免费文献传递   相关文献

Ecophysiological characteristics of leaves and fine roots in dominant tree species in a subalpine coniferous forest of western Sichuan during seasonal frozen soil period

川西亚高山季节性冻土期针叶林主要树种叶片和细根的生态生理特征


川西亚高山森林存在明显的季节性冻土现象, 该地区的土壤经历着初冬冻融、深冬冻结、早春冻融等过程, 同时, 该区域冬季受气候变化的影响强烈。为了全面地认识亚高山森林的生态过程, 该研究以川西亚高山针叶林两种主要树种——岷江冷杉(Abies fargesii var. faxoniana)和云杉(Picea asperata)为材料, 研究其叶片及细根内丙二醛含量、渗透调节物质的含量、组织含水量、过氧化物酶活性以及硝酸还原酶活性在季节性冻土期的变化, 同时还比较了冻土期和冻融期细根的比根长, 比表面积, 直径以及组织密度的变化。研究结果显示: 在季节性冻土期, 土壤温度昼夜波动幅度小于空气温度波动幅度, 细根却表现出更强的过氧化物酶活性以及更高的渗透调节物质含量, 说明细根较叶片对季节性冻土更为敏感。与冻结期相比, 冻融期土壤温度、空气温度以及空气相对湿度昼夜波动幅度增加, 促使云杉叶片可溶性糖含量以及两针叶树种叶片内过氧化物酶活性、脯氨酸含量显著增加, 而细根的组织含水量显著降低, 脯氨酸、可溶性蛋白质及可溶性糖含量均显著增加, 表明冻融期对两针叶树种的影响较冻结期更为强烈。岷江冷杉和云杉的过氧化物酶活性及渗透调节物质含量具有相同的变化趋势, 但叶片和细根的膜脂过氧化程度及酶活性变化并不一致, 就岷江冷杉而言, 细根的丙二醛含量显著增加, 而叶片、细根的硝酸还原酶活性均显著降低, 云杉仅叶片的丙二醛含量发生变化, 且显著降低, 说明云杉更能忍耐冻融循环造成的胁迫。研究还发现细根形态在季节性冻土期无显著变化。

Aims There is an obvious seasonal freezing and thawing process (early winter freezing-thawing, late winter freezing, and early spring freezing-thawing) in the subalpine coniferous forests, where there is also a strong effect of climate change in winter. Hence, global warming will likely affect the seasonal freezing and thawing process in this area. Our objective was to determine the ecophysiological characteristics of leaves and fine roots in dominant tree species in a subalpine coniferous forest of western Sichuan during seasonal frozen soil period, in order to improve our understanding of the ecological processes in subalpine coniferous forests.
Methods We analyzed the changes in malondialdehyde (MDA) content, osmoregulation substance content, tissue water content, peroxidase (POD) activity, and nitrate reductase (NR) activity in leaves and fine roots of Picea asperata and Abies fargesii var. faxoniana seedlings, and measured specific root length, specific surface area, diameter and tissue density of fine roots over the course of the seasonal frozen soil period.
Important findings The POD activity and the contents of proline and soluble proteins in leaves were significantly lower than in fine roots, despite that the daily fluctuations of soil temperature was less than that of air temperature during the seasonal frozen soil period, suggesting that fine roots were more susceptible to the seasonal frozen soil than leaves. In comparison with the soil freezing period, a greater daily fluctuations of air and soil temperature resulted in an increase in the soluble sugar content in leaves of P. asperata and the POD activity and proline content in leaves of the two species during the soil freezing-thawing period, whereas the tissue water content was significantly decreased and the contents of proline, soluble proteins and soluble sugars were significantly increased in fine roots, indicating that the effects of soil freezing-thawing on plants were stronger than soil freezing. In soil freezing-thawing period, the POD activity and osmolyte contents were significantly increased in both A. fargesii var. faxoniana and P. asperata, but changes in the MDA content and the NR activity in the fine roots and leaves were not consistent in the two species. In A. fargesii var. faxoniana, the MDA content was significantly increased in fine roots and the NR activity was significantly reduced in both leaves and fine roots. A change in the MDA content was only observed in leaves of P. asperata, which was significantly decreased, indicating that P.asperata had more tolerance to soil freeze-thaw cycles. Moreover, no significant changes in fine root morphology and growth were observed during the seasonal frozen soil period.


全 文 :植物生态学报 2014, 38 (4): 343–354 doi: 10.3724/SP.J.1258.2014.00031
Chinese Journal of Plant Ecology http://www.plant-ecology.com
——————————————————
收稿日期Received: 2013-11-04 接受日期Accepted: 2014-02-07
* 通讯作者Author for correspondence (E-mail: yincy@cib.ac.cn)
川西亚高山季节性冻土期针叶林主要树种叶片和
细根的生态生理特征
肖群英1,2 尹春英1* 濮晓珍1,2 乔明锋1,2 刘 庆1
1中国科学院成都生物研究所, 中国科学院山地生态恢复与生物资源利用重点实验室, 生态恢复与生物多样性保育四川省重点实验室, 成都 610041;
2中国科学院大学, 北京 100049
摘 要 川西亚高山森林存在明显的季节性冻土现象, 该地区的土壤经历着初冬冻融、深冬冻结、早春冻融等过程, 同时,
该区域冬季受气候变化的影响强烈。为了全面地认识亚高山森林的生态过程, 该研究以川西亚高山针叶林两种主要树种——
岷江冷杉(Abies fargesii var. faxoniana)和云杉(Picea asperata)为材料, 研究其叶片及细根内丙二醛含量、渗透调节物质的含
量、组织含水量、过氧化物酶活性以及硝酸还原酶活性在季节性冻土期的变化, 同时还比较了冻土期和冻融期细根的比根长,
比表面积, 直径以及组织密度的变化。研究结果显示: 在季节性冻土期, 土壤温度昼夜波动幅度小于空气温度波动幅度, 细根
却表现出更强的过氧化物酶活性以及更高的渗透调节物质含量, 说明细根较叶片对季节性冻土更为敏感。与冻结期相比, 冻
融期土壤温度、空气温度以及空气相对湿度昼夜波动幅度增加, 促使云杉叶片可溶性糖含量以及两针叶树种叶片内过氧化物
酶活性、脯氨酸含量显著增加, 而细根的组织含水量显著降低, 脯氨酸、可溶性蛋白质及可溶性糖含量均显著增加, 表明冻
融期对两针叶树种的影响较冻结期更为强烈。岷江冷杉和云杉的过氧化物酶活性及渗透调节物质含量具有相同的变化趋势,
但叶片和细根的膜脂过氧化程度及酶活性变化并不一致, 就岷江冷杉而言, 细根的丙二醛含量显著增加, 而叶片、细根的硝
酸还原酶活性均显著降低, 云杉仅叶片的丙二醛含量发生变化, 且显著降低, 说明云杉更能忍耐冻融循环造成的胁迫。研究
还发现细根形态在季节性冻土期无显著变化。
关键词 细根模块, 叶片, 膜脂过氧化, 渗透调节, 过氧化物酶, 季节性冻融
Ecophysiological characteristics of leaves and fine roots in dominant tree species in a subal-
pine coniferous forest of western Sichuan during seasonal frozen soil period
XIAO Qun-Ying1,2, YIN Chun-Ying1*, PU Xiao-Zhen1,2, QIAO Ming-Feng1,2, and LIU Qing1
1Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of
Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; and 2University of Chinese Academy of Sciences,
Beijing 100049, China
Abstract
Aims There is an obvious seasonal freezing and thawing process (early winter freezing-thawing, late winter
freezing, and early spring freezing-thawing) in the subalpine coniferous forests, where there is also a strong effect
of climate change in winter. Hence, global warming will likely affect the seasonal freezing and thawing process in
this area. Our objective was to determine the ecophysiological characteristics of leaves and fine roots in dominant
tree species in a subalpine coniferous forest of western Sichuan during seasonal frozen soil period, in order to im-
prove our understanding of the ecological processes in subalpine coniferous forests.
Methods We analyzed the changes in malondialdehyde (MDA) content, osmoregulation substance content, tis-
sue water content, peroxidase (POD) activity, and nitrate reductase (NR) activity in leaves and fine roots of Picea
asperata and Abies fargesii var. faxoniana seedlings, and measured specific root length, specific surface area,
diameter and tissue density of fine roots over the course of the seasonal frozen soil period.
Important findings The POD activity and the contents of proline and soluble proteins in leaves were signifi-
cantly lower than in fine roots, despite that the daily fluctuations of soil temperature was less than that of air tem-
perature during the seasonal frozen soil period, suggesting that fine roots were more susceptible to the seasonal
frozen soil than leaves. In comparison with the soil freezing period, a greater daily fluctuations of air and soil
temperature resulted in an increase in the soluble sugar content in leaves of P. asperata and the POD activity and
344 植物生态学报 Chinese Journal of Plant Ecology 2014, 38 (4): 343–354

www.plant-ecology.com
proline content in leaves of the two species during the soil freezing-thawing period, whereas the tissue water con-
tent was significantly decreased and the contents of proline, soluble proteins and soluble sugars were significantly
increased in fine roots, indicating that the effects of soil freezing-thawing on plants were stronger than soil freez-
ing. In soil freezing-thawing period, the POD activity and osmolyte contents were significantly increased in both
A. fargesii var. faxoniana and P. asperata, but changes in the MDA content and the NR activity in the fine roots
and leaves were not consistent in the two species. In A. fargesii var. faxoniana, the MDA content was significantly
increased in fine roots and the NR activity was significantly reduced in both leaves and fine roots. A change in the
MDA content was only observed in leaves of P. asperata, which was significantly decreased, indicating that P.
asperata had more tolerance to soil freeze-thaw cycles. Moreover, no significant changes in fine root morphology
and growth were observed during the seasonal frozen soil period.
Key words fine root module, leaf, membrane lipid peroxidation, osmotic adjust, peroxidase, seasonal freezing
and thawing

北半球季节性冻土最大面积约为5 500亿hm2
(占北半球总陆地面积的55%)。季节性冻土面积之大
说明了冬季过程的空间重要性(Zhang et al., 2003)。
迄今为止的研究多关注植物生长季的生态学过程
(Rosa et al., 1996; Fernàndez-Martínez et al., 2013),
但冬季过程对植物的生长影响巨大(Nielsen et al.,
2001)。但由于受冬季寒冷、雪被覆盖、土壤冻结以
及采样观测困难等影响, 国内外关于冬季生态过程
的研究进展缓慢(Campbell et al., 2005)。
季节性土壤冻融是高纬度、高海拔、高山和亚
高山地区最重要的一种环境变化(Joseph & Henry,
2008)。高山和亚高山地区的冬季(非生长季节)通常
存在明显的初冬冻融、深冬冻结和早春冻融过程
(Olsson et al., 2003), 但少有研究关注寒冷季节的这
3个过程。全球气候变化已是不争的事实(IPCC,
2007)。高纬度地区冬季受气候变化的影响更加强烈
(Kreyling, 2010)。已有研究证实全球变暖影响着寒
冷地区以及高海拔区域的土壤冻结强度和冻融循环
格局(Groffman et al., 2001a; Henry, 2008; Kreyling
& Henry, 2011)。土壤冻融对生态系统有着不可忽视
的影响, 研究表明, 土壤冻融循环频率的改变将导
致植物物种组成及植物地上生产力的改变(Joseph
& Henry, 2008; Kreyling et al., 2008), 而土壤冻结强
度的增加会损伤树木根系(Tierney et al., 2001), 最
终导致树木死亡(Schaberg et al., 2008); 另外, 土壤
冻融可增加土壤中C、N、P的淋滤(Fitzhugh et al.,
2001; Haei et al., 2010), 以及土壤微量气体的释放
(Matzner & Borken, 2008), 进而影响生态系统功能
(Schimel & Clein, 1996; Kreyling, 2010)。因此, 如果
缺乏对冬季生态过程的了解, 将无法理解高寒森林
非生长季节与生长季节的生态联系, 更难以预测气
候变暖对该生态系统的影响(Campbell et al., 2005)。
川西亚高山森林生态系统地处青藏高原东缘,
生态环境脆弱, 对气候变化反应十分敏感, 是研究
全球变化对森林生态系统影响的重要森林类型(王
开运, 2004)。川西亚高山森林土壤冬季存在明显的
冻融、冻结过程(Wu et al., 2010), 为研究森林冬季
生态过程及其对环境变化的响应提供了理想的天然
实验室。迄今有关川西地区冬季过程的研究多关注
森林凋落物分解、土壤生物群落结构和多样性及养
分特征等(Wu et al., 2010; Tan et al., 2011), 未见植
物生理生态过程方面的研究。此外, 关于该区植物
的研究多集中于地上部分(Zhao & Liu, 2012), 而对
植物地上部分与地下部分的关联研究相对较少。因
此, 本文以川西亚高山针叶林的优势树种岷江冷杉
(Abies fargesii var. faxoniana)和云杉(Picea asperata)
为研究对象, 拟通过对土壤冻结期和冻融期两树种
地上部分(叶片)和地下部分(细根)的抗氧化酶活性、
渗透调节物含量、生理活性以及根系形态变化的对
比分析, 探讨其幼苗地上部分和地下部分对冬季土
壤冻融的响应, 以深入认识亚高山地区冬季木本植
物的生态生理过程。
1 材料和方法
1.1 研究地概况
研究地点中国科学院茂县生态定位站(103.90°
E, 31.70° N, 海拔1 826 m), 位于四川省阿坝州茂县
凤仪镇, 地处青藏高原东缘横断山系北段, 是长江
上游生态环境十分脆弱的高山峡谷区的典型代表。
该区年降水量、年蒸发量和年平均气温分别为919.5
肖群英等: 川西亚高山季节性冻土期针叶林主要树种叶片和细根的生态生理特征 345

doi: 10.3724/SP.J.1258.2014.00031
mm、795.8 mm和9.3 ℃, 年无霜期200天, 属温带亚
高山季风气候。该区域的植物经常遭受干旱、贫瘠、
低温、土壤冻融等环境胁迫。植被属针阔叶落叶常
绿混交林。其中, 岷江冷杉、云杉是川西亚高山森
林优势种。
1.2 试验设计
野外试验样地布置在茂县生态站观测场外的
开阔平地。为避免试验样地内原位土壤不均一给实
验结果带来影响, 我们用森林土壤置换试验样地的
原位土壤。具体实施方法是: 先将试验样地内0–40
cm的土层移除, 再从茂县生态站附近的针叶林挖取
表层土, 将其过筛混匀后填入试验样地40 cm的土
坑中。本试验以4年生岷江冷杉、云杉幼苗为研究对
象。基于幼苗的基径和高度, 选择大小一致、健壮、
无病虫害的幼苗, 于2010年5月, 按照株距30 cm、行
距26 cm, 移栽到设置的试验样地内。共设置5对2 m
× 2 m的小区, 分别是5个云杉小区和5个岷江冷杉
小区。试验期间, 不进行任何其他处理, 定期清除样
地内新生的杂草, 浇水等管理措施一致。
1.3 土壤温度、空气温度和空气湿度的监测
2012年11月中旬, 用DS1921G纽扣温度计(DS-
1921G-F5#, Maxim/Dallas Semiconductor, Sunny-
vale, USA)和DS1923G纽扣湿度计(DS1923G-F5#,
Maxim/Dallas Semiconductor, Sunnyvale, USA)进行
原位连续监测, 每0.5 h记录一次数据。本文所列数
据为监测样地小区白天最高(14:00时)和夜间最低
(5:00时)气温、土壤(–5 cm)温度、地表(0 cm)温度以
及空气相对湿度。温度监测期间, 土壤温度连续3天
出现低于0 ℃的时期定义为土壤冻结开始, 随后土
壤温度连续3天出现高于0 ℃的时期定义为土壤冻
融开始(Jones, 2001)。
1.4 样品采集与指标测定
于2012–2013年季节性冻土期间进行植物样品
采集。据茂县生态站气候长期监测, 研究区域内森
林土壤冬季具有显著的冻结和冻融过程, 季节性冻
土期通常从11月中旬持续到翌年3月中旬, 可将其
分为3个阶段: 11月中旬–12月中旬(初冻期, 土壤温
度开始低于0 ℃到持续低于0 ℃); 12月下旬到翌年
1月下旬(冻结期, 土壤温度持续低于0 ℃, 土壤被
雪被覆盖开始进入完全冻结阶段); 翌年2月上旬到
3月中旬(冻融期, 土壤温度开始高于0 ℃到持续高
于0 ℃, 一般是夜晚冻结和白天解冻交替进行, 但
冻融交替仅发生在土壤表层)。具体的采样时间如
下: 第一批样品采集于2013年1月15日(冻结期), 第
二批样品采集于2013年3月8日(冻融期)。两批样品
的采集方法一致。取样时, 分别从每个小区随机选
取3株幼苗, 采用挖掘法获取整株幼苗。将同一小区
内3株幼苗的叶片或细根进行混合作为1个重复, 每
个物种共15株幼苗、5个重复, 用于形态和生理观
测。挖掘的幼苗先采用直尺测量株高, 游标卡尺法
测量基径, 得知两次取样时岷江冷杉和云杉的平均
株高、基径分别为31 cm、11.82 mm和70 cm、14.85
mm。随后将其从根茎处切断, 将枝叶与茎分离, 枝
叶直接放入写好标签的自封袋中, 而根系去除附着
的土块后, 放入自来水中漂洗干净, 装进自封袋,
迅速将各部分样品转入放有冰袋的冰盒(< 4 ℃)中
临时保存(常文静和郭大立, 2008)。将样品带回实验
室后, 将枝叶置于放有冰袋的托盘中, 采摘整株树
苗的叶片。采摘的叶片和所有的根系均放入4 ℃的
去离子水中漂洗两次, 漂洗后的样品置于4 ℃冰箱
中保存。本研究中根系样品只考虑细根, 因此所有
的根系样品在各指标测定前, 按照根序分级原理
(Fitter, 1982; Pregitzer et al., 2002), 以及Xia等
(2010)的短命吸收根模块概念, 剪取每株树苗根系
完整的前五级根系模块作为细根样品, 用于各指标
测定。所有鲜样的生理指标测定3天完成, 样品测定
时的温度用冰袋维持在4 ℃左右。
1.4.1 根系形态指标的测定
将各树种每个重复的细根样品置于扫描仪
(Epson Expression 10000XL, Epson, Nagano Prefec-
ture, Japan)中获取根系形态图像, 利用专业根系分
析系统WinRHIZO (Regent Instruments, Sainte Foy,
Québec, Canada)分析细根的直径、根长、根表面积
以及根体积等形态学指标。扫描后的细根放在70 ℃
的烘箱中烘至恒重, 最后称量, 计算比根长、组织密
度以及比表面积。
1.4.2 叶片和细根生理生化指标的测定
丙二醛(MDA)含量参照Hodges等(1999)的方法
测定; 游离脯氨酸的测定采用Bates等(1973)的方法;
可溶性蛋白质的测定采用考马斯亮蓝G-250法
(Bradford, 1976); 过氧化物酶 (POD)测定参照
Castillo等(1984)的方法; 硝酸还原酶活性参照张志
良和瞿伟菁(2003)的方法测定。用烘干法测组织含
水量; 烘干样品粉碎、过筛(80目)后用于可溶性糖含
346 植物生态学报 Chinese Journal of Plant Ecology 2014, 38 (4): 343–354

www.plant-ecology.com
量测定, 参照Hansen和Møller (1975)的方法。
1.5 统计分析
所有数据经Excel 2003整理后, 用SPSS 16.0软
件完成统计分析 , 用单因素方差分析 (one-way
ANOVA)比较相同冻土阶段叶片与细根之间以及叶
片、细根在不同冻土阶段的生态生理特征差异。
2 结果和分析
2.1 土壤温度及空气温湿度
在本研究中, 我们仅考虑2012年11月10日到
2013年3月20日的样地内气温(地上5 cm)、空气湿
度、地表温度以及土壤温度(地下5 cm)的变化情况。
结果表明, 在季节性冻土期, 气温昼夜波动幅度大
于土壤温度波动幅度; 相比于12月下旬至1月下旬,
2月上旬至3月中旬的气温、地表温度以及土壤温度
昼夜波动幅度更大; 此外, 空气湿度从12月开始到
下一年1月下旬维持在96%左右, 2月上旬到3月中旬
空气湿度降低, 波动幅度增大(图1)。
2.2 季节性冻土期叶片和细根MDA含量的变化
就岷江冷杉和云杉两个树种而言, MDA含量在
叶片和细根间存在差异, 表现为叶片显著高于细根
(图2), 说明细根的膜脂过氧化程度小于叶片。而不
同器官在冻土期不同阶段有不同的响应: 与冻结期
相比, 冻融期云杉叶片的MDA含量显著降低, 岷江
冷杉细根的MDA含量显著增加, 而岷江冷杉叶片
以及云杉细根的MDA变化均不显著(图2), 说明土
壤冻结期和冻融期对这两个树种叶片和细根膜脂过
氧化影响程度不同, 岷江冷杉更易受到季节性冻土
的影响。
2.3 季节性冻土期叶片和细根POD活性的变化
对于这两个树种而言, POD活性在叶片和细根
间均具有显著差异, 细根的POD活性均显著高于叶
片(图3), 说明细根的POD活性对季节性冻土较敏
感。叶片和细根内的POD活性在冻土期不同阶段具




图1 实验样地内的气温、地表温度、土壤温度(地下5 cm)以及空气相对湿度昼夜波动。
Fig. 1 Daily fluctuation of air temperature, ground surface temperature, soil temperature at 5 cm soil depth and air relative humidity
in the sample plot.

肖群英等: 川西亚高山季节性冻土期针叶林主要树种叶片和细根的生态生理特征 347

doi: 10.3724/SP.J.1258.2014.00031

图2 季节性冻土期岷江冷杉(A)和云杉(B)叶片、细根丙二醛含量变化(平均值±标准偏差, n = 5)。误差线上方不同的小写字母
表示叶片在冻结期和冻融期差异显著(p < 0.05); 误差线上方不同的大写字母表示细根在冻结期和冻融期差异显著(p < 0.05)。
星号表示细根和叶在相同时期的差异性(***, p < 0.005; **, p < 0.01; *, p < 0.05)。
Fig. 2 Changes in malondialdehyde (MDA) content in leaves and fine roots of Abies fargesii var. faxoniana (A) and Picea asperata
(B) during seasonal frozen soil period (mean ± SD, n = 5). Different lowercase letters above the error bars indicate significant differ-
ences in leaves between the freezing and freezing-thawing periods (p < 0.05); different capital letters above the error bars indicate
significant differences in fine roots between the freezing and freezing-thawing periods (p < 0.05). Asterisks indicate significant dif-
ferences between leaves and fine roots over the same period (***, p < 0.005; **, p < 0.01; *, p < 0.05).



图3 季节性冻土期岷江冷杉(A)和云杉(B)叶片、细根过氧化物酶活性变化(平均值±标准偏差, n = 5)。误差线上方不同的小写
字母表示叶片冻结期和冻融期差异显著(p < 0.05); 误差线上方相同的大写字母表示细根冻结期和冻融期差异不显著(p >
0.05); 星号表示细根和叶在相同时期差异性(***, p < 0.005; **, p < 0.01; *, p < 0.05)。
Fig. 3 Changes in peroxidase (POD) activity in leaves and fine roots of Abies fargesii var. faxoniana (A) and Picea asperata (B)
during seasonal frozen soil period (mean ± SD, n = 5). Different lowercase letters above the error bars indicate significant differences
in leaves between the freezing and freezing-thawing periods (p < 0.05); the same capital letters above the error bars indicate no sig-
nificant differences in fine roots between the freezing and freezing-thawing periods (p > 0.05). Asterisks indicate significant differ-
ences between leaves and fine roots over the same period (***, p < 0.005; **, p < 0.01; *, p < 0.05).

有不同的响应, 与冻结期相比, 冻融期细根中的
POD活性增加不显著, 而叶片内POD的活性显著
增加(图3), 说明冻融期对植物叶片的影响大于冻
结期。
348 植物生态学报 Chinese Journal of Plant Ecology 2014, 38 (4): 343–354

www.plant-ecology.com
2.4 季节性冻土期叶片和细根渗透调节物质含量
的变化
两针叶树种叶片和细根内脯氨酸含量冻融期
均显著高于冻结期(图4A, 4B); 就可溶性蛋白质而
言, 两针叶树种叶片和细根内的含量变化在季节性
冻土期表现出不同的变化规律, 冻融期细根内可溶
性蛋白质含量显著高于冻结期, 叶片的可溶性蛋白
在这两个时期未发生显著变化(图4C, 4D); 而可溶
性糖含量除岷江冷杉叶片没有显著变化外, 其余部
分冻融期均显著高于冻结期(图4E, 4F), 总体表现
为细根中渗透调节物质的含量冻融期显著高于冻结
期。就岷江冷杉而言, 叶片与细根之间的渗透调节
物质含量在季节性冻土期具有较大差异, 具体表现
为细根的脯氨酸含量和可溶性蛋白质含量显著高于
叶片(图4A, 4C), 可溶性糖含量显著低于叶片(4E)。
而云杉叶片、细根之间渗透调节物质含量在季节性
冻土期的差异, 除冻融期脯氨酸含量差异不显著外,
其他渗透调节物质含量差异总体趋势与岷江冷杉一
致(图4B, 4D, 4F)。
2.5 季节性冻土期叶片和细根的生理变化
在本研究中, 冻融期岷江冷杉叶片和细根的硝
酸还原酶活性显著低于冻结期, 而云杉叶片和细根
的硝酸还原酶活性变化不显著(图5A, 5B), 与云杉
相比, 岷江冷杉表现出对冻融期冻融因子更敏感的
反应; 就组织含水量而言, 冻结期中叶片中的含量
显著高于冻融期, 而细根中的含量在这两个时期变
化不显著(图5C, 5D)。在季节性冻土期, 除冻融期岷
江冷杉叶片、细根之间的硝酸还原酶活性差异不显
著外, 其他差异均显著, 均为细根中的硝酸还原酶
活性和水分含量显著高于叶片(图5)。
2.6 季节性冻土期细根形态的变化
就云杉、岷江冷杉细根形态指标而言, 冻融期
的细根比根长、比表面积、直径以及组织密度均与
冻结期无显著变化(图6), 说明根系形态对季节性冻
土的响应不敏感。
3 讨论
植物生理生化指标的变化是植物对逆境条件
的适应性反应, 可反映植物生长状况及受伤害的程
度。环境胁迫可导致植物体内活性氧自由基累积并
引发膜脂过氧化, MDA是细胞膜脂过氧化的产物
(de Vos et al., 1991), 其含量可以表征膜脂过氧化程
度, 反映细胞膜系统受伤害的程度(Xu & Zhou,
2006)。在本研究中, 岷江冷杉和云杉的MDA含量均
表现为细根显著低于叶片(图2), 即叶片的伤害程度
高于细根, 该结果与马玉心等(2007)的研究结果一
致, 其原因一方面可能是叶片暴露于空气中, 气温
昼夜波动比土壤温度大(图1); 另一方面可能与叶片
和细根的抗氧化系统、渗透调节系统的调节有关。
POD是植物体内的一种重要抗氧化酶, 它主要以过
氧化氢(H2O2)为底物进行催化反应, 可有效地清除
植物体内产生的H2O2 (Halliwell & Gutteridge,
1989)。而植物体内的可溶性糖、游离脯氨酸等可溶
性物质能够通过细胞内渗透调节, 去除活性氧, 以
维持膜稳定性等方式缓解植株受到的胁迫(Lee et
al., 2008; Yang et al., 2008)。在自然降温过程中, 植
物中的可溶性蛋白质可束缚更多的水分, 减少因原
生质内结冰而伤害致死的机会, 从而增强植物的抗
寒性。本研究发现细根内POD活性显著高于叶片(图
3), 细根内脯氨酸和可溶性蛋白质含量, 除冻融期
云杉脯氨酸含量差异不显著外, 均显著高于叶片
(图4A, 4B), 说明细根应对季节性冻土胁迫, 主要
是通过提高抗氧化酶活性以及渗透调节物质含量降
低细根膜脂过氧化程度。Schaberg等(2008)通过对

____________________________________________________________________________________________

图4 季节性冻土期叶片和细根渗透调节物的含量变化(平均值±标准偏差, n = 5)。A, 岷江冷杉脯氨酸含量。B, 云杉脯氨酸含
量。C, 岷江冷杉可溶性蛋白含量。D, 云杉可溶性蛋白含量。E, 岷江冷杉可溶性糖含量。F, 云杉可溶性糖含量。误差线上
方不同的小写字母表示叶片冻结期和冻融期差异显著(p < 0.05); 误差线上方不同的大写字母表示细根冻结期和冻融期差异
显著(p < 0.05); 星号表示细根和叶在相同时期差异性(***, p < 0.005; **, p < 0.01; *, p < 0.05)。
Fig. 4 Changes in the contents of osmoregulation substance in leaves and fine roots during seasonal frozen soil period (mean ± SD,
n = 5). A, Proline content in Abies fargesii var. faxoniana. B, Proline content in Picea asperata. C, Soluble protein content in Abies
fargesii var. faxoniana. D, Soluble protein content in Picea asperata. E, Soluble sugar content in Abies fargesii var. faxoniana. F,
Soluble sugar content in Picea asperata. Different lowercase letters above the error bars indicate significant differences in leaves
between the freezing and freezing-thawing periods (p < 0.05); different capital letters above the error bars indicate significant differ-
ences in fine roots between the freezing and freezing-thawing periods (p < 0.05). Asterisks indicate significant differences between
leaves and fine roots over the same period (***, p < 0.005; **, p < 0.01; *, p < 0.05).

肖群英等: 川西亚高山季节性冻土期针叶林主要树种叶片和细根的生态生理特征 349

doi: 10.3724/SP.J.1258.2014.00031
Chamaecyparis nootkatensis幼苗叶片和根系的研究
发现根系比地上部分对冻结更敏感。在本研究中,
土壤温度昼夜波动幅度小于气温波动幅度, 细根却
表现出更强的过氧化物酶活性以及更高的渗透调
节物质含量, 亦可说明细根较叶片对季节性冻土更
敏感。
Taylor和Parkinson (1988)研究冻融作用和冻结
对凋落物分解的影响时发现, 冻融循环的破坏作用


350 植物生态学报 Chinese Journal of Plant Ecology 2014, 38 (4): 343–354

www.plant-ecology.com



图5 季节性冻土期叶片和细根的生理变化(平均值±标准偏差, n = 5)。A, 岷江冷杉硝酸还原酶活性。B, 云杉硝酸还原酶活性。
C, 岷江冷杉水分含量。D, 云杉水分含量。误差线上方不同的小写字母表示叶片冻结期和冻融期差异显著(p < 0.05); 误差线
上方不同的大写字母表示细根冻结期和冻融期差异显著(p < 0.05); 星号表示根和叶在相同时期差异性(***, p < 0.005; **, p <
0.01; *, p < 0.05)。
Fig. 5 Physiological changes in leaves and fine roots during seasonal frozen soil period (mean ± SD, n = 5). A, Nitrate reductase
activity in Abies fargesii var. faxoniana. B, Nitrate reductase activity in Picea asperata. C, Water content of Abies fargesii var. faxo-
niana. D, Water content in Picea asperata. Different lowercase letters above the error bars indicate significant differences in leaves
between the freezing and freezing-thawing periods (p < 0.05); different capital letters above the error bars indicate significant differ-
ences in fine roots between the freezing and soil freezing-thawing periods (p < 0.05). Asterisks indicate significant differences be-
tween leaves and fine roots over the same period (***, p < 0.005; **, p < 0.01; *, p < 0.05).


比冻结作用强烈。本研究通过测定两种高山针叶树
种叶片和细根的生理指标随季节性冻土阶段的变化
情况, 证实冻融循环和冻结作用对植物的影响。结
果显示, 冻融期与冻结期相比, 岷江冷杉细根MDA
含量显著高于冻结期(图2A), 说明冻融期导致岷江
冷杉细根内自由基产生和清除的不平衡而出现自由
基的积累, 并由此引发或加剧了细胞的膜脂过氧化,
造成了膜的损伤。植物通过渗透调节, 提高细根内
脯氨酸、可溶性蛋白质和可溶性糖含量(图4A, 4C,
4E), 以缓解冻融作用对其造成的伤害, 表明冻融期
对岷江冷杉细根的胁迫比冻结期强烈。虽然冻融期
云杉细根的MDA含量相比冻结期未发生显著变化
(图2B), 但不代表冻融期对云杉细根的影响不强烈,
冻融期云杉细根内脯氨酸、可溶性蛋白质和可溶性
肖群英等: 川西亚高山季节性冻土期针叶林主要树种叶片和细根的生态生理特征 351

doi: 10.3724/SP.J.1258.2014.00031


图6 季节性冻土期云杉和岷江冷杉细根形态变化(平均值±标准偏差, n = 5)。A, 比根长。B, 比表面积。C, 直径。D, 组织密
度。误差线上方相同的小写字母表示岷江冷杉细根形态冻结期和冻融期差异不显著(p > 0.05); 误差线上方相同的大写字母表
示云杉细根形态冻结期和冻融期差异不显著(p > 0.05)。
Fig. 6 Morphological changes in fine roots of Abies fargesii var. faxoniana and Picea asperata during seasonal frozen soil period
(mean ± SD, n = 5). A, Specific root length. B, Specific surface area. C, Diameter. D, Tissue density. The same lowercase letters
above the error bars indicate no significant differences in the morphology of fine roots in Abies fargesii var. faxoniana between the
freezing and freezing-thawing periods (p > 0.05); the same capital letters above the error bars indicate no significant differences in the
of fine roots morphology in Picea asperata between the freezing and freezing-thawing periods (p > 0.05).


糖含量显著高于冻结期, 可证实冻融期对云杉细根
也有影响(图4B, 4D, 4F)。云杉细根MDA含量未增加
可能是由于云杉细根积累的渗透调节物质足以阻止
进一步的膜脂过氧化。从两物种叶片POD活性(图
3)、脯氨酸含量(图4A, 4B)及组织含水量的变化(图
5C, 5D)也可以得出相同的结论, 即冻融期的冻融循
环对植物的影响比冻结期的冻结作用更强烈。我们
推测其可能的原因有两个: 1)与环境因子的变化有
关, 冻融期空气温度和土壤温度的昼夜波动幅度大
(图1); 2)与冻融期冻融作用对土壤的影响有关, 改
变土壤结构、含水量分布和水热运动, 从而影响了
植物的根系生长和水分吸收(Oztas & Fayetorbay,
2003)。
随着季节性冻土阶段的变化, 从土壤冻结期(1
月)到土壤冻融期(3月), 岷江冷杉和云杉的POD活
性和渗透调节物质含量均显著增加, 说明岷江冷杉
352 植物生态学报 Chinese Journal of Plant Ecology 2014, 38 (4): 343–354

www.plant-ecology.com
和云杉主要通过提高抗氧化酶活性和渗透调节物质
含量适应季节性冻土阶段的环境变化。但其叶片和
细根内膜脂过氧化程度以及酶活性变化并不一致,
对岷江冷杉而言, 细根MDA含量显著增加(图2A),
而叶片、细根的硝酸还原酶活性均显著降低(图5A),
云杉仅叶片MDA含量发生变化 , 且显著减少(图
2B), 说明云杉和岷江冷杉两树种对季节性冻土具
有不同的忍耐能力, 云杉氮代谢在冻融期未受到冻
融作用的显著影响, 而岷江冷杉受到显著影响, 说
明云杉能更有效地防御自由基对细胞膜的伤害, 可
能更能忍耐冻融循环。Groffman等(2001b)研究发现
土壤冻融循环引起的物理破坏增加了细根死亡率,
减少了植物吸收氮以及竞争土壤中无机氮的机会,
说明植物代谢的关键酶——硝酸还原酶活性受到了
影响。本试验中岷江冷杉的研究结果与之一致。两
针叶树种对季节性冻土表现出不同的响应, 这种差
异主要源于两针叶树种不同的生活习性。岷江冷杉
多出现在常年云雾笼罩、雨量多、湿度大的海拔较
高处, 而云杉林分布在雨量相对较少的海拔较低处
(刘庆等, 2001), 意味着岷江冷杉对季节性冻土的响
应更为敏感。
本研究还发现: 尽管岷江冷杉和云杉细根生理
生态特征在季节性冻土期发生了显著的变化, 但两
树种细根的比根长、比表面积、直径以及组织密度
在冻结期和冻融期内的变化并不显著。 我们认为这
可能归因于两方面: (1)细根在非生长季阶段生长缓
慢,而季节性冻土期植物正处于非生长季; (2)形态变
化滞后于生理生态变化。但迄今未见细根形态随非
生长季变化的报道。本研究中, 我们发现在季节性
冻土期根系形态无显著变化。 因此, 在季节性冻土
期研究植物对季节性冻土的响应, 不能只用植物形
态变化作为评估指标, 而应该结合植物生理生态特
征变化。
综上所述, 在季节性冻土期, 细根所处的土壤
温度昼夜波动幅度小于叶片所在空气层的温度波动
幅度, 但细根表现出更强的POD活性以及更高的渗
透调节物质含量, 说明细根较叶片对季节性冻土更
为敏感。因此, 在苗木管理中应做好冬春季节根系
越冬保护工作, 以防季节性冻土对苗木造成损伤。
可采取培土的方式防寒, 在植株根颈处培土, 土堆
尺寸可根据地区寒冷程度而定, 土堆内温差小, 能
较好地保护根颈和树木根系。冻融期土壤昼夜波动
以及空气温、湿度昼夜波动均比冻结期波动幅度大,
促使云杉叶片可溶性糖含量以及两针叶树种叶片内
POD活性、脯氨酸含量显著增加, 而细根内组织含
水量显著降低, 脯氨酸、可溶性蛋白质及可溶性糖
含量均显著增加, 表明冻融期对两针叶树种的影响
比冻结期更强烈, 而冻融期又是植物从休眠到生长
的过渡时期, 应在该时期做好推迟根系活动的准备
工作。可在早春土地解冻时期及时灌春水, 从而降
低土壤温度, 推迟根系活动期, 使植物免受冻融损
伤。随着季节性冻土阶段的变化, 两针叶树种叶片
和细根内的渗透调节物均显著增加, 说明岷江冷杉
和云杉主要是通过渗透调节物质含量的变化来适应
季节性冻土阶段的环境变化。两针叶树种叶片和细
根的MDA含量、硝酸还原酶活性变化并不一致。就
岷江冷杉而言, 细根MDA含量显著增加, 而叶片、
细根的硝酸还原酶活性均显著降低; 云杉仅叶片
MDA含量显著减少, 说明云杉更能忍耐冻融循环
造成的影响, 更适应在研究地生长。在林木栽种时,
应考虑因地制宜, 最大程度地减少植物因季节性冻
土而造成的损伤, 在入冬前应根据各树种对低温的
忍耐能力, 分别采取保护性措施, 以提高植株的抗
寒能力。本研究还发现细根形态变化滞后于生理生
态变化。因此, 在季节性冻土期研究植物对季节性
冻土的响应, 不能只用植物形态变化作为评估指标,
形态变化滞后于生理变化, 在不能准确地判定植物
是否受到损伤时, 应该对植物生理生化指标进行测
定, 深入研究植物生理生态特征变化非常有必要,
因为生理生态特征的变化能迅速地反映植物所受的
胁迫状况, 同时还应该把地上和地下部分的研究结
合起来。
基金项目 国家自然科学基金 (31070533和
31370495)、中国科学院成都生物研究所青年研究员
计划(Y3B2021100)和中国科学院知识创新工程重
要方向项目(SCX2-EW-J-22)。
参考文献
Bates LS, Waldren RP, Teare ID (1973). Rapid determination
of free proline for water-stress studies. Plant and Soil, 39,
205–207.
Bradford MM (1976). A rapid and sensitive method for the
quantitation of microgram quantities of protein utilizing
the principle of protein-dye binding. Analytical
Biochemistry, 72, 248–254.
Campbell JL, Mitchell MJ, Groffman PM, Christenson LM,
肖群英等: 川西亚高山季节性冻土期针叶林主要树种叶片和细根的生态生理特征 353

doi: 10.3724/SP.J.1258.2014.00031
Hardy JP (2005). Winter in northeastern North America: a
critical period for ecological processes. Frontiers in
Ecology and the Environment, 3, 314–322.
Castillo FJ, Penel C, Greppin H (1984). Peroxidase release
induced by ozone in Sedum album leaves: involvement of
Ca2+. Plant Physiology, 74, 846–851.
Chang WJ, Guo DL (2008). Variation in root diameter among
45 common tree species in temperate, subtropical and
tropical forests in China. Journal of Plant Ecology (Chi-
nese Version), 32, 1248–1257. (in Chinese with English
abstract) [常文静, 郭大立 (2008). 中国温带、亚热带和
热带森林45个常见树种细根直径变异. 植物生态学报,
32, 1248–1257.]
de Vos CHR, Schat H, Waal MAM, Vooijs R, Ernst WHO
(1991). Increased resistance to copper-induced damage of
the root cell plasmalemma in copper tolerant Silene
cucubalus. Physiologia Plantarum, 82, 523–528.
Fernàndez-Martínez J, Zacchini M, Elena G, Fernández-Marín
B, Fleck I (2013). Effect of environmental stress factors on
ecophysiological traits and susceptibility to pathogens of
five Populus clones throughout the growing season. Tree
Physiology, 33, 618–627.
Fitter AH (1982). Morphometric analysis of root systems:
application of the technique and influence of soil fertility
on root system development in two herbaceous species.
Plant, Cell & Environment, 5, 313–322.
Fitzhugh RD, Driscoll CT, Groffman PM, Tierney GL, Fahey
TJ, Hardy JP (2001). Effects of soil freezing disturbance
on soil solution nitrogen, phosphorus, and carbon
chemistry in a northern hardwood ecosystem. Biogeo-
chemistry, 56, 215–238.
Groffman PM, Driscoll CT, Fahey TJ, Hardy JP, Fitzhugh RD,
Tierney GL (2001a). Colder soils in a warmer world: A
snow manipulation study in a northern hardwood forest
ecosystem. Biogeochemistry, 56, 135–150.
Groffman PM, Driscoll CT, Fahey TJ, Hardy JP, Fitzhugh RD,
Tierney GL (2001b). Effects of mild winter freezing on
soil nitrogen and carbon dynamics in a northern hardwood
forest. Biogeochemistry, 56, 191–213.
Haei M, Öquist MG, Buffam I, Ågren A, Blomkvist P, Bishop
K, Löfvenius MO, Laudon H (2010). Cold winter soils
enhance dissolved organic carbon concentrations in soil
and stream water. Geophysical Research Letters, 37,
L08501, doi:10.1029/2010GL042821.
Halliwell B, Gutteridge JMC (1989). Free Radicals in Biology
and Medicine. 2nd edn. Oxford University Press, New
York.
Hansen J, Møller I (1975). Percolation of starch and soluble
carbohydrates from plant tissue for quantitative
determination with anthrone. Analytical Biochemistry, 68,
87–94.
Henry HAL (2008). Climate change and soil freezing
dynamics: historical trends and projected changes. Climate
Change, 87, 421–434.
Hodges DM, Delong JM, Forney CF, Prange RK (1999).
Improving the thiobarbituric acid-reactive-substances
assay for estimating lipid peroxidation in plant tissues
containing anthocyanin and other interfering compounds.
Planta, 207, 604–611.
IPCC (Intergovernmental Panel on Climate Change) (2007).
Contribution of working group III to the fourth assessment
report of the intergovernmental panel on climate change.
In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA
eds. Climate Change in 2007: Mitigation. Cambridge
University Press, Cambridge, UK.
Jones HG (2001). Snow Ecology: an Interdisciplinary
Examination of Snow-Covered Ecosystems. Cambridge
University Press, Cambridge, UK. 1–302.
Joseph G, Henry HAL (2008). Soil nitrogen leaching losses in
response to freeze-thaw cycles and pulsed warming in a
temperate old field. Soil Biology & Biochemistry, 40,
1947–1953.
Kreyling J (2010). Winter climate change: a critical factor for
temperate vegetation performance. Ecology, 91, 1939–
1948.
Kreyling J, Beierkuhnlein C, Pritsch K, Schloter M, Jentsch A
(2008). Recurrent soil freeze-thaw cycles enhance
grassland productivity. New Phytologist, 177, 938–945.
Kreyling J, Henry HAL (2011). Vanishing winters in Germany:
soil frost dynamics and snow cover trends, and ecological
implications. Climate Research, 46, 269–276.
Lee G, Carrow RN, Duncan RR, Eiteman MA, Rieger MW
(2008). Synthesis of organic osmolytes and salt tolerance
mechanisms in Paspalum vaginatum. Environmental and
Experimental Botany, 63, 19–27.
Liu Q, Wu Y, He H (2001). Ecological problems of subalpine
coniferous forest in the southwest of China. World
Sci-Tech Research and Development, 23(2), 63–69. (in
Chinese with English abstract) [刘庆 , 吴彦 , 何海
(2001). 中国西南亚高山针叶林的生态学问题. 世界科
技研究与发展, 23(2), 63–69.]
Ma YX, Cai TJ, Song LP, Yu XL (2007). Changes in contents
of MDA and osmoregulatory substances during snow
cover for Pyrola dahurica. Acta Ecologica Sinica, 27,
4596–4602. (in Chinese with English abstract) [马玉心,
蔡体久, 宋丽萍, 喻晓丽 (2007). 兴安鹿蹄草(Pyrola
dahurica (H. Andr.) Kom.)雪盖前后丙二醛及渗透调节
物质含量的变化. 生态学报, 27, 4596–4602.]
Matzner E, Borken W (2008). Do freeze-thaw events enhance C
and N losses from soils of different ecosystems? A review.
European Journal of Soil Science, 59, 274–284.
Nielsen CB, Groffman PM, Hamburg SP, Driscoll CT, Fahey
TJ, Hardy JP (2001). Freezing effects on carbon and
nitrogen cycling in northern hardwood forest soils. Soil
Science Society of America Journal, 65, 1723–1730.
354 植物生态学报 Chinese Journal of Plant Ecology 2014, 38 (4): 343–354

www.plant-ecology.com
Olsson PQ, Sturm M, Racine CH, Romanovsky V, Liston GE
(2003). Five stages of the Alaskan Arctic cold season with
ecosystem implications. Arctic, Antarctic, and Alpine
Research, 35, 74–81.
Oztas T, Fayetorbay F (2003). Effect of freezing and thawing
processes on soil aggregate stability. Catena, 52, 1–8.
Pregitzer KS, Deforest JL, Burton AJ, Allen MF, Ruess RW,
Hendrick RL (2002). Fine root architecture of nine North
American trees. Ecological Monographs, 72, 293–309.
Rosa ES, Heaney RK, Portas CM, Fenwick GR (1996).
Changes in glucosinolate concentrations in Brassica crops
(B. oleracea and B. napus) throughout growing seasons.
Journal of the Science of Food and Agriculture, 71,
237–244.
Schaberg PG, Hennon PE, D’amore DV, Hawley GJ (2008).
Influence of simulated snow cover on the cold tolerance
and freezing injury of yellow-cedar seedlings. Global
Change Biology, 14, 1282–1293.
Schimel JP, Clein JS (1996). Microbial response to freeze-thaw
cycles in tundra and taiga soils. Soil Biology & Bio-
chemistry, 28, 1061–1066.
Tan B, Wu FZ, Yang WQ, Yu S, Liu L, Wang A (2011). The
dynamics pattern of soil carbon and nutrients as soil
thawing proceeded in the alpine/subalpine forest. Acta
Agriculturae Scandinavica, Section B―Soil & Plant
Science, 61, 670–679.
Taylor BR, Parkinson D (1988). Does repeated freezing and
thawing accelerate decay of leaf litter? Soil Biology &
Biochemistry, 20, 657–665.
Tierney GL, Fahey TJ, Groffman PM, Hardy JP, Fitzhugh RD,
Driscoll CT (2001). Soil freezing alters fine root dynamics
in a northern hardwood forest. Biogeochemistry, 56,
175–190.
Wang KY (2004). Processes of Subalpine Forest Ecosystem in
Western Sichuan. Sichuan Science and Technology Press,
Chengdu. (in Chinese) [王开运 (2004). 川西亚高山森林
群落生态系统过程. 四川科学技术出版社, 成都.]
Wu FZ, Yang WQ, Zhang J, Deng RJ (2010). Litter decom-
position in two subalpine forests during the freeze-thaw
season. Acta Oecologica, 36, 135–140.
Xia MX, Guo DL, Pregitzer KS (2010). Ephemeral root
modules in Fraxinus mandshurica. New Phytologist, 188,
1065–1074.
Xu ZZ, Zhou GS (2006). Combined effects of water stress and
high temperature on photosynthesis, nitrogen metabolism
and lipid peroxidation of a perennial grass Leymus
chinensis. Planta, 224, 1080–1090.
Yang CW, Shi DC, Wang DL (2008). Comparative effects of
salt and alkali stresses on growth, osmotic adjustment and
ionic balance of an alkali-resistant halophyte Suaeda
glauca (Bge.). Plant Growth Regulation, 56, 179–190.
Zhang T, Barry RG, Knowles K, Ling F, Armstrong RL (2003).
Distribution of seasonally and perennially frozen ground in
the Northern Hemisphere. In: Phillips M, Springman SM,
Arenson LU eds. Permafrost: Proceedings of the Eighth
International Conference on Permafrost. A. A. Balkema
Publishers, Zurich, Switzerland. 1289–1294.
Zhang ZL, Qu WQ (2003). The Experimental Guide for Plant
Physiology. Higher Education Press, Beijing. 41–42. (in
Chinese) [张志良, 瞿伟菁 (2003). 植物生理学实验指
导. 高等教育出版社, 北京. 41–42.]
Zhao CZ, Liu Q (2012). Effects of soil warming and nitrogen
fertilization on leaf physiology of Pinus tabulaeformis
seedlings. Acta Physiologiae Plantarum, 34, 1837–1846.


责任编委: 王仁卿 责任编辑: 王 葳