溉75 mm +灌浆期灌溉75 mm; W5, 拔节期灌溉105 mm +抽穗期
灌溉75 mm +灌浆期灌溉45 mm。
Different lowercase letters indicate significant differences at p < 0.05. GNS, grain number; GY, grain yield; SPN, spikes number per unit area; TWG,
1000-grain weight. W1, irrigation quota of 165 mm at the jointing stage; W2, irrigation quota of 120 mm at the jointing stage and 105 mm at the
heading stage; W3, irrigation quota of 105 mm at the jointing, heading and grain filling stages, respectively; W4, irrigation quota of 75 mm at the
jointing, heading and grain filling stages, respectively; W5, irrigation quota of 105 mm at the jointing stage, 75 mm at the heading stage and 45 mm at
the grain filling stage.


显著水平(p < 0.01); W2、W4、W5处理间千粒重无
显著差异。穗粒数以W4最高, 为23.125个·株–1、W1
最低, 为18.775个·株–1, 相差23.16%, 达极显著水平
(p < 0.01); 其余处理间无显著差异。相关分析表明
(表2), 籽粒产量与千粒重(r = 0.99**, n = 5)、穗粒数
(r = 0.87*, n = 5)呈显著或极显著正相关, 表明开花
期和灌浆期不灌水或少灌水均导致千粒重和穗粒数
下降, 最终表现为产量降低。
WUE是衡量作物高效用水的重要指标。试验结
果表明, 不同灌水处理下, WUE在7.91–6.28 kg·
hm–2·mm–1之间, 总体表现为W4 > W3 > W2 > W5 >
W1, 且W4、W3显著高于W1和W5处理(p < 0.05)。
相关分析表明(表2), 籽粒产量与WUE (r = 0.97**, n
= 5)正相关。说明减少生育期灌水总量或生育后期

1338 植物生态学报 Chinese Journal of Plant Ecology 2014, 38 (12): 1333–1344

www.plant-ecology.com
表2 不同灌溉条件下冬小麦农艺性状和产量之间的相关分析
Table 2 The correlation analysis between agronomic characteristics and grain yield in winter wheat under different irrigation treat-
ments
项目 Item T W R TRmax Rmax Te We Re GNS TWG GY WUE
SPN 0.51 –0.80 –0.75 0.59 –0.09 0.57 0.80 –0.13 –0.21 0.24 0.29 0.09
GNS 0.52 0.26 0.47 0.66 –0.59 0.51 0.37 –0.60 1.00 0.86* 0.87* 0.94**
TWG 0.80 0.02 0.25 0.89* –0.74 0.80 0.70 –0.76 0.86* 1.00 0.99** 0.95**
GY 0.78 –0.10 0.14 0.93** –0.66 0.79 0.75 –0.69 0.87* 0.99** 1.00 0.97**
*和**分别表示p = 0.05和p = 0.01水平上显著相关标准。GNS, 穗粒数; GY, 籽粒产量; R, 平均灌浆速率; Re, 有效灌浆持续期灌浆速率; Rmax,
最大灌浆速率; SPN, 单位面积穗数; T, 籽粒灌浆持续期; Te,有效灌浆持续期; TRmax, 最大籽粒灌浆速率出现时间; TWG, 千粒重; W, 理论最
大粒重; We, 有效灌浆持续期粒重增加值; WUE, 水分利用效率。
* and ** indicate significant correlation at p = 0.05 and p = 0.01, respectively. GNS, grain number; GY, grain yield; R, mean grain filling rate; Re, grain
filling rate during effective period of grain filling; Rmax, the maximum grain filling rate; SPN, spikes number per unit area; T, the duration of grain
filling; Te, effective period of grain filling; TRmax, the timing of the maximum filling rate; TWG, 1000-grain weight; W, the theoretical maximum grain
weight; We, the increases in grain weight during effective period of grain filling; WUE, water use efficiency.


过多灌水及水分胁迫通过影响籽粒产量导致WUE
下降。
2.3 灌溉对冬小麦叶面积指数(LAI)、干物质积累
及分配的影响
从图3可以看出, 不同灌水处理下, LAI在不同
生育时期表现不同。抽穗期, W1和W2处理LAI显著
高于其他处理。开花期至灌浆中期, 处理间LAI交替
上升或下降。但从抽穗到灌浆中期LAI变幅来看, 总
体表现为W5 > W2 > W1 > W4 > W3, 变异系数(CV)
分别为44.37%、37.47%、34.03%、28.28%和24.80%。
可见, 冬小麦花后LAI下降过程与灌水时期、灌水量
密切相关, 灌浆期灌少量水或不灌水会加快叶片的
衰老, LAI下降较快, 而适宜的灌水方案可延缓叶片
的衰老, 在生育后期LAI仍保持较高水平。
干物质生产是作物产量形成的基础。图4表明,
不同灌水条件下, 冬小麦干物质积累随生育时期的
推进呈“慢–快–慢”的变化趋势。开花期后, 受灌水
量和灌水次数的影响, 处理间差异逐步增大。总体
来看, W3处理干物质积累一直最高, 其次为W4, 其
余各处理干物质的积累呈上升或下降交替过程。灌
浆后期, W3干物质分别比W1、W2、W4、W5高
23.87%、18.08%、9.36%、17.09%、13.06%。W4
干物质分别比W1、W2、W3、W5高13.26%、7.97%、
7.07%、3.38%。
从成熟期单株干物质积累与分配来看(表3, 表
4), 不同处理中单株地上干物质、籽粒、茎鞘、叶
片、颖壳+穗轴干物质均存在显著差异, 但各处理单
株地上干物质与各器官间表现不一, 总体来看, W3
和W4处理各指标均较高, 而W1、W2和W5相对较


图3 灌溉对冬小麦叶面积指数(LAI)的影响(平均值±标准误
差)。不同的小写字母表示5%水平上差异显著。W1, 拔节期
灌溉165 mm; W2, 拔节期灌溉120 mm +抽穗期灌溉105
mm; W3, 拔节期灌溉105 mm +抽穗期灌溉105 mm +灌浆期
灌溉105 mm; W4, 拔节期灌溉75 mm +抽穗期灌溉75 mm +
灌浆期灌溉75 mm; W5, 拔节期灌溉105 mm +抽穗期灌溉75
mm +灌浆期灌溉45 mm。
Fig. 3 Effects of irrigation on leaf area index (LAI) in winter
wheat (mean ± SE). Different lowercase letters indicate signifi-
cant differences at p < 0.05. W1, irrigation quota of 165 mm at
the jointing stage; W2, irrigation quota of 120 mm at the joint-
ing stage and 105 mm at the heading stage; W3, irrigation quota
of 105 mm at the jointing, heading and grain filling stages,
respectively; W4, irrigation quota of 75 mm at the jointing,
heading and grain filling stages, respectively; W5, irrigation
quota of 105 mm at the jointing stage, 75 mm at the heading
stage and 45 mm at the grain filling stage.



低。灌水处理还影响花前储存物向籽粒的贡献率, 分
析表明 , 花前地上部干物质对籽粒的贡献率在
22.88%–50.32%之间, 依次为W2 > W1 > W5 > W4 >
W3。说明冬小麦转入以生殖生长为中心后, 水分胁
迫可促进茎鞘、叶及颖壳+穗轴储藏性光合产物向籽
粒转运, 这体现了作物适应水分胁迫的补充效应。
黄彩霞等: 灌溉对干旱区冬小麦干物质积累、分配和产量的影响 1339

doi: 10.3724/SP.J.1258.2014.00128


图4 灌溉对冬小麦干物质积累量的影响(平均值±标准误
差)。不同的小写字母表示5%水平上差异显著。W1, 拔节期
灌溉165 mm; W2, 拔节期灌溉120 mm +抽穗期灌溉105
mm; W3, 拔节期灌溉105 mm +抽穗期灌溉105 mm +灌浆期
灌溉105 mm; W4, 拔节期灌溉75 mm +抽穗期灌溉75 mm +
灌浆期灌溉75 mm; W5, 拔节期灌溉105 mm +抽穗期灌溉75
mm +灌浆期灌溉45 mm。
Fig. 4 Effects of irrigation on dry matter accumulation in
winter wheat (mean ± SE). Different lowercase letters indicate
significant differences at p < 0.05. W1, irrigation quota of 165
mm at the jointing stage; W2, irrigation quota of 120 mm at the
jointing stage and 105 mm at the heading stage; W3, irrigation
quota of 105 mm at the jointing, heading and grain filling stag-
es, respectively; W4, irrigation quota of 75 mm at the jointing,
heading and grain filling stages, respectively; W5, irrigation
quota of 105 mm at the jointing stage, 75 mm at the heading
stage and 45 mm at the grain filling stage.


2.4 灌溉对干旱区冬小麦籽粒灌浆特征参数的影响
灌浆是籽粒形成的最终表现, 三次多项式方程
能较好地模拟不同灌水处理下冬小麦籽粒的灌浆过
程, 相关系数在0.99以上(n = 5), 达到极显著水平。
表5可以看出, 不同灌水处理对冬小麦籽粒灌浆特
征参数均有显著或极显著影响, W3处理具有最高的
灌浆持续期(T)、最大粒重(W)、最大籽粒灌浆速率
出现时间(TRmax)、有效灌浆持续期(Te)和有效灌浆期
粒重增加值(We), 但平均灌浆速率(R)、最大灌浆速
率(Rmax)和有效灌浆速率(Re)均最小; W4具有较高的
R、Rmax和Re, 但T、Te和We等指标没有显著的优势;
W1、W2和W5处理各指标表现不一。总体来看, 冬
小麦花后水分胁迫主要缩短了T, 而提高了R。
相关性分析表明(表2), T、Te、We和TRmax与千
粒重均为正相关, 其中TRmax与千粒重显著正相关(r
= 0.89*, n = 5), 与籽粒产量呈极显著正相关(r =
0.93**, n = 5)。说明影响籽粒质量的主要指标是T,
适宜的灌水方案能够延长灌浆持续时间, 而水分胁
迫使得因灌浆速率提高引起的干物质积累增加量不
能抵消灌浆持续期缩短导致的籽粒干物质积累减少
量, 最终表现为籽粒质量的降低。
3 讨论
限量灌水条件下, 作物对干旱的反应因干旱胁
迫的强度、时期和复水过程不同而不同, 须考虑充
分提高有限水资源的利用效率, 寻找一个产量、耗
水量和WUE最佳的灌水方案(胡梦芸等, 2007)。在灌
溉水短缺的条件下, 小麦的水分调控应集中在提高
WUE上(Xue et al., 2003)。适度的限量灌溉或水分亏
缺有利于降低麦田耗水量, 提高WUE (Panda et al.,
2003; Sun et al., 2006)。有研究表明, 拔节和开花期

表3 灌溉对冬小麦成熟期地上部干物质积累的影响(平均值±标准误差)
Table 3 Effects of irrigation on aboveground dry matter accumulation in winter wheat at maturity (mean ± SE)
表中数据为3次重复的平均值。不同的小写字母表示5%水平上差异显著。W1, 拔节期灌溉165 mm; W2, 拔节期灌溉120 mm +抽穗期灌溉105
mm; W3, 拔节期灌溉105 mm +抽穗期灌溉105 mm +灌浆期灌溉105 mm; W4, 拔节期灌溉75 mm +抽穗期灌溉75 mm +灌浆期灌溉75 mm;
W5, 拔节期灌溉105 mm +抽穗期灌溉75 mm +灌浆期灌溉45 mm。
Data in the table are means of three replicates. Different lowercase letters indicate significant differences at p < 0.05. GWM, grain weight at maturity.
W1, irrigation quota of 165 mm at the jointing stage; W2, irrigation quota of 120 mm at the jointing stage and 105 mm at the heading stage; W3, irri-
gation quota of 105 mm at the jointing, heading and grain filling stages, respectively; W4, irrigation quota of 75 mm at the jointing, heading and grain
filling stages, respectively; W5, irrigation quota of 105 mm at the jointing stage, 75 mm at the heading stage and 45 mm at the grain filling stage.


处理
Treatment
籽粒重
GWM (g·plant–1)
茎鞘
Stem and sheath (g·plant–1)
叶片
Leaf (g·plant–1)
穗轴+颖壳
Rachis + glume (g·plant–1)
地上部干物质
Aboveground dry matter (g·plant–1)
W1 0.81 ± 0.05b 0.498 ± 0.02ab 0.148 ± 0.01b 0.224 ± 0.02ab 1.684 ± 0.05ab
W2 0.86 ± 0.06ab 0.503 ± 0.02a 0.199 ± 0.09ab 0.162 ± 0.03b 1.721 ± 0.02ab
W3 0.87 ± 0.02ab 0.551 ± 0.01a 0.237 ± 0.09a 0.270 ± 0.04a 1.927 ± 0.03a
W4 0.91 ± 0.01a 0.514 ± 0.02a 0.230 ± 0.00a 0.167 ± 0.03b 1.820 ± 0.04a
W5 0.72 ± 0.01c 0.486 ± 0.03b 0.224 ± 0.02a 0.249 ± 0.09ab 1.675 ± 0.06b
1340 植物生态学报 Chinese Journal of Plant Ecology 2014, 38 (12): 1333–1344

www.plant-ecology.com
表4 灌溉对冬小麦干物质转运特性的影响(平均值±标准误差)
Table 4 Effects of irrigation on characteristics of dry matter translocation in winter wheat (mean ± SE)
处理
Treatment
花前干物质
TDMP (g·plant–1)
花前干物质贡献率
RGWM (%)
花后积累籽粒干物质
GDMPA (g·plant–1)
花后积累籽粒干物质贡献率
RGDMAP (%)
W1 1.2 ± 0.02b 40.7 ± 7.12ab 0.5 ± 0.08ab 59.3 ± 7.12bc
W2 1.3 ± 0.06a 51.3 ± 8.60a 0.4 ± 0.09b 48.7 ± 8.60c
W3 1.3 ± 0.07a 22.8 ± 8.22c 0.7 ± 0.07a 77.2 ± 8.22a
W4 1.2 ± 0.02ab 33.8 ± 1.21bc 0.6 ± 0.02a 66.2 ± 1.21ab
W5 1.2 ± 0.02ab 42.4 ± 7.18ab 0.4 ± 0.06b 57.6 ± 7.18bc
表中数据为3次重复的平均值。不同的小写字母表示5%水平上差异显著。W1, 拔节期灌溉165 mm; W2, 拔节期灌溉120 mm +抽穗期灌溉105
mm; W3, 拔节期灌溉105 mm +抽穗期灌溉105 mm +灌浆期灌溉105 mm; W4, 拔节期灌溉75 mm +抽穗期灌溉75 mm +灌浆期灌溉75 mm;
W5, 拔节期灌溉105 mm +抽穗期灌溉75 mm +灌浆期灌溉45 mm。
Data in the table are means of three replicates. Different lowercase letters indicate significant differences at p < 0.05. GDMPA, grain dry matter accu-
mulation at the post-anthesis; RGDMAP, the contribution of post-anthesis accumulated dry matter to grains; RGWM, the contribution of pre-anthesis
translocation to grains; TDMP, dry matter at the pre-anthesis. W1, irrigation quota of 165 mm at the jointing stage; W2, irrigation quota of 120 mm at
the jointing stage and 105 mm at the heading stage; W3, irrigation quota of 105 mm at the jointing, heading and grain filling stages, respectively; W4,
irrigation quota of 75 mm at the jointing, heading and grain filling stages, respectively; W5, irrigation quota of 105 mm at the jointing stage, 75 mm at
the heading stage and 45 mm at the grain filling stage.


表5 灌溉对冬小麦籽粒灌浆特征参数的影响(平均值±标准误差)
Table 5 Effects of irrigation on grain filling trait parameters in winter wheat (mean ± SE)
处理 Treatment W1 W2 W3 W4 W5
T (d) 37.09 ± 2.49b 37.59 ± 1.19b 44.12 ± 1.57a 37.23 ± 2.39b 33.35 ± 0.63b
W (g) 5.59 ± 0.21c 5.70 ± 0.22bc 6.31 ± 0.01a 6.14 ± 0.02ab 5.64 ± 0.22c
R (g·100 grain–1·d–1) 0.15 ± 0.00b 0.15 ± 0.00b 0.14 ± 0.00b 0.17 ± 0.00a 0.17 ± 0.00a
TRmax (d) 21.70 ± 0.47c 22.19 ± 0.24bc 23.73 ± 0.39a 23.14 ± 0.55ab 21.38 ± 0.32c
Rmax (g·100 grain–1·d–1) 0.22 ± 0.00bc 0.22 ± 0.01bc 0.21 ± 0.00c 0.23 ± 0.01ab 0.24 ± 0.01a
Te (d) 27.43 ± 1.66b 27.76 ± 0.58b 32.00 ± 0.87a 27.98 ± 1.59b 25.54 ± 0.32b
We (g) 4.96 ± 0.23b 5.01 ± 0.05b 5.58 ± 0.09a 5.23 ± 0.23ab 4.98 ± 0.01b
Re (d) 0.18 ± 0.00bc 0.18 ± 0.00bc 0.17 ± 0.00c 0.19 ± 0.00ab 0.19 ± 0.00a
表中数据为3次重复的平均值。不同的小写字母表示5%水平上差异显著。W1, 拔节期灌溉165 mm; W2, 拔节期灌溉120 mm +抽穗期灌溉105
mm; W3, 拔节期灌溉105 mm +抽穗期灌溉105 mm +灌浆期灌溉105 mm; W4, 拔节期灌溉75 mm +抽穗期灌溉75 mm +灌浆期灌溉75 mm;
W5, 拔节期灌溉105 mm +抽穗期灌溉75 mm +灌浆期灌溉45 mm。R, 平均灌浆速率; Re, 有效灌浆持续期灌浆速率; Rmax, 最大灌浆速率;T, 籽
粒灌浆持续期; Te, 有效灌浆持续期; TRmax, 最大籽粒灌浆速率出现时间; W, 理论最大粒重; We, 有效灌浆持续期粒重增加值。
Data in the table are means of three replicates. Different lowercase letters indicate significant differences at p < 0.05. W1, irrigation quota of 165 mm
at the jointing stage; W2, irrigation quota of 120 mm at the jointing stage and 105 mm at the heading stage; W3, irrigation quota of 105 mm at the
jointing, heading and grain filling stages, respectively; W4, irrigation quota of 75 mm at the jointing, heading and grain filling stages, respectively;
W5, irrigation quota of 105 mm at the jointing stage, 75 mm at the heading stage and 45 mm at the grain filling stage. R, mean grain filling rate; Re,
grain filling rate during effective period of grain filling; Rmax, the maximum grain filling rate; T, the duration of grain filling; Te, effective period of
grain filling; TRmax, the timing of the maximum filling rate; W, theoretical maximum grain weight; We, increases in grain weight during effective peri-
od of grain filling.


亏缺灌溉促进根系生长, 提高了土壤水分的利用效
率(胡梦芸等, 2007)。而程宪国等(1996)强调灌灌浆
水。李全起等(2011)研究表明: 中国北方冬小麦以拔
节期和抽穗期各灌溉60 mm处理的籽粒产量最高,
增产的原因在于穗数的显著增加。本试验结果表明,
W3处理的籽粒产量最高, 但W4具有最高的WUE,
且籽粒产量与W3相近, 无显著差异, 同时W4较灌
溉总量相同的W2和W5以及灌水量最少的W1具有
明显的指标优势, 其主要原因是W3、W4处理在各
生育时期, 尤其是灌浆期各层土壤均保持了适宜的
有效含水量, 提高了穗粒数、千粒重和籽粒产量, 而
减少生育期灌水总量或生育后期过多灌水及水分胁
迫通过影响籽粒产量导致WUE下降。因此, 在有限
的水资源条件下, 保证冬小麦关键生育期具有适宜
的土壤有效含水量是确定灌水最佳时期和灌水量大
小的主要考虑因素, 本试验条件下, 拔节、抽穗及灌
浆期各灌溉75 mm是高产高WUE的最佳灌水方案。
小麦籽粒产量的形成主要来自开花前贮藏物质
的转运和开花后功能叶片的光合产物积累, 与其干
物质积累、分配及运转密切相关(姚素梅等, 2008)。
黄彩霞等: 灌溉对干旱区冬小麦干物质积累、分配和产量的影响 1341

doi: 10.3724/SP.J.1258.2014.00128
多数研究认为, 生物产量和经济产量显著正相关
(郭文善等, 1995; 王月福等, 2002), Bahrani等(2011)
认为, 花后干旱胁迫增加花前干物质向籽粒的转移,
因此, 花前干物质积累对籽粒质量十分重要。但Liu
和Li (2005)研究表明, 长期或严重干旱胁迫条件下,
茎秆贮藏物质的转运无法弥补光合下降造成的籽粒
产量损失。本试验结果表明, W3、W4处理的干物质
积累及成熟期各器官干物质总体较高, 而花前地上
部分干物质对籽粒的贡献率表现为W1 > W2 >
W5 > W4 > W3, 这主要是生育后期土壤水分差异
程度不同引起的, 受灌浆期水分胁迫影响, 花后叶
面积指数下降加快, 光合作用下降(Kobata et al.,
1992), 干物质积累和向籽粒分配量减少, 但水分胁
迫促进了茎鞘、叶及颖壳+穗轴储藏性光合产物向
籽粒转运, 在一定程度上减轻了灌浆期光合速率下
降对产量造成的影响(Inoue et al., 2004)。
小麦粒重的增加与灌浆特性有密切的关系
(Chen et al., 1992)。一般认为, 土壤有效含水量对冬
小麦生育中后期籽粒灌浆具有重要的作用(郭清毅
等, 2005; 郑成岩等, 2010)。干旱胁迫下冬小麦的平
均灌浆时间相对缩短, 平均灌浆速率相应增加(吴
少辉等, 2002)。有人认为越冬期轻度水分胁迫具有
最高的平均灌浆速率、最大的灌浆速率、最高的第3
阶段灌浆速率和最高的千粒重(孟兆江等, 2010), 还
有人发现, 冬小麦灌水次数愈少, 小麦灌浆起步时
间愈早, 达到峰值的时间越快, 平均灌浆速率随灌
溉量的增加而增大(李志贤等, 2007)。在孕穗、抽穗
和灌浆期任一期内, 缺水处理都会缩短小麦灌浆持
续时间, 减少穗粒数、粒重和产量(刘培等, 2010)。
研究表明, 粒重与灌浆速率呈正相关关系, 与灌浆
持续时间呈负相关或无显著相关关系(熊淑萍等,
2005; Bahrani et al., 2011)。Sanjari Pirei Vatlou等
(2011)认为, 灌浆速率与籽粒质量、穗粒数及籽粒产
量呈正相关关系, 与单位面积穗数呈负相关关系。
本试验结果表明, 水分胁迫缩短了灌浆持续时间,
提高了灌浆速率, 这与前人的研究结果一致。相关
性分析表明, 灌浆持续期、有效灌浆持续期、有效
灌浆期粒重增加值、最大籽粒灌浆速率出现的时间
与千粒重均呈正相关关系, 这主要是因为灌浆速率
提高引起的干物质积累增加量不能抵消灌浆持续期
缩短导致的籽粒干物质积累减少量, 灌浆持续时间
成为籽粒质量增加的主要制约因素。
灌水时期、灌水频率、灌水定额不同, 对冬小
麦农艺性状及产量的影响不同。本实验条件下, W4
处理能够保证冬小麦灌浆期具有适宜的土壤有效含
水量, 具有最高的穗粒数、千粒重和WUE; 同时, 又
具有最大的灌浆持续时间和有效灌浆持续期, 但干
物质和产量却低于W3处理。综合考虑水源条件、作
物种植情况及经济状况等要素, 认为在本研究条件
下, 拔节、抽穗及灌浆期各灌溉75 mm是高产高
WUE的最佳灌水方案。
水分是限制西北干旱区发挥光温潜力、提高土
地生产力的瓶颈(鞠正山等, 2002)。不合理的水资源
开发和利用, 致使西北地区水土资源失衡, 环境恶
化。河西走廊干旱少雨, 水资源供需矛盾突出, 荒漠
化问题日益尖锐, 生态环境濒临崩溃, 到了资源不
可持续利用和经济、社会、生态环境不可持续发展
的程度。因此, 寻求适宜该地区主要粮食作物的灌
溉制度, 对于提高该地区经济、社会及生态效益具
有重要的意义。
基金项目 公益性行业(农业)科研专项(201303-
104)、现代农业产业技术体系建设专项(CARS-3-2-
49)和甘肃省自然科学基金(145RJZA228)。
致谢 感谢甘肃农业大学试验基地河西走廊试验站
在本试验过程中给予的特别帮助。
参考文献
Bahrani A, Heidari Sharif Abad H, Tahmasebi Sarvestani Z,
Moafpourian GH, Ayneh Band A (2011). Remobilization
of dry matter in wheat: effects of nitrogen application and
post-anthesis water deficit during grain filling. New Zea-
land Journal of Crop and Horticultural Science, 39,
279–293.
Chen PY, Li Y, Chen JJ, Cao GC (1992). Effects of limited
irrigation upon yield increase in wheat by drought re-
sistance and water use. Agricultural Research in the Arid
Area, 10(1), 48–53.
Chen XY, Luo YP (2001). Study on the compensatory effect of
rewatering during the flowering stage after previous water
stress in winter wheat. Acta Agronomica Sinica, 27,
512–516. (in Chinese with English abstract) [陈晓远, 罗
远培 (2001). 开花期复水对受旱冬小麦的补偿效应研
究. 作物学报, 27, 512–516.]
Cheng XG, Wang DS, Zhang MR, Zhou Y, Jin K, Guo SC,
Wang ZL, Wang SZ (1996). Effects of different soil
moisture conditions on winter wheat growth and nutrient
uptake. Scientia Agricultura Sinica, 29(4), 67–74. (in
Chinese with English abstract) [程宪国, 汪德水, 张美荣,
1342 植物生态学报 Chinese Journal of Plant Ecology 2014, 38 (12): 1333–1344

www.plant-ecology.com
周涌, 金轲, 郭世昌, 王自力, 王书子 (1996). 不同土
壤水分条件对冬小麦生长及养分吸收的影响. 中国农
业科学, 29(4), 67–74.]
Cui HH, Wang JL, Ma BZ, Wang YZ, Jing H, Lu LH (2009).
Effect of crop rotation and irrigation on wheat yield and
water-use efficiency. Chinese Journal of Eco-Agriculture,
17, 479–483. (in Chinese with English abstract) [崔欢虎,
王娟玲, 马步州, 王裕智, 靖华, 逯腊虎 (2009). 茬口
和灌水对小麦产量及水分利用效率的影响. 中国生态
农业学报, 17, 479–483.]
Fan XM, Jiang D, Dai TB, Jing Q, Cao WX (2005). Effects of
nitrogen supply on flag leaf senescence and weight in
wheat grown drought or water logging from anthesis to
maturity. Acta Pedologica Sinica, 42, 875–879. (in
Chinese with English abstract) [范雪梅, 姜东, 戴廷波,
荆奇, 曹卫星 (2005). 花后干旱和渍水下氮素供应对小
麦旗叶衰老和粒重的影响. 土壤学报, 42, 875–879.]
Gu YF, Ding SY, Gao ZY, Xing Q (2010). The pattern of pho-
tosynthate partitioning in drought-stressed winter wheat
and its relationship with yield. Acta Ecologica Sinica, 30,
1167–1173. (in Chinese with English abstract) [谷艳芳,
丁圣彦, 高志英, 邢倩 (2010). 干旱胁迫下冬小麦光合
产物分配格局及其与产量的关系 . 生态学报 , 30,
1167–1173.]
Guo QY, Huang GB, Li GD, Chan Y (2005). Conservation
tillage effects on soil moisture and water use efficiency of
two phases rotation system with spring wheat and field pea
in dryland. Journal of Soil and Water Conservation, 19(3),
165–169. (in Chinese with English abstract) [郭清毅, 黄
高宝, Li GD, Chan Y (2005). 保护性耕作对旱地麦–豆
双序列轮作农田土壤水分及利用效率的影响. 水土保
持学报, 19(3), 165–169.]
Guo WS, Feng CN, Yan LL, Peng YX, Zhu XK, Zong AG
(1995). Analysis on source-sink relationship after anthesis
in wheat. Acta Agronomica Sinica, 21, 334–340. (in
Chinese with English abstract) [郭文善, 封超年, 严六零,
彭永欣, 朱新开, 宗爱国 (1995). 小麦开花后源库关系
分析. 作物学报, 21, 334–340.]
Halik W, Tiyip T, Yimit H (2004). The research of the agricul-
ture structure and the proper approach of water resource
utilization in arid region taking Qira Oasis in Xinjiang as
example. Journal of Yunnan Agricultural University, 19,
732–742. (in Chinese with English abstract) [瓦哈甫·哈力
克, 塔西甫拉提·特依拜, 海米提·依米提 (2004). 干旱
区绿洲农业结构与水资源合理利用研究以新疆策勒绿
洲为例. 云南农业大学学报, 19, 732–742.]
Hu MY, Zhang ZB, Xu P, Dong BD, Li WQ, Li JJ (2007). Re-
lationship of water use efficiency with photoassimilate
accumulation and transport in wheat under deficit irriga-
tion. Acta Agronomica Sinica, 33, 1884–1891. (in Chinese
with English abstract) [胡梦芸, 张正斌, 徐萍, 董宝娣,
李魏强, 李景娟 (2007). 亏缺灌溉下小麦水分利用效率
与光合产物积累运转的相关研究 . 作物学报 , 33,
1884–1891.]
Inoue T, Inanaga S, Sugimoto Y, Siddig KE (2004). Contribu-
tion of pre-anthesis assimilates and current photosynthesis
to grain yield, and their relationships to drought resistance
in wheat cultivars grown under different soil moisture.
Photosynthetica, 42, 99–104.
Jia SL, Meng CX, Tang YX, Liu CT (1995). Yield response
and nutrient absorption features of wheat under water
stress conditions. Chinese Journal of Soil Science, 26(1),
6–8. (in Chinese with English abstract) [贾树龙, 孟春香,
唐玉霞, 刘春田 (1995). 水分胁迫条件下小麦的产量反
应及对养分的吸收特征. 土壤通报, 26(1), 6–8.]
Jiang D, Xie ZJ, Cao WX, Dai TB, Jing Q (2004). Effects of
post-anthesis drought and waterlogging on photosynthetic
characteristics, assimilates transportation in winter wheat.
Acta Agronomica Sinica, 30(2), 175–182. (in Chinese with
English abstract) [姜东, 谢祝捷, 曹卫星, 戴廷波, 荆奇
(2004). 花后干旱和渍水对冬小麦光合特性和物质运转
的影响. 作物学报, 30(2), 175–182.]
Jiang FQ (1999). Importance of intension development of agri-
culture in arid area. Journal of Desert Research, 19(1),
78–81. (in Chinese with English abstract) [姜逢清 (1999).
论干旱区农业走内涵式发展道路的意义. 中国沙漠,
19(1), 78–81.]
Ju H, Lan X, Zhou DX, Lan LW (2000). The effect of irrigation
in different stages on winter wheat dry-matter accumula-
tion and distribution. Agricultural Research in the Arid
Areas, 18(4), 66–71. (in Chinese with English abstract) [居
辉, 兰霞, 周殿玺, 兰林旺 (2000). 不同时期灌溉对冬
小麦物质积累与分配的影响. 干旱地区农业研究, 18(4),
66–71.]
Ju ZS, Zhang FR, Liu XX (2002). Relationship between in-
creasing grain output and utilization patential of agricul-
tural water resources in severe-arid northwestern ecologi-
cal zones. Transactions of the Chinese Society of Agricul-
tural Engineering, 18(1), 177–180. (in Chinese with
English abstract) [鞠正山, 张凤荣, 刘晓霞 (2002). 西
北特干旱区农业水资源利用潜力与粮食增产的关系.
农业工程学报, 18(1), 177–180.]
Kang ES, Li X, Zhang JS, Hu XL (2004). Water resources re-
lating to desertification in the Hexi area of Gansu Prov-
ince, China. Journal of Glaciology and Geocryology, 26,
657–667. (in Chinese with English abstract) [康尔泗, 李
新, 张济世, 胡兴林 (2004). 甘肃河西地区内陆河流域
荒漠化的水资源问题. 冰川冻土, 26, 657–667.]
Kang SZ (1998). New agricultural sci-technological revolution
and development of Chinese water-saving agriculture in
黄彩霞等: 灌溉对干旱区冬小麦干物质积累、分配和产量的影响 1343

doi: 10.3724/SP.J.1258.2014.00128
21st century. Agricultural Research in the Arid Areas,
16(1), 11–17. (in Chinese with English abstract) [康绍忠
(1998). 新的农业科技革命与21世纪我国节水农业的发
展. 干旱地区农业研究, 16(1), 11–17.]
Kobata T, Palta JA, Turner NC (1992). Rate of development of
post-anthesis water deficits and grain filling of spring
wheat. Crop Science, 32, 1238–1242.
Li QQ, Shen JY, Zhao DD (2011). Effect of irrigation frequen-
cy on yield and leaf water use efficiency of winter wheat.
Transactions of the Chinese Society of Agricultural Engi-
neering, 27(3), 33–36. (in Chinese with English abstract)
[李全起, 沈加印, 赵丹丹 (2011). 灌溉频率对冬小麦
产量及叶片水分利用效率的影响. 农业工程学报, 27(3),
33–36.]
Li SQ, Shao MA, Li ZY, Wu WM, Zhang XC (2003). Review
of characteristics of wheat grain fill and factors to influ-
ence it. Acta Botanica Boreali-Occidentalia Sinica, 23,
2031–2039. (in Chinese with English abstract) [李世清,
邵明安, 李紫燕, 伍维模, 张兴昌 (2003). 小麦籽粒灌
浆特征及影响因素的研究进展 . 西北植物学报 , 23,
2031–2039.]
Li ZX, Chai SX, Qi WH (2007). Study on grain filling charac-
teristic of winter wheat under different irrigation treat-
ments. Journal of Gansu Agricultural University, 42,
35–40. (in Chinese with English abstract) [李志贤, 柴守
玺, 齐伟宏 (2007). 不同灌溉处理下冬小麦籽粒灌浆特
性的研究. 甘肃农业大学学报, 42, 35–40.]
Liu HS, Li FM (2005). Root respiration, photosynthesis and
grain yield of two spring wheat in response to soil drying.
Plant Growth Regulation, 46, 233–240.
Liu P, Cai HJ, Wang J (2010). Study on grain filling character-
istic of winter wheat seed under soil water stress. Water
Saving Irrigation, (1), 1–4. (in Chinese with English
abstract) [刘培, 蔡焕杰, 王健 (2010). 土壤水分胁迫下
冬小麦籽粒灌浆特性的研究. 节水灌溉, (1), 1–4.]
Ma XM, Zhang JJ, Xiong SP, Hu XL, He JG (2005). Effect of
different amounts of nitrogen application on grain filling
and yield of wheat varieties with different qualities. Jour-
nal of Triticeae Crops, 25(6), 72–77. (in Chinese with
English abstract) [马新明, 张娟娟, 熊淑萍, 胡徐来, 何
建国 (2005). 氮肥用量对不同品质类型小麦品种籽粒
灌浆特征和产量的影响. 麦类作物学报, 25(6), 72–77.]
Maghsoudi Moud AA, Islami M (2011). The effect of water
stress on remobilization of pre-anthesis stored assimilates
to grains in wheat. Journal of Plant Physiology and
Breeding, 1(1), 25–38.
Meng ZJ, Sun JS, Duan AW, Liu ZG, Wang HZ (2010). Grain
filling characteristics of winter wheat with regulated defi-
cit irrigation and its simulation models. Transactions of the
Chinese Society of Agricultural Engineering, 26(1), 18–23.
(in Chinese with English abstract) [孟兆江, 孙景生, 段爱
旺, 刘祖贵, 王和洲 (2010). 调亏灌溉条件下冬小麦籽
粒灌浆特征及其模拟模型 . 农业工程学报 , 26(1),
18–23.]
Panda RK, Behera SK, Kashyap PS (2003). Effective manage-
ment of irrigation water for wheat under stressed condi-
tions. Agricultural Water Management, 63, 37–56.
Qin DH (2002). Assessment on the Environmental Change in
West China. Science Press, Beijing. 37–45. (in Chinese)
[秦大河 (2002). 中国西部环境演变评估综合报告. 科
学出版社, 北京. 37–45.]
Qin SH, Li LL (2005). Accumulation and distribution of dry
matter and grain filling of spring wheat post-anthesis un-
der supplementary irrigation catchment rainfall. Journal of
Soil And Water Conservation, 19(4), 173–180. (in Chinese
with English abstract) [秦舒浩, 李玲玲 (2005). 集雨补
灌春小麦花后干物质积累分配及灌浆特性. 水土保持
学报, 19(4), 173–180.]
Ren GY, Jiang T, Li WJ, Zhai PM, Luo Y, Ma ZG (2008). An
integrated assessment of climate change impacts on Chi-
na’s water resources. Advances in Water Science, 19,
772–779. (in Chinese with English abstract) [任国玉, 姜
彤, 李维京, 翟盘茂, 罗勇, 马柱国 (2008). 气候变化
对中国水资源情势影响综合分析 . 水科学进展 , 19,
772–779.]
Sanjari Pireivatlou AG, Aliyev RT, Sorkhi Lalehloo B (2011).
Grain filling rate and duration in bread wheat under irri-
gated and drought stressed conditions. Journal of Plant
Physiology and Breeding, 1(1), 69–86.
Shan L (2000). Water use efficiency. In: Zhou CL ed. Current
Biology. China Zhi Gong Press, Beijing. 399–400. (in
Chinese) [山仑 (2000). 水分利用效率. 见: 邹承鲁主
编. 当代生物学. 中国致公出版社, 北京. 399–400.]
Sheng HD (1983). Effects of deficit irrigation on grain filling of
winter wheat. Journal of Northwest Sci-tech University of
Agriculture and Forestry (Natural Science Edition), (2),
103–111. (in Chinese with English abstract) [盛宏达
(1983). 水分亏缺对冬小麦籽粒充实的影响. 西北农学
院学报(自然科学版), (2), 103–111.]
Shi PZ, Yang XY (1998). Water saving effect of deficit irriga-
tion in spring wheat. Agricultural Research in the Arid
Areas, 16(2), 80–83. (in Chinese with English abstract) [石
培泽, 杨秀英 (1998). 春小麦适度亏缺灌溉的节水增产
效应. 干旱地区农业研究, 16(2), 80–83.]
Sun HY, Liu CM, Zhang XY, Shen YJ, Zhang YQ (2006).
Effects of irrigation on water balance, yield and WUE of
winter wheat in the North China Plain. Agricultural Water
Management, 85, 211–218.
Wang CY, Guo TC, Peng Y, Zhu YJ, Ma DY, Zhang CJ
(2004). Effects of post-anthesis irrigation on grain quality
indices and yield in winter wheat (Triticum aestivum L.).
Acta Agronomica Sinica, 30, 1031–1035. (in Chinese with
1344 植物生态学报 Chinese Journal of Plant Ecology 2014, 38 (12): 1333–1344

www.plant-ecology.com
English abstract) [王晨阳, 郭天财, 彭羽, 朱云集, 马冬
云, 张灿军 (2004). 花后灌水对小麦籽粒品质性状及产
量的影响. 作物学报, 30, 1031–1035.]
Wang YF, Yu ZW, Li SX, Yu SL (2002). Effect of nitrogen
nutrition on carbon assimilation and transfer and yield af-
ter wheat anthesis. Journal of Triticeae Crops, 22(2),
55–59. (in Chinese with English abstract) [王月福, 于振
文, 李尚霞, 余松烈 (2002). 氮素营养水平对小麦开花
后碳素同化、运转和产量的影响. 麦类作物学报, 22(2),
55–59.]
Wei YM, Zhu LX, Zhou YW, Zhang JP (2004). Utilization
status of water resources and assessment on water-saving
irrigation projects in Hexi corridor. Journal of Desert Re-
search, 24, 399–404. (in Chinese with English abstract)
[尉元明, 朱丽霞, 周跃武, 张景平 (2004). 河西走廊水
资源利用现状与节水灌溉工程分析 . 中国沙漠 , 24,
399–404.]
Wu JM, Gao HW (2006). Analysis of the supply of and demand
for water resource and research on water-saving tillage in
Hexi corridor of Gansu Province. Transactions of the
Chinese Society of Agricultural Engineering, 22(3), 36–39.
(in Chinese with English abstract) [吴建民 , 高焕文
(2006). 甘肃河西走廊水资源供需分析及耕作节水研究.
农业工程学报, 22(3), 36–39.]
Wu PT, Zhao XN (2010). Impact of climate change on agricul-
tural water use and grain production in China. Transac-
tions of the Chinese Society of Agricultural Engineering,
26(2), 1–6. (in Chinese with English abstract) [吴普特, 赵
西宁 (2010). 气候变化对中国农业用水和粮食生产的
影响. 农业工程学报, 26(2), 1–6.]
Wu SH, Gao HT, Wang SZ, Duan GH (2002). Analysis on the
effect of drought on the grain weight grow and the charac-
ter of the grain filling of winter wheat. Agricultural Re-
search in the Arid Area, 20(2), 49–51, 64. (in Chinese with
English abstract) [吴少辉 , 高海涛 , 王书子 , 段国辉
(2002). 干旱对冬小麦粒重形成的影响及灌浆特性分析.
干旱地区农业研究, 20(2), 49–51, 64.]
Xiong SP, Gu QR, He JG, Ma XM, Li L (2005). The effect of
different water treatment on characteristics of wheat grain
fill and yield of wheat with specialized end-uses. Agricul-
tural Research in the Arid Area, 23(4), 113–117, 133. (in
Chinese with English abstract) [熊淑萍, 谷秋荣, 何建国,
马新明, 李琳 (2005). 水分处理对不同专用型小麦籽粒
灌浆特征和产量的影响 . 干旱地区农业研究 , 23(4),
113–117, 133.]
Xue Q, Zhu Z, Musick JT, Stewart BA, Dusek DA (2003). Root
growth and water uptake in winter wheat under deficit ir-
rigation. Plant and Soil, 257, 151–161.
Yang JC, Zhang JH, Wang ZQ, Zhu QS, Wang W (2001). Re-
mobilization of carbon reserves in response to water defi-
cit during grain filling of rice. Field Crops Research, 71,
47–55.
Yang YH, Watanabe M, Zhang XY, Zhang JQ, Wang QX,
Hayashi S (2006). Optimizing irrigation management for
wheat to reduce groundwater depletion in the piedmont re-
gion of the Taihang mountains in the North China Plain.
Agricultural Water Management, 82, 25–44.
Yao SM, Kang YH, Liu HJ (2008). Studies on dry matter ac-
cumulation, partitioning and translocation in winter wheat
under sprinkler and surface irrigation conditions. Agricul-
tural Research in the Arid Area, 26(6), 51–56. (in Chinese
with English abstract) [姚素梅, 康跃虎, 刘海军 (2008).
喷灌与地面灌溉冬小麦干物质积累、分配和运转的比较
研究. 干旱地区农业研究, 26(6), 51–56.]
Yu ZW (2001). Cultivation Practices and Selection of Winter
Wheat with Quality Special-end Use. China Agriculture
Press, Beijing. (in Chinese with English abstract) [于振文
(2001). 优质专用冬小麦品种及栽培. 中国农业出版社,
北京.]
Yuan JZ, Min QW (2001). Water: the fundamentality for re-
construction of ecosystem in Northwest China. Journal of
Natural Resources, 16, 511–515. (in Chinese with English
abstract) [袁家祖, 闵庆文 (2001). 水是西北地区生态
系统重建的根本. 自然资源学报, 16, 511–515.]
Zhang K, Ren J, Tong SL, Chen LJ, Dong LP (2006). Study on
the adjustment of grouting characteristics of winter wheat
seed by soil water controlling. Journal of Triticeae Crops,
26(5), 122–125. (in Chinese with English abstract) [张凯,
任健, 仝胜利, 陈利军, 董丽平 (2006). 土壤水分调控
对冬小麦籽粒灌浆特性的影响. 麦类作物学报, 26(5),
122–125.]
Zheng CY, Yu ZW, Zhang YL, Wang D, Xu ZZ (2010). Effects
of irrigation amount on water use characteristics and grain
yield of wheat under different nitrogen application rates.
Chinese Journal of Applied Ecology, 21, 2799–2805. (in
Chinese with English abstract) [郑成岩, 于振文, 张永丽,
王东, 许振柱 (2010). 不同施氮水平下灌水量对小麦水
分利用特征和产量的影响. 应用生态学报, 21, 2799–
2805.]


责任编委: 蒋高明 责任编辑: 王 葳