免费文献传递   相关文献

Tree architecture of overlapping species among successional stages in evergreen broad-leaved forests in Tiantong region, Zhejiang Province, China

浙江天童常绿阔叶林演替阶段共有种的树木构型


树木构型是木本植物为响应光照变化在其空间建造结构上的配置模式和形态体现。研究演替不同阶段共有种构型的变化可以剔除植物谱系的影响, 反映植物构型特征与光资源供给性的关系。该研究在浙江宁波天童、南山和北仑3个次生演替序列上选择了5个演替共有种, 分4个群落高度层级, 对照分析了树高、冠幅深度和面积、枝条伸展方向、基径、叶片盖度和聚集度构型性状随演替的变化, 并分析了与冠幅曝光指数的线性关系。结果表明: 1)随着演替进行, 冠幅厚度和面积、叶片盖度、叶片聚集度和基径逐步增加, 但在个别相邻演替阶段增加不显著; 2)随着演替进行, 植物的垂直枝比例降低, 水平枝比例增加; 3)演替过程中植物冠幅曝光指数在各层级内都呈现出减小趋势; 4)构型性状和植物冠幅曝光指数间存在显著的线性回归关系(p < 0.001)。总之, 随着常绿阔叶林演替进行, 演替共有种构型的变化反映了物种功能类群由阳性先锋植物向耐阴植物的转化, 其中, 植物对光资源的适应是导致构型变化的主要原因。

Aims Tree architecture refers to the overall shape and size of the woody plants, as well as the spatial arrangement of its components in response to changing light. Variation in tree architecture of overlapping species among successional stages can be used to indicate relationships between tree architecture and light availability, because confounding effects resulted from plant phylogenetics are excluded. Our objective was to examine how tree architecture varies among overlapping species in different successional stages.
Methods The study sites are located in Tiantong National Forest Park (29°52′ N, 121°39′ E), Nanshan Mountain (29°52′ N, 121°41′ E) and Beilun Forest Park (29°50′ N, 121°52′ E) in Zhejiang Province, China. We measured tree height, crown depth and area, stem basal diameter, leaf coverage and convergence, stretch direction of branch and crown exposure index for five overlapping species in four vertical layers among successional communities in three sites. Linear regression analysis was conducted to examine the quantitative relationship between tree architecture and crown exposure index.
Important findings With the forest succession, crown depth and area, leaf coverage and stem basal diameter increased gradually, but did not show significant differences between adjacent successional stages in some cases. The proportion of dispersed leaves increased, but the proportion of clumped leaves decreased. Among four vertical layers, crown exposure index decreased through forest succession. There were significant linear relationships between crown exposure index and each of eight tree architectural traits (p < 0.001). We conclude that variability in tree architecture among overlapping species through forest succession indicates a shifting pattern of plant functional groups from pioneer species to shade-tolerant species in evergreen broad-leaved forests. Light acclimatization is one of main factors driving variation in tree architecture.


全 文 :植物生态学报 2013, 37 (7): 611–619 doi: 10.3724/SP.J.1258.2013.00063
Chinese Journal of Plant Ecology http://www.plant-ecology.com
——————————————————
收稿日期Received: 2013-03-18 接受日期Accepted: 2013-05-22
* 通讯作者Author for correspondence (E-mail: eryan@des.ecnu.edu.cn)
浙江天童常绿阔叶林演替阶段共有种的树木构型
杨晓东1,2 阎恩荣1,2* 张志浩1,2 孙宝伟1,2 黄海侠1,2 Ali ARSHAD 1,2
马文济1,2 史青茹1,2
1华东师范大学环境科学系, 上海 200062; 2浙江天童森林生态系统国家野外科学观测研究站, 浙江宁波 315114
摘 要 树木构型是木本植物为响应光照变化在其空间建造结构上的配置模式和形态体现。研究演替不同阶段共有种构型的
变化可以剔除植物谱系的影响, 反映植物构型特征与光资源供给性的关系。该研究在浙江宁波天童、南山和北仑3个次生演
替序列上选择了5个演替共有种, 分4个群落高度层级, 对照分析了树高、冠幅深度和面积、枝条伸展方向、基径、叶片盖度
和聚集度构型性状随演替的变化, 并分析了与冠幅曝光指数的线性关系。结果表明: 1)随着演替进行, 冠幅厚度和面积、叶片
盖度、叶片聚集度和基径逐步增加, 但在个别相邻演替阶段增加不显著; 2)随着演替进行, 植物的垂直枝比例降低, 水平枝比
例增加; 3)演替过程中植物冠幅曝光指数在各层级内都呈现出减小趋势; 4)构型性状和植物冠幅曝光指数间存在显著的线性
回归关系(p < 0.001)。总之, 随着常绿阔叶林演替进行, 演替共有种构型的变化反映了物种功能类群由阳性先锋植物向耐阴植
物的转化, 其中, 植物对光资源的适应是导致构型变化的主要原因。
关键词 冠幅曝光指数, 常绿阔叶林, 共有种, 次生演替, 树木构型
Tree architecture of overlapping species among successional stages in evergreen broad-leaved
forests in Tiantong region, Zhejiang Province, China
YANG Xiao-Dong1,2, YAN En-Rong1,2*, ZHANG Zhi-Hao1,2, SUN Bao-Wei1,2, HUANG Hai-Xia1,2, Ali ARSHAD1,2,
MA Wen-Ji1,2, and SHI Qing-Ru1,2
1Department of Environment Science, East China Normal University, Shanghai 200062, China; and 2Tiantong National Forest Ecosystem Observation and
Research Station, Ningbo, Zhejiang 315114, China
Abstract
Aims Tree architecture refers to the overall shape and size of the woody plants, as well as the spatial arrange-
ment of its components in response to changing light. Variation in tree architecture of overlapping species among
successional stages can be used to indicate relationships between tree architecture and light availability, because
confounding effects resulted from plant phylogenetics are excluded. Our objective was to examine how
tree architecture varies among overlapping species in different successional stages.
Methods The study sites are located in Tiantong National Forest Park (29°52′ N, 121°39′ E), Nanshan Mountain
(29°52′ N, 121°41′ E) and Beilun Forest Park (29°50′ N, 121°52′ E) in Zhejiang Province, China. We measured
tree height, crown depth and area, stem basal diameter, leaf coverage and convergence, stretch direction of branch
and crown exposure index for five overlapping species in four vertical layers among successional communities in
three sites. Linear regression analysis was conducted to examine the quantitative relationship between tree archi-
tecture and crown exposure index.
Important findings With the forest succession, crown depth and area, leaf coverage and stem basal diameter
increased gradually, but did not show significant differences between adjacent successional stages in some cases.
The proportion of dispersed leaves increased, but the proportion of clumped leaves decreased. Among four verti-
cal layers, crown exposure index decreased through forest succession. There were significant linear relationships
between crown exposure index and each of eight tree architectural traits (p < 0.001). We conclude that variability
in tree architecture among overlapping species through forest succession indicates a shifting pattern of plant func-
tional groups from pioneer species to shade-tolerant species in evergreen broad-leaved forests. Light acclimatiza-
tion is one of main factors driving variation in tree architecture.
Key words crown exposure index, evergreen broad-leaved forest, overlapping species, secondary succession,
tree architecture
612 植物生态学报 Chinese Journal of Plant Ecology 2013, 37 (7): 611–619

www.plant-ecology.com
木本植物的构型是其植株建造构件在空间上
的配置模式和形态体现, 包括高度、冠层形态、枝
条伸展方向和疏密程度、枝叶的空间搭配方式等植
物形态学特征, 是植物生态功能发挥的结构性基
础。它不但可以通过改变资源获取能力影响植物的
繁殖、生长和死亡等种群统计学特征(Enquist et al.,
1999; Kohyama et al., 2003; Poorter et al., 2003; Iida
et al., 2011), 也影响物种多样性等群落物种共存特
征(Kohyama, 1993; Enquist et al., 1999; Poorter et
al., 2008), 还影响群落结构和层片配置模式(Olson
et al., 2009; Iida et al., 2011)。
在一个森林群落内部, 光资源从林冠至地面递
减, 引起植株构型的改变(Davies & Ashton, 1999;
Wright et al., 2005; Poorter et al., 2008)。植物光获取
能力的不同可导致不同的物质分配方式, 如阳性物
种投入更多的资源给垂直生长, 最终使其有效地占
据光资源丰富的林冠层; 而当植物将较多物质分配
给与耐阴性有关的性状时, 植物枝条变得粗壮, 生
长缓慢, 从而构造了宽大的冠型, 以满足对光摄取
的要求(Westoby et al., 2002; Portter et al., 2006), 从
而分布在林下层(Thomas, 1996; Davies & Ashton,
1999; Sterck et al., 2001; Poorter et al., 2003, 2008;
Clark, 2010; Wright et al., 2010)。
同样 , 随着森林演替 , 群落垂直层片数增加
(Ashton, 1958; 昝启杰等, 2000), 可造成林冠下各
层截留和反射更多的穿透光, 使光强随着群落垂直
高度进一步锐减(Ashton, 1958)。相对于演替前期,
中后期森林林冠下同高度层(林冠层除外)光量较少
(Shukla & Ramakrishnan, 1986)。因此, 植物为获取
最大光资源量, 在垂直生长与侧向扩展间的物质营
养投入的权衡发生偏移 , 引起构型转变(Thomas,
1996; Davies & Ashton, 1999; Sterck et al., 2001;
Poorter et al., 2003, 2008; Clark, 2010; Wright et al.,
2010)。例如: 随着演替发生, 植物为适应光资源转
变, 同高度层内植物的冠幅面积、冠幅厚度和水平
枝比例增加, 叶片盖度及聚集度增大。此外, 随着
演替发生, 加剧的光资源竞争也能影响光量在植株
间的分配。除了林冠层, 演替中后期群落各层光强
均低于前期, 而种间光资源竞争高于前期, 最终导
致各群落层片间拥有一致的光资源缩减趋势。因此,
植物构型随着演替在各层片间的转变趋势也较类
同。但目前对此过程仅限于推测性解释, 相关报道
甚少。
森林演替过程中植物构型的变化既与光水资
源改变后植物的适应性有关, 也与不同植物种类固
有的形态特征有关。在此过程中, 研究演替不同阶
段共有种树木构型的变化可以剔除植物进化谱系
的影响, 明确植物构型特征与光资源供给性的关
系。基于此, 我们在浙江宁波东部相距不超过10 km
的天童、北仑和南山, 各选择1个演替序列样地(要
求每个序列内各演替阶段样地具有一致的坡度、坡
向、凹凸度等)。分别调查各样地不同群落层片内共
有种(排除遗传对构型的影响)的构型特征及冠幅曝
光指数。以期解释: (1)随着演替进行, 植物为光资
源获取最大化, 必然发生构型改变的补偿; (2)除林
冠层外, 光资源随着演替在同类层片间缩减, 同层
植物构型表现出一致的转变趋势; (3)光是引起植物
构型转变的主要因素。
1 材料和方法
1.1 研究区概况
研究地位于浙江省宁波市的天童、北仑和南
山。该区域属于典型的浙东低山丘陵, 土质为黄红
壤, 成土母质为中生代的沉积岩、部分酸性火成岩
以及石英砂岩和花岗岩的残积风化物。土层厚薄不
一, 一般在1 m以下。气候属于中亚热带湿润季风气
候, 雨量充沛, 年平均气温16.2 ℃, 平均年降水量
1 389.7 mm, 年无霜期230–240天。地带性植被为常
绿阔叶林(宋永昌和王祥荣, 1995)。
考虑到丘陵的地理分布和群落的演替类型, 在
每一演替序列内土壤、地形背景(坡向、坡度、凹凸
度和山体上分布位置)基本一致的前提下, 我们分
别在天童、南山和北仑区域选择石栎(Lithocarpus
glaber)-木荷(Schima superba)群落(S1)→木荷群落
(S2)→栲(Castanopsis fargesii)群落(S3)作为3个重复
演替序列。对于S1, 群落最大高度不超过6 m, 其下
主要可分为乔木(> 4 m)、灌木(2–4 m)和小灌木(< 2
m)层。对于S2和S3, 群落结构完整, 垂直特征明显。
依据高度可划分为小灌木(< 2 m)、灌木(2–4 m)、亚
乔木(4–8 m)和乔木(> 8 m)层。
1.2 群落调查和植物构型测量
在每个研究区域的每个演替阶段, 对于每个演
替群落类型, 设定3个20 m × 20 m的样方(灌丛S1除
外, 其面积为10 m × 10 m)。样地建立后, 全面调查
杨晓东等: 浙江天童常绿阔叶林演替阶段共有种的树木构型 613

doi: 10.3724/SP.J.1258.2013.00063
样方中所有胸径大于1 cm的木本植物个体的以下
构型特征: 距地面40 cm处基径、树高、叶下高、冠
幅长度(两个方向)、叶片聚集度、叶片盖度和枝条
伸展方向等植物构型, 以及植株的冠幅曝光指数。
各构型参数的测量计算方法如下: 基径用卷尺
测量; 冠幅长度依个体的垂直投影面积直接用皮尺
测定 ;叶下高和树高用测高仪 (Vertex-Ⅳ, Haglof,
Dalarna, Sweden)测定。冠幅面积与厚度采用公式(1)
和(2)计算。
CA = XEW · YSN (1)
CD = HH – HLH (2)
式中, CA表示冠幅面积(m2), XEW为树冠垂直投影在
东西方向上的距离(m), YSN为树冠垂直投影在南北
方向上的距离(m), CD为冠幅厚度(m), HH表示树高
(m), HLH表示叶下高(m)。
对于叶片盖度, 依据叶片在其冠幅投影面积上
的比例, 划分成10级, 级间按10%增加, 从小至大
用1–10表示(Poorter et al., 2006)。对叶片聚集度, 则
根据叶片在末梢的分布形式, 用1表示叶片聚集分
布, 2表示离散分布。对于枝条伸展方向, 共划分为3
种类型, 即: 垂直(枝条与主干的平均夹角< 30°),
记录为1; 垂直+水平(30°<枝条与主干的平均夹角
< 60°), 记录为2; 水平(枝条与主干的平均夹角>
60°), 数值记录为3 (Poorter et al., 2006)。
植物冠幅曝光指数依据Poorter等(2003, 2006)
的定义, 分5级测量, 数值1表示冠层不受光线直射;
2表示冠层受到侧面光线照射; 3表示10%–90%的冠
层受到光线照射; 4表示大于90%的冠幅层受到光线
照射; 5表示冠层全受到光线照射。为减小观测时的
人为误差, 所有测量分2组单独进行, 后用2组平均
值表示。
1.3 数据分析
依据植株高度分别筛选出3个演替序列上乔
木、亚乔木、灌木和小灌木层的共有种。为揭示共
有种构型随演替的变化, 在每一高度层片内, 统计
演替序列上各共有种的构型值, 并用单因素方差分
析对其在演替阶段上的差异进行检验(由于叶片聚
集度和枝条伸展方向是定性数据, 做单独分析)。而
当演替阶段只有2个时, 其差异采用配对t检验。
此外, 为分析植物构型随演替转化的驱动因
素, 将3个演替序列上属于同一高度层的共有种合
并, 再次采用单因素方差分析判断不同层片冠幅曝
光指数随演替的变化。最后, 采用线性回归拟合构
型和冠幅曝光指数间的关系。
2 结果
2.1 演替序列上的共有种
根据调查, 檵木(Loropetalum chinensis)、连蕊
茶(Camellia fraterna)和窄基红褐柃(Eurya rubigi-
nosa)分别为北仑、南山和天童演替序列上小灌木层
共有种。连蕊茶为所有演替序列上灌木层的共有
种。而木荷和栲分别为北仑、天童和南山演替序列
上亚乔木和乔木层的共有种。
2.2 不同高度层片上共有种构型随着演替的变化
3个演替序列上, 4个高度层片内共有种的冠幅
面积、基径、叶片盖度均随着演替增加, 但多数增
加不显著(图1–3)。如在北仑序列上, 仅有小灌木(H
< 2 m)和4 m以上乔木及亚乔木层(H > 4 m)的冠幅
面积、亚乔木层(4 m < H < 8 m)的基径和乔木层(H
> 8 m)的叶片盖度呈显著增加趋势(p < 0.05)。在南
山演替序列上, 也仅有灌木层(2 m < H < 4 m)的冠
幅面积、灌木和乔木层的基径、叶片盖度呈显著增
加趋势(p < 0.05)。在天童序列, 显著增加的也仅有
小灌木和亚乔木层的冠幅厚度, 以及乔木层的冠幅
面积、基径和叶片盖度(p < 0.05)。树高在3个演替
序列上并没有呈现出显著增加趋势(图1–3)。
随着演替进行, 4个高度层片上共有种的垂直
枝比例减小、水平枝和水平+垂直枝比例增加, 叶片
由聚集分布更多地转化成离散分布(表1, 2)。
2.3 几何构型与植物冠层曝光度的关系
依据共有种高度, 将3个演替序列上属于同高
度层植物合并, 统计冠幅曝光指数随演替的变化,
结果发现, 小灌木、灌木、亚乔木和乔木层共有种
的平均冠幅曝光指数都没有显著减小(p > 0.05) (表
3)。进一步将3个演替序列上所有共有种的冠幅曝光
指数和树木构型性状进行线性回归, 发现两者间均
具有较显著的回归关系(图4)。
3 讨论
树木构型是植物在形态上对环境的适应表现,
主要取决于自身遗传和生长过程中对环境的适应
614 植物生态学报 Chinese Journal of Plant Ecology 2013, 37 (7): 611–619

www.plant-ecology.com


图1 北仑演替序列上共有种构型随着演替的变化。各线段上不同字母表示演替阶段间具有显著差异, S1、S2和S3分别为演
替前、中和后期。
Fig. 1 Variation in tree architectures of overlapping species among successional stages in Beilun site. Different letters in each line
indicate significant differences among successional stages. S1, S2 and S3 represent early, middle and later successional stage, respec-
tively.




图2 南山演替序列上共有种构型随着演替的变化。各线段上不同字母表示演替阶段间具有显著差异, S1、S2和S3分别为演
替的前、中和后期。
Fig. 2 Variation in tree architectures of overlapping species among successional stages in Nanshan site. Different letters in each
line indicate significant differences among successional stages. S1, S2 and S3 represent early, middle and later successional stage,
respectively.


两方面。遗传上, 种间差异影响植物空间分布方式,
如乔灌木在群落内随着高度分层。同样, 环境胁迫
也影响植物构型, 如光胁迫从林冠至下木层持续增
加, 使雨林中下层耐阴植物呈现出更分散的冠幅,
出现更多比例的水平向分枝(Thomas, 1996; Davies
& Ashton, 1999; Sterck et al., 2001; Poorter et al.,
2003, 2008; Clark, 2010; Wright et al., 2010)。相反,
为最大量获取资源, 植物也可改变构型以补偿遗传
和环境限制。以往的研究虽然涉及树冠面积、干材
密度等随着群落发育时间增加, 叶面积导水率减
小, 从而适应光、水资源变化的少许报道(Enquist et
al., 1999; Muller-Landau, 2004; King et al., 2005;
Poorter et al., 2008, 2010; McCulloh et al., 2011), 但
这些研究基本上无法排除遗传要素的影响。
共有种是指在群落演替各阶段均存在, 或存在
于几个演替阶段的物种, 遗传特性一致。随着常绿
杨晓东等: 浙江天童常绿阔叶林演替阶段共有种的树木构型 615

doi: 10.3724/SP.J.1258.2013.00063
616 植物生态学报 Chinese Journal of Plant Ecology 2013, 37 (7): 611–619

www.plant-ecology.com



图3 天童演替序列上共有种构型随着演替的变化。各线段上不同字母表示演替阶段间的植物构型具有显著差异, S1、S2和
S3分别为演替的前、中和后期。
Fig. 3 Variation in tree architectures of overlapping species among successional stages in Tiantong site. Different letters in each
line indicate significant differences among successional stages. S1, S2 and S3 represent early, middle and later successional stage,
respectively.



表3 各演替阶段群落4个垂直层的冠层曝光度指数(平均值±标准误差)
Table 3 Crown exposure index in four vertical layers among successional communities (mean ± SE)
演替阶段
Succession stage
小灌木层
Shrublet layer
(tree height < 2 m)
灌木层
Shrub layer
(2 m < tree height < 4 m)
亚乔木层
Subtree layer
(4 m < tree height < 8 m)
乔木层
Tree layer
(tree height > 8 m)
前期 Early 2.02 ± 0.76A 2.64 ± 0.85A 4.75 ± 0.41A –
中期 Middle 1.90 ± 0.62A 2.56 ± 0.86A 4.67 ± 0.58A 4.86 ± 0.42A
后期 Later 1.81 ± 0.62A 2.51 ± 0.95A 4.69 ± 0.46A 4.84 ± 0.35A
同一列中不同字母表示差异显著( p < 0.05)。
Different letters within the same column indicate significant differences at p < 0.05.





图4 冠幅曝光指数和植物构型间的线性回归。
Fig. 4 Linear regression of crown exposure (CEI) against tree height, crown depth and area, leaf coverage, and stem basal diameter.


杨晓东等: 浙江天童常绿阔叶林演替阶段共有种的树木构型 617

doi: 10.3724/SP.J.1258.2013.00063
阔叶林演替进行, 土壤中N、P含量, 土壤容重, 有
机质等在演替各阶段存在显著性差异(Yan et al.,
2006, 2009; 阎恩荣等, 2008)。因此, 共有种可改变
构型以最大获取环境资源。在本研究中, 木荷和连
蕊茶等共有种的构型随着演替进行均发生转变, 反
映了群落演替上的环境改变信息。
此外 , 随着森林演替 , 群落层片数量增加
(Ashton, 1958), 造成林冠下各层截留和反射更多的
穿透光 , 光强随着群落垂直高度由上至下锐减
(Horn, 1971; Givnish, 1988)。相对于演替前期, 中后
期群落林冠下同高度层的光量较少(Horn, 1971;
Givnish, 1988), 且中后期群落各层光强均低于前
期。即: 群落在层片间存在一致的光资源缩减趋势。
加上种间光资源竞争也随着演替在同高度层一致
增加(Shukla & Ramakirshnan, 1986)。因而, 为适应
光资源及种间竞争的同向转变, 植物构型在层片间
出现与演替一致的变化趋势。在本研究中, 随着演
替进行, 小灌木、灌木、亚乔木和乔木层(H > 8 m)
共有种的冠幅厚度和面积、叶片盖度、基径均增加
(图1–3)。而垂向枝数量降低、水平枝和水平+垂向
枝数量增加, 叶片由聚集分布转变为分散分布(表1,
2)。
对于林冠层, 随着森林演替, 各阶段光辐射量
差异不大, 但随着演替进行加剧的种间资源竞争影
响植物的光资源获取能力(Bazzaz & Pickett, 1980;
王博轶和冯玉龙, 2005; 刘长成等, 2011), 从而造成
植物构型改变。本研究中, 除树高之外, 其余构型
特征在演替上也表现出和下木层一致的趋势(图
2–4)。
树高是植物获取光资源最重要的构型补偿方
式之一(Kohyama et al., 2003; Poorter et al., 2003,
2008; Clark, 2010; Iida et al., 2011), 它和植物冠幅
曝光指数显著相关(King, 1996; Sterck et al., 2001;
Poorter et al., 2003)。但在本研究的3个演替序列上,
它并没有随着群落演替呈现出一致的变化趋势, 这
可能是由于在3个演替序列上, 将群落分4个高度层
各自分析树高和演替的关系, 无形中标准化了植物
高度, 再加上由于共有种数量较少带来的统计误
差, 使结果无法如实地反映出植物高度随演替的变
化。因此, 我们依据垂直高度将所有属于同高度层
的共有种合并, 重新统计后发现, 小灌木层演替前
期(S1)共有种的平均高度为1.42 m, 没有显著小于
中后期(S2和S3)的1.43和1.47 m (p > 0.05)。同样, 灌
木层(S1 < S2 < S3, 2.34 < 2.84 < 2.85 m)、亚乔木(S1
< S2 < S3, 4.67 < 5.10 < 5.11 m)和乔木层(演替前期
树高均低于8 m, 无该层; 对于中后期, S2 < S3,
12.80 < 13.08 m)的植物平均高度也随着演替进行增
加不显著(p > 0.05)。
光资源获取能力直接影响植物潜在高度、冠幅
面积和物种干材密度等 , 并诱导树木构型改变
(Thomas, 1996; Poorter et al., 2003, 2008; Clark,
2010; Wright et al., 2010)。随着森林演替, 增加的层
片数量和加剧的种间光竞争使光资源在同一高度
上递减, 并在森林各垂直层间变化一致(表3)。因此,
随着群落演替, 为获取更多光资源量, 植物构型将
沿一个方向持续改变(图1–3)。本研究中, 共有种的
冠幅曝光指数和构型性状间具有较好的线性拟合
关系(图4), 说明演替过程中的光获取压力影响着植
物构型的改变, 驱动着群落结构的变化。
次生常绿阔叶林演替中, 光资源获取压力驱动
着植物构型的改变, 但水分运输、机械支持等生理
过程也会影响植物构型的可塑性过程。如植物水分
运输能力可显著限制树高(Ryan & Yoder, 1977;
Koch et al., 2004; Niklas & Spatz, 2004; Woodruff et
al., 2004; England & Attiwill, 2006; Steppe et al.,
2012), 而植物也可采取增大叶面积, 减小枝夹角等
构型可塑过程补偿该限制。此外, 群落水分利用效
率随着演替进行日益提高, 后期物种需具有更细的
导管直径和更高的干材密度, 才能补偿树高和树冠
等变化带来的机械风险(Sterck et al., 2001; Ko-
hyama et al., 2003; Poorter et al., 2003; King et al.,
2005; Price & Enquist, 2007; Olson et al., 2009; An-
ten & Schieving, 2010; Savage et al., 2010; McCulloh
et al., 2012)。因此, 植物机械支持和水分运输也能
影响到植物构型的改变。但其对演替中植物构型转
变的作用, 还有待进一步研究。
基金项目 国家自然科学基金(31270475和31070-
383)。
致谢 感谢周武、仲强和郭明等收集野外数据。
参考文献
Anten NPR, Schieving F (2010). The role of wood mass den-
sity and mechanical constraints in the economy of tree ar-
chitecture. The American Naturalist, 175, 250–260.
Ashton PS (1958). Light intensity measurements in rain forest
618 植物生态学报 Chinese Journal of Plant Ecology 2013, 37 (7): 611–619

www.plant-ecology.com
near Santarem, Brazil. Journal of Ecology, 45, 65–70.
Bazzaz FA, Pickett STA (1980). Physiological ecology of
tropical succession: a comparative review. Annual Review
of Ecology and Systematics, 11, 287–310.
Clark JS (2010). Individuals and the variation needed for high
species diversity in forest trees. Science, 327, 1129–1132.
Davies SJ, Ashton PS (1999). Phenology and fecundity in 11
sympatric pioneer species of Macaranga (Euphorbiaceae)
in Borneo. American Journal of Botany, 86, 1786–1795.
England JR, Attiwill PM (2006). Changes in leaf morphology
and anatomy with tree age and height in the broadleaved
evergreen species, Eucalyptus regnans F. Muell. Trees,
20, 79–90.
Enquist BJ, West GB, Charnov EL, Brown JH (1999). Al-
lometric scaling of production and life-history variation in
vascular plants. Nature, 401, 907–911.
Givnish TJ (1988). Adaptation to sun and shade: a whole-plant
perspective. Australian Journal of Plant Physiology, 15,
63–92.
Horn HS (1971). The Adaptive Geometry of Trees. Princeton
University Press, Princeton.
Iida Y, Kohyama TS, Kobo T, Kassim AR, Poorter L, Sterck F,
Potts MD (2011). Tree architecture and life-history strate-
gies across 200 co-occurring tropical tree species. Func-
tional Ecology, 25, 1260–1268.
Liu CC, Liu YG, Guo K (2011). Ecophysiological adaptations
to drought stress of seedlings of four plant species with
different growth forms in karst habitats. Chinese Journal
of Plant Ecology, 35, 1070–1082. (in Chinese with Eng-
lish abstract) [刘长成, 刘玉国, 郭柯 (2011). 四种不同
生活型植物幼苗对喀斯特生境干旱的生理生态适应.
植物生态学报, 35, 1070–1082.]
King DA (1996). Allometry and life history of tropical trees.
Journal of Tropical Ecology, 12, 25–44.
King DA, Davies SJ, Nur Supardi MN, Tan S (2005). Tree
growth is related to light interception and wood density in
two mixed dipterocarp forests of Malaysia. Functional
Ecology, 19, 445–453.
Kohyama T (1993). Size-structured tree populations in
gap-dynamic forest―the forest architecture hypothesis for
the stable coexistence of species. Journal of Ecology, 81,
131–143.
Kohyama T, Suzuki E, Partomihardjo T, Yamada T, Kubo T
(2003). Tree species differentiation in growth, recruitment
and allometry in relation to maximum height in a Bornean
mixed dipterocarp forest. Journal of Ecology, 91,
797–806.
Koch GW, Sillett SC, Jennings GM, Davis SD (2004). The
limits to tree height. Nature, 428, 851–854.
McCulloh KA, Johnson DM, Meinzer FC, Voelker SL, La-
chenbruch H, Domec JC (2012). Hydraulic architecture of
two species differing in wood density: opposing strategies
in co-occurring tropical pioneer trees. Plant, Cell & Envi-
ronment, 35, 116–125.
McCulloh KA, Meinzer FC, Sperry JS, Lachenbruch B,
Voelker SL, Woodruff DR, Domec JC (2011). Compara-
tive hydraulic architecture of tropical tree species repre-
senting a range of successional stages and wood density.
Oecologia, 167, 27–37.
Muller-Landau HC (2004). Interspecific and inter-site variation
in wood specific gravity of tropical trees. Biotropica, 36,
20–32.
Niklas KJ, Spatz HC (2004). Growth and hydraulic (not me-
chanical) constraints govern the scaling of tree height and
mass. Proceedings of the National Academy of Sciences of
the United States of America, 101, 15661–15663.
Olson ME, Aguirre-Hernández R, Rosell JA (2009). Universal
foliage-stem scaling across environments and species in
dicot trees: plasticity, biomechanics and Corner’s rules.
Ecology Letters, 12, 210–219.
Poorter L, Bongers F, Sterck FJ, Wöll H (2003). Architecture
of 53 rain forest tree species differing in adult stature and
shade tolerance. Ecology, 84, 602–608.
Poorter L, Bongers L, Bongers F (2006). Architecture of 54
moist-forest tree species: traits, trade-offs, and functional
groups. Ecology, 87, 1289–1301.
Poorter L, McDonald I, Alarcón A, Fichtler E, Licona JC,
Peña-Claros M, Sterck F, Villegas Z, Sass-Klaassen U
(2010). The importance of wood traits and hydraulic con-
ductance for the performance and life history strategies of
42 rainforest tree species. New Phytologist, 185, 481–492.
Poorter L, Wright SJ, Paz H, Ackerly DD, Condit R, Ibarra-
Manriquez G, Harms KE, Licona JC, Martínez-Ramos M,
Mazer SJ, Muller-Landau HC, Peña-Claros M, Webb CO,
Wright IJ (2008). Are functional traits good predictors of
demographic rates? Evidence from five neotropical for-
ests. Ecology, 89, 1908–1920.
Price CA, Enquist BJ (2007). Scaling mass and morphology in
leaves: an extension of the WBE model. Ecology, 88,
1132–1141.
Ryan MG, Yoder BJ (1997). Hydraulic limits to tree height and
tree growth. BioScience, 47, 235–242.
Savage VM, Bentley LP, Enquist BJ, Sperry JS, Smith DD,
Reich PB, von Allmen EI (2010). Hydraulic trade-offs and
space filling enable better predictions of vascular structure
and function in plants. Proceedings of the National
Academy of Sciences of the United States of America, 107,
22722–22727.
Shukla RP, Ramakrishnan PS (1986). Architecture and growth
strategies of tropical trees in relation to successional
status. Journal of Ecology, 74, 33–46.
Song YC, Wang XR (1995). Vegetation and Flora of Tiantong
杨晓东等: 浙江天童常绿阔叶林演替阶段共有种的树木构型 619

doi: 10.3724/SP.J.1258.2013.00063
National Forest Park in Zhejiang Province. Shanghai
Scientific and Technical Document Publishing House,
Shanghai. 1–16. [宋永昌, 王祥荣 (1995). 浙江天童国
家森林公园的植被和区系. 上海科学技术文献出版社,
上海. 1–16.]
Steppe K, Cochard H, Lacointe A, Améglio T (2012). Could
rapid diameter changes be facilitated by a variable hydrau-
lic conductance? Plant, Cell & Environment, 35, 150–157.
Sterck FJ, Bongers F, Newbery DM (2001). Tree architecture
in a Bornean lowland rain forest: intraspecific and inter-
specific patterns. Plant Ecology, 153, 279–292.
Thomas SC (1996). Asymptotic height as a predictor of growth
and allometric characteristics in Malaysian rain forest
trees. American Journal of Botany, 83, 556–566.
Wang BY, Feng YL (2005). Effects of growth light intensities
on photosynthesis in seedlings of two tropical rain forest
species. Acta Ecologica Sinica, 25, 23–30. (in Chinese
with English abstract) [王博轶, 冯玉龙 (2005). 生长环
境光强对两种热带雨林树种幼苗光合作用的影响. 生
态学报, 25, 23–30.]
Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002).
Plant ecological strategies: some leading dimensions of
variation between species. Annual Review of Ecology and
Systematics, 33, 125–159.
Woodruff DR, Bond BJ, Meinzer FC (2004). Does turgor limit
growth in tall trees? Plant, Cell & Environment, 27,
229–236.
Wright SJ, Jaramillo MA, Pavon J, Condit R, Hubbell SP, Fos-
ter RB (2005). Reproductive size thresholds in tropical
trees: variation among individuals, species and forests.
Journal of Tropical Ecology, 21, 307–315.
Wright SJ, Kitajima K, Kraft NJ, Reich PB, Wright IJ, Bunker
DE, Condit R, Dalling JW, Davies SJ, Díaz S, Engelbrecht
BMJ, Harms KE, Hubbell SP, Marks CO, Ruiz-Jaen MC,
Salvador CM, Zanne AE (2010). Functional traits and the
growth-mortality trade-off in tropical trees. Ecology, 91,
3664–3674.
Yan ER, Wang XH, Guo M, Zhong Q, Zhou W, Li YF (2009).
Temporal patterns of net soil N mineralization and nitrifi-
cation through secondary succession in the subtropical
forests of eastern China. Plant and Soil, 320, 181–194.
Yan ER, Wang XH, Huang JJ (2006). Shifts in plant nutrient
use strategies under secondary forest succession. Plant
and Soil, 289, 187–197.
Yan ER, Wang XH, Zhou W (2008). N:P stoichiometry in
secondary succession in evergreen broad-leaved forest,
Tiantong, East China. Journal of Plant Ecology (Chinese
Version), 32, 13–22. (in Chinese with English abstract)
[阎恩荣, 王希华, 周武 (2008). 天童常绿阔叶林演替
系列植物群落的N:P化学计量特征. 植物生态学报, 32,
13–22.]
Zan QJ, Li MG, Wang BS, Zhou XY (2000). Dynamics of
community structure in successional process of needle and
broad-leaved mixed forest in Heishiding of Guangdong.
Chinese Journal of Applied Ecology, 11, 1–4. (in Chinese
with English abstract) [昝启杰, 李鸣光, 王伯荪, 周先
叶 (2000). 黑石顶针阔叶混交林演替过程中群落结构
动态. 应用生态学报, 11, 1–4.]

责任编委: 常 杰 责任编辑: 王 葳