免费文献传递   相关文献

Mechanisms of photoinhibition induced by high light in Hosta grown outdoors

环境强光诱导玉簪叶片光抑制的机制


为进一步阐述光抑制的强光诱导和发生机制, 该文以喜阴植物玉簪(Hosta spp.)为材料研究其光抑制发生规律及其与环境光强的关系。结果表明, 全日照和遮阴条件下玉簪叶片发育分别形成适应强光和弱光的形态特征; 与遮阴处理相比, 强光下生长的玉簪光合速率和叶绿素含量较低, 但两种处理叶片最大光化学效率差异很小, 证明强光下植株可以正常生长且光合机构未发生严重的光抑制。将遮阴处生长的植株转移到全日照下, 光合速率和最大光化学效率急剧下降; 荧光诱导动力学曲线发生明显改变, 而且光系统II供体侧和受体侧荧光产量的变化幅度分别达到24.3%和34.2%, 表明玉簪由弱光转入强光后光系统II发生不可逆失活, 且受体侧受到的伤害较供体侧更严重。因此, 作者认为环境光强骤然提高并超过玉簪生长光强时很容易诱导其光合机构发生严重的光抑制。该研究对于理解植物适应光环境的策略以及喜阴植物的优质栽培有重要意义。

Aims It has long been recognized that photoinhibition of photosynthesis is induced by high light. However, our recent studies are not consistent with this traditional view. Therefore, the objective of this study is to explore the induction of photoinhibition and its mechanisms under full sunlight outdoors.
Methods Changes of leaf morphology, gas exchange, and chlorophyll a fluorescence were measured to investigate the induction and mechanisms of photoinhibition under high light in Hosta, which is a typical shade-tolerant plant.
Important findings Hosta plants grown under full sunlight (HT) and low light (LT) developed sun- and shade-type leaf morphological characteristics, respectively. Under a full sunlight, Hosta plants had lower photosynthetic rate and chlorophyll content than under the LT; whereas, there were only slight difference in the maximum quantum yield of photosystem II (Fv/Fm) between the two treatments, suggesting that Hosta plants could grow normally under full sunlight without severe photoinhibition. After transition from the low to a high light (LHT), the photosynthetic rate and maximum quantum yield of photosystem II decreased sharply, reflecting that the LHT treatment led to irreversibly inactivation of photosystem II. Additionally, the shape of chlorophyll a fluorescence transients also changed significantly; the relative fluorescence yield of the K and J steps were reduced by 24.3% and 34.2%, respectively, indicating that the acceptor side of photosystem II was damaged more severely than the donor side. Consequently, we postulate that photoinhibition in Hosta leaves is mainly induced by the sudden enhancement of light intensity outdoors. Hosta can acclimate to high irradiance through leaf development outdoors. Our finding is of great significance in understanding the acclimation of plants to high light and cultivation of shade-tolerant plants in field.


全 文 :植物生态学报 2014, 38 (7): 720–728 doi: 10.3724/SP.J.1258.2014.00067
Chinese Journal of Plant Ecology http://www.plant-ecology.com
——————————————————
收稿日期Received: 2014-03-04 接受日期Accepted: 2014-04-03
* 共同通讯作者Co-author for correspondence (E-mail: jcdao@ibcas.ac.cn; liudh@beijingbg.com)
环境强光诱导玉簪叶片光抑制的机制
李志真1,2 刘东焕3* 赵世伟3 姜闯道1* 石 雷1
1中国科学院植物研究所, 中国科学院北方资源植物重点实验室, 北京 100093; 2中国科学院大学, 北京 100049; 3北京市植物园, 北京 100093
摘 要 为进一步阐述光抑制的强光诱导和发生机制, 该文以喜阴植物玉簪(Hosta spp.)为材料研究其光抑制发生规律及其
与环境光强的关系。结果表明, 全日照和遮阴条件下玉簪叶片发育分别形成适应强光和弱光的形态特征; 与遮阴处理相比,
强光下生长的玉簪光合速率和叶绿素含量较低, 但两种处理叶片最大光化学效率差异很小, 证明强光下植株可以正常生长且
光合机构未发生严重的光抑制。将遮阴处生长的植株转移到全日照下, 光合速率和最大光化学效率急剧下降; 荧光诱导动力
学曲线发生明显改变, 而且光系统II供体侧和受体侧荧光产量的变化幅度分别达到24.3%和34.2%, 表明玉簪由弱光转入强光
后光系统II发生不可逆失活, 且受体侧受到的伤害较供体侧更严重。因此, 作者认为环境光强骤然提高并超过玉簪生长光强
时很容易诱导其光合机构发生严重的光抑制。该研究对于理解植物适应光环境的策略以及喜阴植物的优质栽培有重要意义。
关键词 叶绿素荧光, 强光, 光抑制, 光合作用, 光系统II
Mechanisms of photoinhibition induced by high light in Hosta grown outdoors
LI Zhi-Zhen1,2, LIU Dong-Huan3*, ZHAO Shi-Wei3, JIANG Chuang-Dao1*, and SHI Lei1
1Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; 2University of Chinese Academy of Sciences,
Beijing 100049, China; and 3Beijing Botanical Garden, Beijing 100093, China
Abstract
Aims It has long been recognized that photoinhibition of photosynthesis is induced by high light. However, our
recent studies are not consistent with this traditional view. Therefore, the objective of this study is to explore the
induction of photoinhibition and its mechanisms under full sunlight outdoors.
Methods Changes of leaf morphology, gas exchange, and chlorophyll a fluorescence were measured to investi-
gate the induction and mechanisms of photoinhibition under high light in Hosta, which is a typical shade-tolerant
plant.
Important findings Hosta plants grown under full sunlight (HT) and low light (LT) developed sun- and
shade-type leaf morphological characteristics, respectively. Under a full sunlight, Hosta plants had lower photo-
synthetic rate and chlorophyll content than under the LT; whereas, there were only slight difference in the maxi-
mum quantum yield of photosystem II (Fv/Fm) between the two treatments, suggesting that Hosta plants could
grow normally under full sunlight without severe photoinhibition. After transition from the low to a high light
(LHT), the photosynthetic rate and maximum quantum yield of photosystem II decreased sharply, reflecting that
the LHT treatment led to irreversibly inactivation of photosystem II. Additionally, the shape of chlorophyll a fluo-
rescence transients also changed significantly; the relative fluorescence yield of the K and J steps were reduced by
24.3% and 34.2%, respectively, indicating that the acceptor side of photosystem II was damaged more severely
than the donor side. Consequently, we postulate that photoinhibition in Hosta leaves is mainly induced by the
sudden enhancement of light intensity outdoors. Hosta can acclimate to high irradiance through leaf development
outdoors. Our finding is of great significance in understanding the acclimation of plants to high light and cultiva-
tion of shade-tolerant plants in field.
Key words chlorophyll a fluorescence, high light, photoinhibition, photosynthesis, photosystem II
光合作用是植物叶片将捕获的光能用于光化学
反应和碳同化的过程, 是生态系统内部物质循环和
能量流动的基础。一方面光为光合作用提供能量,
另一方面过量的光会对植物光合机构造成伤害。不
同植物光合作用达到饱和时的光强不同, 喜光植物
的光饱和光强一般在1 000–1 500 µmol·m–2·s–1之间,
李志真等: 环境强光诱导玉簪叶片光抑制的机制 721

doi: 10.3724/SP.J.1258.2014.00067
喜阴植物的光饱和光强在200–500 µmol·m–2·s–1之
间, 甚至更低(蒋高明, 2004; 吕献康等, 2004; 杨兴
洪等, 2005; Qi et al., 2012; 王晓琳等, 2012)。实际
上 , 我国很多地区午间最大光强能达到 1 900
µmol·m–2·s–1以上。晴天条件下 , 一天之中10:00–
15:00期间光照一般为1 200–2 000 µmol·m–2·s–1, 往
往会超过植物光合作用的饱和光强。因此, 叶片捕
获的光能经常会超过碳同化所能利用的范围, 从而
产生过剩的激发能并导致光合效率的降低和光抑
制。此时, 过剩的激发能若无法及时耗散, 就会引起
光合机构的破坏, 严重的光破坏在生产中也称为日
灼或光漂白。尽管对光抑制的认识开始于19世纪中
期, 但直到今天仍有许多问题尚未澄清。
大量研究表明实验室条件下很容易诱导严重的
光抑制(Greer et al., 1986; Öquist et al., 1992; 黄金
丽等, 2008)。不过, 除非与干旱、盐渍、高温等环
境胁迫交互作用, 田间条件下多数植物很难发生严
重的光抑制或光合机构的不可逆伤害(Faria et al.,
1998; Chaves et al., 2009; 王彩娟等, 2011)。一方面,
田间植物叶片着生角度和叶片运动等可以有效地避
光(Jiang et al., 2006); 另一方面, 从生理角度看, 植
物具有完善的光破坏防御机制 , 如叶黄素循环
(Niyogi, 1999)、状态转换(Quick & Stitt, 1989; Tan et
al., 1997)和光呼吸(Osmond, 1981; Guo et al., 1996)
等, 这些机制可以有效地保护植物免受强光伤害。
叶黄素循环作为一种重要的光破坏防御机制受到广
泛关注, 其缺失突变体的强光敏感性增强, 更容易
发生光抑制(Niyogi et al., 1998)。但是, 近期也有研
究证明拟南芥(Arabidopsis thaliana)在缺少叶黄素
循环的情况下完全可以在强光下, 甚至田间条件下
正常生长, 且未发生严重的光抑制(Külheim et al.,
2002; Golan et al., 2006)。所以, 强光如何诱导光抑
制还需要进一步研究。
玉簪(Hosta spp.)是重要的观叶植物, 喜阴不耐
强光 , 主要用作地被和花坛绿化 (Liu & Zhao,
2012)。玉簪在我国北方绿化栽培过程中经常发生日
灼现象, 即严重的光破坏, 很大程度上影响其观赏
价值。不过, 我们近期的研究表明玉簪在强光下也
可以正常生长并完成生活史。因此, 为阐述光抑制
的强光诱导和相关机制, 我们以玉簪为材料研究了
光强与光抑制的关系, 一方面有助于进一步理解植
物光抑制的诱导和发生机制, 另一方面也为玉簪的
栽培和养护提供实验支持。
1 材料和方法
1.1 材料种植与试验设计
试验于2011–2013年在北京植物园基地进行。试
验采用盆栽, 盆高27 cm, 内径31 cm。以玉簪品种
‘Blue Boy’为材料, 选取生长状态相对一致的植株
在5月初开始光照和遮阴处理。
处理分为全日照处理组 (HT)和弱光处理组
(LT)。全日照组午间光强为1 400–1 800 µmol·m–2·s–1;
弱光组通过遮阴网(透光率为25%左右)遮阴, 网内
午间最大光强在300–500 µmol·m–2·s–1。处理8周后将
弱光组部分植株转移至全日照下处理 (转光组 ,
LHT)。选取各处理中刚刚发育成熟的叶片进行各项
形态和生理指标的测定。
1.2 气体交换参数的测定
选择6–7月天气晴朗的8:00–11:00进行气体交
换参数的测定, 用CIRAS-2型便携式光合作用测定
系统(PP-Systems, Amesbury, USA)分别测定玉簪各
个处理叶片的净光合速率(Pn)、气孔导度(Gs)等参
数。测定光强为1 200 µmol·m–2·s–1, 叶室温度控制在
28–33 ℃之间 , 湿度控制在70%–80%之间 , 大气
CO2浓度控制在360–400 µmol·mol–1之间。每个处理
测定6个重复。
1.3 快速叶绿素荧光诱导动力学曲线和荧光参数
的测定
选择晴朗的天气, 分别于6:00、14:00和18:00使
用Handy-PEA非调制式荧光仪(Hansatech, Norfolk,
UK)进行快速叶绿素荧光诱导动力学曲线(OJIP曲
线)的测定。测定及计算参照张守仁(1999)、李鹏民
等(2005)和Jiang等(2005)的文献。测定前植株暗适应
15 min, 在弱调制光下诱导产生初始荧光(Fo), 此时
光系统II (PSII)反应中心全部处于开放状态。在Fo
之后使用强饱和脉冲光(3 500 µmol·m–2·s–1红光)激
发, 使原初电子受体QA全部处于还原状态, 测得最
大荧光值(Fm)。每个处理测定12个重复。其中, 各
特征点荧光参数为Fo (20 μs时荧光, O相)、FK (300
μs时荧光, K相)、FJ (2 ms时荧光, J相)、Fm (最大荧
光, P相), 其他各参数计算如下:
(1) PSII最大光化学效率φPo = Fv/Fm = 1 –
(Fo/Fm);
(2)荧光诱导曲线的初始斜率dV/dt0 = 4 (F300µs –
722 植物生态学报 Chinese Journal of Plant Ecology 2014, 38 (7): 720–728

www.plant-ecology.com
Fo)/(Fm – Fo);
(3)捕获的激子将电子传递到电子传递链中QA
下游的其他电子受体的概率ψ0 = ET0/TR0 = 1 – VJ;
(4)电子传递的量子效率φEo = ET0/ABS = (1 –
(Fo/Fm))ψ0;
(5)激发能耗散的量子效率φDo = 1 – φPo =
Fo/Fm;
(6)以吸收光能为基础的性能指数 PIABS =
(RC/ABS)(φPo/(1 – φPo))(ψ0 /(1 – ψ0))。
参照Strasser等(Strasser & Strasser, 1995; Stra-
sser et al., 2000, 2004)的方法, 将快速叶绿素荧光诱
导动力学曲线O-J相进行标准化: W = (Ft – Fo)/(FJ –
Fo)。为进一步揭示W相的变化, 计算ΔW。ΔW为强
光处理后叶片(W(dayT))与未处理叶片的W相(W(day0))
之差, 即ΔW = W(dayT) – W(day0)。
PSII传递供体侧和受体侧荧光相对变化幅度计
算如下:
供体侧荧光(K = 300 µs)相对变化幅度: (Fk(day2)
– Fk(day0))/Fk(day0);
受体侧荧光(J = 2 ms)相对变化幅度: (FJ(day2) –
FJ(day0))/FJ(day0)。
1.4 叶绿体色素的测定
选取对照组成熟叶片(自中心开始第3个叶位),
分别用直径6 mm的打孔器打取叶圆片, 混匀后随
机称取0.1 g叶圆片以15 mL 80%丙酮于暗处浸提48
h, 至叶片完全呈白色, 用25 mL容量瓶定容。其间
每隔2 h左右取出振荡片刻, 使色素均匀分布于丙酮
溶液中。用紫外可见分光光度计(UV-2802S, 尤尼柯
(上海)仪器有限公司, 上海)分别在663、646及470
nm测定OD值, 计算出叶绿素a (Chl a), 叶绿素b
(Chl b)及叶绿素总含量(Arnon, 1949)。
1.5 叶面积和比叶重测定
使用LI-3000A型叶面积仪 (LI-COR, Lincoln,
USA)测量叶面积。
比叶重测定选取对照组成熟叶片(自中心开始
第3个叶位), 分别用直径6 mm的打孔器打取叶圆片
约30片, 于105 ℃烘箱中杀青30 min, 85 ℃烘至恒
重, 进行称量, 即为干质量。计算比叶重, 比叶重
(g·cm–2) =叶片干重/叶面积。
1.6 数据分析
采用统计分析软件SPSS (Version 16.0, for
Windows)分析不同处理平均值之间的差异显著性,
使用SigmaPlot 10.0作图。
2 结果和分析
2.1 光强对叶片形态及叶绿素含量的影响
如图1A所示, 全日照下生长的玉簪单叶面积为
27.15 cm2, 遮阴下单叶面积为55.60 cm2, 后者约为
前者的2倍; 全日照下叶片比叶重为48.90 g·m–2, 而
遮阴下比叶重为40.98 g·m–2 (图1B), 遮阴处理使其
比叶重下降16%, 说明光强很大程度上影响了叶面
积, 不过对比叶重影响相对较小。由图1C可以看出,
光强对植株叶片数影响很小。此外, 我们的结果也表
明弱光条件下单位叶面积叶绿素含量增加(图1D)。
2.2 光强对叶片净光合速率和光抑制的影响
如图2所示, 全日照下生长的玉簪叶片净光合
速率比遮阴处理组低22.8%; 叶片气孔导度与净光
合速率变化趋势相同。为进一步分析全日照下光合
速率下降是否与光抑制有关 , 我们测定了PSII的
Fv/Fm。
从图3可以看出, 一天内Fv/Fm最低值均出现在
14:00, 但HT和LT两组处理的午间光抑制程度都比
较弱。HT在早、中、晚三个时间段的Fv/Fm值均略
低于LT, 表明田间生长光强对叶片Fv/Fm有影响, 但
影响程度很小。
2.3 遮阴转入全日照对光合速率和光抑制的影响
由图4可以看出, 生长在遮阴条件下的玉簪净
光合速率和气孔导度都没有显著改变。相反, 遮阴
下生长的玉簪转入全日照后净光合速率大幅下降,
且随着转入全日照时间的延长, 净光合速率下降程
度加剧; 气孔导度也有相同的变化趋势。
为进一步研究遮阴转入强光处理对叶片光抑制
的影响, 我们测定了Fv/Fm的变化。继续生长于遮阴
条件下的叶片其Fv/Fm长时间维持在较高水平, 并
且中午光抑制程度很轻(图5)。而生长于弱光下的材
料转入全日照(LHT)后, 叶片Fv/Fm持续下降, 同时
中午光抑制加剧, 到18:00时Fv/Fm未能恢复到其初
始水平(图5)。以上结果证明, 光强骤然增加导致玉
簪叶片发生了严重的和不可逆的光抑制。
2.4 遮阴转入全日照对荧光诱导动力学曲线的影响
叶绿素荧光诱导动力学可以揭示光系统II的行
为变化(李鹏民等, 2005; 王彩娟等, 2011)。如图6所
示, LT条件下叶片的快速荧光诱导动力学曲线无明
显差异, 而LHT处理的叶片快速荧光诱导动力学曲
李志真等: 环境强光诱导玉簪叶片光抑制的机制 723

doi: 10.3724/SP.J.1258.2014.00067

图1 光强对玉簪叶面积、比叶重、叶片数和叶绿素含量的影响(平均值±标准误差, n = 6)。不同大、小写字母分别表示自然
光和遮阴处理后叶面积、比叶重、叶片数和叶绿素含量差异显著(p = 0.05)。HT, 全日照处理; LT, 遮阴处理。
Fig. 1 Effects of light intensity on leaf area, specific leaf weight, leaf number and chlorophyll (a + b) content in Hosta leaves (mean
± SE, n = 6). Different capital letters and lowercase letters indicate significant differences in leaf area, specific leaf weight, leaf num-
ber, and chlorophyll (a + b) content between the HT and LT treatments, respectively (p = 0.05). HT, full sunlight; LT, low light.


线表现出显著差异。计算各特征点荧光参数表明,
遮阴下生长的玉簪在转入全日照后叶片Fo显著增
加, FJ、Fm急剧降低, 所以PSII的光能转化效率和性
能指数PIABS均迅速下降(表1)。同时, 遮阴转入全日
照处理后荧光诱导动力学曲线的初始斜率(dV/dt0)和
K点荧光产量显著提高(图7)。
3 讨论
3.1 光强骤增容易诱导光抑制
本研究中, 玉簪遮阴条件下, 午间光强不超过
500 µmol·m–2·s–1, 而全日照下的最大光强约为1 500
µmol·m–2·s–1左右, 两者差异巨大。与遮阴条件下生
长的玉簪相比, 全日照下玉簪光合速率略有降低
(图2)。一般情况下, 光合速率降低会导致过剩激发
能的产生。但是, 全日照下生长的玉簪即使在午间
也没有发生严重的光抑制(图3)。实际上, 全日照下
玉簪叶片是在强光环境下发育成熟, 具有适应强光
的形态和生理特征, 如相对较小的叶面积、较厚的
叶片和较低的色素含量(图1)。计算全日照和遮阴条
件下玉簪叶片光合速率与叶绿素的比值分别是18.5
和15.6, 前者单位色素的碳同化能力大于后者, 且
差异显著, 说明全日照下玉簪光合速率的下降可能
与较低的叶绿素含量有关。很可能全日照下生长的
玉簪以牺牲光合能力为代价从而确保其不会因色素
含量高而捕获过多的激发能, 最终导致严重的光抑
制。所以, 玉簪作为喜阴植物, 其与叶片发育相关的
结构和生理特征在适应强光环境和避免严重的光抑
制方面起重要作用。
724 植物生态学报 Chinese Journal of Plant Ecology 2014, 38 (7): 720–728

www.plant-ecology.com

图2 光强对玉簪叶片净光合速率(Pn)和气孔导度(Gs)的影
响(平均值±标准误差, n = 6)。不同小写字母分别表示全日照
(HT)和遮阴(LT)处理后叶片净光合速率和气孔导度的差异
显著(p = 0.05)。
Fig. 2 Effects of light intensity on net photosynthetic rate (Pn)
and stomatal conductance (Gs) in Hosta leaves (mean ± SE, n =
6). Different lowercase letters indicate significant differences in
Pn and Gs between the full sunlight (HT) and low light (LT)
treatments, respectively (p = 0.05).



图3 光强对玉簪叶片最大光化学效率(Fv/Fm)的影响(平均
值±标准误差, n = 12)。不同小写字母表示全日照(HT)和遮阴
(LT)处理后叶片Fv/Fm的差异显著(p = 0.05)。
Fig. 3 Effects of light intensity on the maximum quantum
yield of photosystem II photochemistry (Fv/Fm) in Hosta leaves
(mean ± SE, n = 12). Different lowercase letters indicate signif-
icant difference in Fv/Fm between the full sunlight (HT) and
low light (LT) treatments, respectively (p = 0.05).


越来越多的研究证明叶片结构影响其光合功能
(Jiang et al., 2011; Tholen et al., 2012)。在遮阴环境
条件下发育成熟的玉簪叶片具有明显的适应弱光的
特征(图1), 其转入强光后主要结构不会发生明显改
变。因此, 该情况下玉簪叶片主要通过生理调节适
应强光环境。这可能是我们观察到弱光下生长的玉



图4 遮阴转入全日照后玉簪叶片净光合速率(Pn)和气孔导
度(Gs)的变化(平均值±标准误差, n = 6)。不同大、小写字母
分别代表LT和LHT处理后叶片净光合速率和气孔导度的差
异显著(p = 0.05)。LHT, 遮阴转入全日照处理; LT, 遮阴处
理。
Fig. 4 Changes in the net photosynthetic rate (Pn) and stomat-
al conductance (Gs) after transfer from low light to full sunlight
in Hosta leaves (mean ± SE, n = 6). Different capital letters and
lowercase letters indicate significant differences in Pn and Gs
between the LT and LHT treatments, respectively (p = 0.05).
LHT, transition from low light to full sunlight; LT, low light.


簪叶片突然暴露于全日照后光合速率大幅降低的一
个重要原因(图4)。光合速率的下降势必导致玉簪光
合机构的过剩激发能大幅增加, 所以弱光转入强光
后其中午最大光化学效率迅速降低, 光抑制非常严
重, 且至傍晚不能完全恢复(图5)。实际上, 全日照
下生长的玉簪其环境光强与遮阴转入全日照后植株
李志真等: 环境强光诱导玉簪叶片光抑制的机制 725

doi: 10.3724/SP.J.1258.2014.00067


图5 遮阴转入全日照后玉簪叶片最大光化学效率(Fv/Fm)的变化(平均值±标准误差, n = 12)。不同小写字母表示遮阴处理(LT)
和遮阴转全日照处理(LHT)后叶片Fv/Fm的差异显著(p = 0.05)。
Fig. 5 Changes in the maximal photochemical efficiency (Fv/Fm) after transfer from low light to full sunlight in Hosta leaves (mean
± SE, n = 12). Different lowercase letters indicate significant differences in Fv/Fm between the low light (LT) and transition from low
light to full sunlight (LHT) treatments, respectively (p = 0.05).



图6 遮阴转入全日照后玉簪叶片快速荧光诱导动力学曲线(OJIP曲线)的变化。LHT, 遮阴转全日照处理; LT, 遮阴处理。day0、
day2、day4分别表示转入全日照前和转入全日照下2天和4天。
Fig. 6 Changes in the chlorophyll a fluorescence transients (fluorescence plotted on logarithmic time scale) following transfer from
low light to full sunlight in Hosta leaves. LHT, transition from low light to full sunlight; LT, low light. day0, day2, day4 represent
grow under low light, and transferred to full sun light for two and four days.


的光强完全相同, 而前者未发生严重的光抑制(图
3)。显然, 本研究中强光不是诱导玉簪光抑制的关
键所在。有研究认为, 光抑制诱导实际上不是与光
强有关, 而是与PSII捕获的光量子总量(光量子总量
=光强×照光时间)有关(Park et al., 1995; Chow et al.,
2002)。植物暴露在弱光下光量子积累慢, 而强光下
很容易在较短时间内积累大量光量子。所以, 相同
处理时间时两者相比弱光下植物光抑制程度较轻。
726 植物生态学报 Chinese Journal of Plant Ecology 2014, 38 (7): 720–728

www.plant-ecology.com


图7 遮阴转入全日照后玉簪叶片快速荧光诱导动力学曲线WO-J和ΔWO-J的变化(时间坐标为线性形式)。LHT, 遮阴转全日照处
理; LT, 遮阴处理。day0、day2、day4分别表示转入全日照前和转入全日照下2天和4天。
Fig. 7 Changes in WO-J and ΔWO-J in chlorophyll a fluorescence transients (plotted on a linear time scale) after transfer from low
light to full sunlight in Hosta leaves. LHT, transition from low light to full sunlight; LT, low light. day0, day2, day4 represent grow
under low light, and transferred to full sun light for two and four days.



表1 遮阴转入全日照后快速叶绿素荧光诱导动力学曲线(OJIP曲线)参数的变化(平均值±标准误差, n = 12)
Table 1 Changes in the chlorophyll fluorescence transient parameters after transfer from low light to full sunlight in Hosta leaves
(mean ± SE, n = 12)
移栽后
Days after transfer
Fo Fm dV/dt0 ψ0 φEo φDo PIABS
0 LT 507 ± 19.43a 2 865 ± 63.21a 0.702 3 ± 0.03a 0.572 3 ± 0.01a 0.454 1 ± 0.01a 0.207 5 ± 0.01a 26.32 ± 2.01a
LHT 507 ± 19.43a 2 865 ± 63.21a 0.702 3 ± 0.03a 0.572 3 ± 0.01a 0.454 1 ± 0.01a 0.207 5 ± 0.01a 26.32 ± 2.01a
2 LT 501 ± 13.27a 2 656 ± 58.19a 0.698 4 ± 0.02a 0.585 8 ± 0.01ab 0.457 7 ± 0.01a 0.219 1 ± 0.00a 24.26 ± 1.86a
LHT 562 ± 31.09b 1 437 ± 186.2b 0.867 8 ± 0.05b 0.469 8 ± 0.01c 0.245 5 ± 0.03b 0.488 3 ± 0.05b 4.28 ± 1.11b
4 LT 500 ± 9.71a 2 765 ± 69.86a 0.656 1 ± 0.02a 0.611 8 ± 0.01b 0.483 0 ± 0.00a 0.210 5 ± 0.00a 27.95 ± 1.03a
LHT 641 ± 17.91c 1 756 ± 87.01c 0.962 4 ± 0.03b 0.501 7 ± 0.01d 0.296 7 ± 0.01c 0.409 3 ± 0.02c 4.74 ± 0.47b
Fo, 暗适应后的最小荧光; Fm, 暗适应后的最大荧光; dV/dt0, 荧光诱导动力学曲线的初始斜率; ψ0, 反应中心捕获的激子中用来推动电子传递
到电子传递链中QA以后的其他电子受体的概率(在t = 0时); φEo, 电子传递的量子产量(在t = 0时); φDo, 能量耗散的量子产量(在t = 0时); PIABS,
以吸收光能为基础的性能指数。LHT, 遮阴转入全日照处理; LT, 遮阴处理。不同小写字母表示遮阴和遮阴转入全日照处理后各参数的差异
显著(p = 0.05)。
Fo, minimal fluorescence, when all PSII RCs (reaction centers) are open (at t = 0); Fm, maximal fluorescence, when all PSII RCs are closed; dV/dt0,
approximated initial slope of the fluorescence transient V = f(t); ψ0, probability (at t = 0) that a trapped exciton moves an electron into the electron
transport chain beyond QA; φEo, quantum yield of electron transport (at t = 0); φDo, quantum yield of energy dissipation; PIABS, performance index on
absorption basis. LHT, transition from low light to full sunlight LT, low light. Different lowercase letters indicate significant differences of the
parameters between the LT and LHT treatments, respectively (p = 0.05).


当然, 叶片发育和相应的光破坏防御机制在一定程
度上会延缓或减轻光合机构的光抑制(Faria et al.,
1998; Golan et al., 2006; Chaves et al., 2009; 王彩娟
等, 2011)。本研究中, 遮阴条件下生长的玉簪叶绿
素含量高, 故其由遮阴突然转入全日照后捕获的光
量子远大于全日照下生长的叶片。但是, 与全日照
条件下的植株相比, 其阴生叶片的结构和生理特征
均缺少对强光的适应, 所以遮阴下生长的玉簪叶片
过剩激发能多, 光抑制程度也比直接生长在全日照
下的玉簪光抑制要严重(图5)。因此, 不论是从光合
李志真等: 环境强光诱导玉簪叶片光抑制的机制 727

doi: 10.3724/SP.J.1258.2014.00067
速率的改变, 还是光量子积累来看, 光强的骤然提
高更容易导致光抑制。
3.2 光抑制导致光系统II供体和受体侧伤害
玉簪叶片突然暴露在强光下导致荧光诱导动力
学曲线发生了巨大变化。Strivastava和Strasser (1996)
及Srivastava等(1997)证明当PSII供体端放氧复合体
(OEC)受到伤害时K点(300 µs处的特征位点, 又称
W相)荧光产量会迅速增加。因此, K点的出现表明
OEC受到损伤(Strasser et al., 2000, 2004)。本研究中
遮阴下生长的玉簪暴露于全日照后K点提高(图7),
因此强光导致了PSII供体侧OEC的伤害。此外, 荧
光诱导动力学曲线中J点荧光产量的大幅下降和O-J
初始斜率(dV/dt0)的增加证明PSII受体侧电子传递受
到抑制。分析发现K点和J点荧光产量的变化幅度分
别可达24.3%和34.2%, 因此推测遮阴下生长的玉簪
转入强光环境后PSII受体侧伤害可能更严重。因为
PSII活性下降, 电子传递受到抑制, 所以性能指数
PIABS也显著下降, 从而使得PSII反应中心激发能利
用减少, 耗散增加。
田间玉簪日灼主要发生在夏季, 尤其是7–8月
久雨或久阴骤晴时。这种情况下, 叶片主要于弱光
下发育成熟, 天气骤晴后光强远远大于其生长光强,
所以诱导光抑制, 并发生日灼现象。而且, 我们发现
发生日灼的叶片均为成熟叶叶片, 新生叶则可以通
过发育调节很好地适应新的光环境。尽管气温在此
过程中也会伴随日照的增强而升高, 但气温和叶温
变化幅度均较小, 所以温度在光抑制诱导中应该不
起关键作用。
综上所述, 田间条件下环境光强骤然提高且超
过叶片生长光强时很容易诱导光合机构发生严重光
抑制, 该情况下光系统II的受体侧较供体侧受伤害
更严重。
基金项目 国家自然科学基金(30871455)、北京市
自然科学基金 (6122025)和北京市科技计划项目
(Z141100006014036)。
参考文献
Arnon DI (1949). Copper enzymes in isolated chloroplasts.
Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24,
1–15.
Chaves MM, Flexas J, Pinheiro C (2009). Photosynthesis under
drought and salt stress: regulation mechanisms from whole
plant to cell. Annals of Botany, 103, 551–560.
Chow WS, Lee HY, Park YI, Park YM, Hong YN, Anderson
JM (2002). The role of inactive photosystem-II-mediated
quenching in a last-ditch community defence against high
light stress in vivo. Philosophical Transactions of the Roy-
al Society B: Biological Sciences, 357, 1441–1450.
Faria T, Silvério D, Breia E, Cabral R, Abadia A, Abadia J,
Pereira JS, Chaves MM (1998). Differences in the re-
sponse of carbon assimilation to summer stress (water
deficits, high light and temperature) in four Mediterranean
tree species. Physiologia Plantarum, 102, 419–428.
Golan T, Müller-Moulé P, Niyogi KK (2006). Photoprotection
mutants of Arabidopsis thaliana acclimate to high light by
increasing photosynthesis and specific antioxidants. Plant,
Cell & Environment, 29, 879–887.
Greer DH, Berry JA, Björkman O (1986). Photoinhibition of
photosynthesis in intact bean leaves: role of light and
temperature, and requirement for chloroplast-protein syn-
thesis during recovery. Planta, 168, 253–260.
Guo LW, Xu DQ, Shen YG (1996). Relation between photo-
respiration and photoinhibition in cotton leaves. Chinese
Science Bulletin, 41, 415–420.
Huang JL, Li W, Meng FZ, Hu LP, Zhang ZX (2008). Changes
of chlorophyll fluorescence parameters and antioxidative
enzymes activities in antisense GVDE tobacco. Scientia
Agricultura Sinica, 41, 308–313. (in Chinese with English
abstract) [黄金丽 , 李伟 , 孟凡珍 , 胡丽萍 , 张振贤
(2008). 转反义GVDE基因烟草的叶绿素荧光参数及抗
氧化酶活性的变化. 中国农业科学, 41, 308–313.]
Jiang CD, Jiang GM, Wang XZ, Li LH, Biswas DK, Li YG
(2006). Increased photosynthetic activities and thermosta-
bility of photosystem II with leaf development of elm
seedlings (Ulmus pumila) probed by the fast fluorescence
rise OJIP. Environmental and Experimental Botany, 58,
261–268.
Jiang CD, Li PM, Gao HY, Zou Q, Jiang GM, Li LH (2005).
Enhanced photoprotection at the early stages of leaf ex-
pansion in field-grown soybean plants. Plant Science, 168,
911–919.
Jiang CD, Wang X, Gao HY, Shi L, Chow WS (2011). Sys-
temic regulation of leaf anatomical structure, photosyn-
thetic performance, and high-light tolerance in sorghum.
Plant Physiology, 155, 1416–1424.
Jiang GM (2004). Plant Ecophysiology. Higher Education
Press, Beijing. 59–62. (in Chinese) [蒋高明 (2004). 植物
生理生态学. 高等教育出版社, 北京. 59–62.]
Külheim C, Ågren J, Jansson S (2002). Rapid regulation of
light harvesting and plant fitness in the field. Science,
297(5578), 91–93.
Li PM, Gao HY, Strasser RJ (2005). Application of the fast
chlorophyll fluorescence induction dynamics analysis in
photosynthesis study. Journal of Plant Physiology and
Molecular Biology, 31, 559–566. (in Chinese with English
abstract) [李鹏民, 高辉远, Strasser RJ (2005). 快速叶绿
728 植物生态学报 Chinese Journal of Plant Ecology 2014, 38 (7): 720–728

www.plant-ecology.com
素荧光诱导动力学分析在光合作用研究中的应用. 植
物生理与分子生物学学报, 31, 559–566.]
Liu DH, Zhao SW (2012). The impacts of light levels on
growth and ornamental characteristics of Hosta. Acta Hor-
ticulturae, 977, 183–188.
Lü XK, Xu CH, Shu XY (2004). Characteristics of photosyn-
thesis in three Dendrobium species. Chinese Traditional
and Herbal Drugs, 35, 1296–1298. (in Chinese with Eng-
lish abstract) [吕献康, 徐春华, 舒小英 (2004). 3种石斛
的光合特性研究. 中草药, 35, 1296–1298.]
Niyogi KK (1999). Photoprotection revisited: genetic and mo-
lecular approaches. Annual Review of Plant Physiology
and Plant Molecular Biology, 50, 333–359.
Niyogi KK, Grossman AR, Björkman O (1998). Arabidopsis
mutants define a central role for the xanthophyll cycle in
the regulation of photosynthetic energy conversion. The
Plant Cell, 10, 1121–1134.
Öquist G, Anderson JM, McCaffery S, Chow WS (1992). Me-
chanistic differences in photoinhibition of sun and shade
plants. Planta, 188, 422–431.
Osmond CB (1981). Photorespiration and photoinhibition:
some implications for the energetics of photosynthesis.
Biochimica et Biophysica Acta (BBA)—Reviews on Bio-
energetics, 639, 77–98.
Park YI, Chow WS, Anderson JM (1995). Light inactivation of
functional photosystem II in leaves of peas grown in mod-
erate light depends on photon exposure. Planta, 196,
401–411.
Qi XX, Jiang YS, Wei X, Tang H, Xiong ZC, Ye WH, Wang
ZM (2012). Photosynthetic characteristic of an endangered
species Camellia nitidissima and its conservation implica-
tions. Pakistan Journal of Botany, 44, 327–331.
Quick WP, Stitt M (1989). An examination of factors contri-
buting to non-photochemical quenching of chlorophyll
fluorescence in barley leaves. Biochimica et Biophysica
Acta (BBA)—Bioenergetics, 977, 287–296.
Srivastava A, Guissé B, Greppin H, Strasser RJ (1997). Regula-
tion of antenna structure and electron transport in Photo-
system II of Pisum sativum under elevated temperature
probed by the fast polyphasic chlorophyll a fluorescence
transient: OKJIP. Biochimica et Biophysica Acta (BBA)—
Bioenergetics, 1320, 95–106.
Srivastava A, Strasser RJ (1996). Stress and stress management
of land plants during a regular day. Journal of Plant Phy-
siology, 148, 445–455.
Strasser BJ, Strasser RJ (1995). Measuring fast fluorescence
transients to address environmental questions: the JIP-test.
Photosynthesis: from Light to Biosphere, 5, 977–980.
Strasser RJ, Srivastava A, Tsimilli-Michael M (2000). The
fluorescence transient as a tool to characterize and screen
photosynthetic samples. In: Yunus M, Pathre U, Mohanty
P eds. Probing Photosynthesis: Mechanism, Regulation
and Adaptation. Taylor and Francis Press, London.
445–483.
Strasser RJ, Tsimilli-Michael M, Srivastava A (2004). Analysis
of the chlorophyll a fluorescence transient. In: Papageor-
giou G, Govindjee eds. Advances in Photosynthesis and
Respiration. Springer, Dordrecht, The Netherlands. 321–
362.
Tan XX, Xu DQ, Shen YG (1997). Relationship between state
transition and photoinhibition of photosynthesis in wheat
leaves. Chinese Science Bulletin, 42, 1839–1843.
Tholen D, Boom C, Zhu XG (2012). Opinion: prospects for
improving photosynthesis by altering leaf anatomy. Plant
Science, 197, 92–101.
Wang CJ, Li ZQ, Wang XL, Jiang CD, Tang YD, Gu WB, Shi
L (2011). Effects of salt stress on photosystem II activity
in sweet sorghum seedlings grown in pots outdoors. Acta
Agronomica Sinica, 37, 2085–2093. (in Chinese with Eng-
lish abstract) [王彩娟, 李志强, 王晓琳, 姜闯道, 唐宇
丹, 谷卫彬, 石雷 (2011). 室外盆栽条件下盐胁迫对甜
高粱光系统II活性的影响. 作物学报, 37, 2085–2093.]
Wang XL, Li ZQ, Jiang CD, Shi L, Xing Q, Liu LA (2012).
Effects of diffuse and direct light on photosynthetic func-
tion in sorghum leaf. Acta Agronomica Sinica, 38,
1452–1459. (in Chinese with English abstract) [王晓琳,
李志强, 姜闯道, 石雷, 邢全, 刘立安 (2012). 散射光
和直射光对高粱叶片光合功能的影响. 作物学报, 38,
1452–1459.]
Yang XH, Zou Q, Zhao SJ (2005). Photosynthetic characteris-
tics and chlorophyll fluorescence in leaves of cotton plants
grown in full light and 40% sunlight. Acta Phytoecologica
Sinica, 29, 8–15. (in Chinese with English abstract) [杨兴
洪, 邹琦, 赵世杰 (2005). 遮荫和全光下生长的棉花光
合作用和叶绿素荧光特征. 植物生态学报, 29, 8–15.]
Zhang SR (1999). A discussion on chlorophyll fluorescence
kinetics parameters and their significance. Chinese Bulle-
tin of Botany, 16, 444–448. (in Chinese with English ab-
stract) [张守仁 (1999). 叶绿素荧光动力学参数的意义
及讨论. 植物学通报, 16, 444–448.]


责任编委: 彭长连 责任编辑: 李 敏