以秸秆(覆盖重量分别为小麦(Triticum aestivum)秸3.25 kg·m-2、玉米(Zea mays)秸1.97 kg·m-2、禾本科杂草3.67 kg·m-2)和生草(白三叶草(Trifolium repens)、高羊茅(Festuca arundincea)和紫花苜蓿(Medicago sativa), 播种量均为50 kg·hm-2)为覆盖材料, 以不覆盖为对照, 研究了不同覆盖材料对桃园土壤微生物数量和酶活性的影响, 及其与土壤养分的关系。结果表明, 与对照相比, 除覆盖生草根际和非根际土壤全磷和速效磷含量差异均不显著外, 其他处理根际和非根际土壤碱解氮、速效钾、全氮、全钾和有机质含量差异均达到显著水平; 所有处理根际和非根际土壤氨化细菌、真菌和放线菌数量、土壤含水率和pH值、土壤脲酶和磷酸酶活性差异均达到显著水平。白三叶草处理的根际和非根际土壤碱解氮、速效钾、全氮、全钾、有机质含量, 土壤氨化细菌和真菌数量, 土壤脲酶和磷酸酶活性的平均升幅均最高, 分别为99%、270%、267%、117%、272%、158%、141%、156%和64%。氨化细菌、真菌、放线菌、脲酶和磷酸酶分别与土壤碱解氮、速效钾(放线菌和磷酸酶除外)、全氮、全钾和有机质呈显著或极显著的正相关。通径分析表明, 在3种土壤微生物和2种酶对养分含量的影响中, 脲酶是影响土壤碱解氮、速效钾、全氮、全钾和有机质的主要因子。
Aims My aims were to (a) study the effects of mulching materials on microbial quantities, enzyme activities and soil nutrient contents and their relationships and (b) explore feasibility of using soil microbial quantities and soil enzyme activities as indicators of soil health. Methods Straw of wheat (Triticum aestivum), stalks of corn (Zea mays) and weeds with 3.25, 1.97 and 3.67 kg·m-2 of covering weight, respectively, and living grass (Trifolium repens, Medicago sativa and Festuca arundinacea) with 50 kg·hm-2 of sowings were used as mulching materials, with no covering as the control. Important findings The contents of alkali-hydrolyzable nitrogen (N), available potassium (K), total N, total K and organic matter of the rhizospheric and non-rhizospheric soils were significantly increased by straw and living grass mulching, except for total phosphorus (P) and available P in the living grass treatment. Quantities of ammonification bacteria, fungi and actinomycetes, as well as soil moisture, pH value and activities of urease and phosphatase significantly increased in all treatments. Greatest mean increases of alkali-hydrolyzable N (99%), available K (270%), total N (267%), total K (117%), organic matter (272%), quantities of ammonification bacteria (158%) and fungi (141%) and activities of urease (156%) and phosphatase (64%) occurred in the Trifolium repens treatment. Soil alkali-hydrolyzable N, available K, total N, total K and organic matter showed significantly positive correlation with the amount of ammonification bacteria, fungi and actinomycetes and activities of urease and alkaline phosphatase, except for soil available K with actinomycetes and phosphatase. Path analysis indicated that soil urease activity was the most important factor affecting the accumulation of alkali-hydrolyzable N, available K, total N, total K and organic matter in the three types of soil microbes and two kinds of enzymes.
全 文 :植物生态学报 2011, 35 (12): 1236–1244 doi: 10.3724/SP.J.1258.2011.01236
Chinese Journal of Plant Ecology http://www.plant-ecology.com
——————————————————
收稿日期Received: 2011-06-29 接受日期Accepted: 2011-10-09
* E-mail: guilingzhang2003@126.com
秸秆和生草覆盖对桃园土壤养分含量、微生物数量
及土壤酶活性的影响
张桂玲*
临沂大学生命科学学院, 山东临沂 276005
摘 要 以秸秆(覆盖重量分别为小麦(Triticum aestivum)秸3.25 kg·m–2、玉米(Zea mays)秸1.97 kg·m–2、禾本科杂草3.67 kg·m–2)
和生草(白三叶草(Trifolium repens)、高羊茅(Festuca arundincea)和紫花苜蓿(Medicago sativa), 播种量均为50 kg·hm–2)为覆盖
材料, 以不覆盖为对照, 研究了不同覆盖材料对桃园土壤微生物数量和酶活性的影响, 及其与土壤养分的关系。结果表明, 与
对照相比, 除覆盖生草根际和非根际土壤全磷和速效磷含量差异均不显著外, 其他处理根际和非根际土壤碱解氮、速效钾、
全氮、全钾和有机质含量差异均达到显著水平; 所有处理根际和非根际土壤氨化细菌、真菌和放线菌数量、土壤含水率和pH
值、土壤脲酶和磷酸酶活性差异均达到显著水平。白三叶草处理的根际和非根际土壤碱解氮、速效钾、全氮、全钾、有机质
含量, 土壤氨化细菌和真菌数量, 土壤脲酶和磷酸酶活性的平均升幅均最高, 分别为99%、270%、267%、117%、272%、158%、
141%、156%和64%。氨化细菌、真菌、放线菌、脲酶和磷酸酶分别与土壤碱解氮、速效钾(放线菌和磷酸酶除外)、全氮、
全钾和有机质呈显著或极显著的正相关。通径分析表明, 在3种土壤微生物和2种酶对养分含量的影响中, 脲酶是影响土壤碱
解氮、速效钾、全氮、全钾和有机质的主要因子。
关键词 生草, 桃园, 土壤酶, 土壤微生物, 土壤养分, 秸秆
Effects of straw and living grass mulching on soil nutrients, soil microbial quantities and soil
enzyme activities in a peach orchard
ZHANG Gui-Ling*
College of Life Sciences, Linyi University, Linyi, Shandong 276005, China
Abstract
Aims My aims were to (a) study the effects of mulching materials on microbial quantities, enzyme activities and
soil nutrient contents and their relationships and (b) explore feasibility of using soil microbial quantities and soil
enzyme activities as indicators of soil health.
Methods Straw of wheat (Triticum aestivum), stalks of corn (Zea mays) and weeds with 3.25, 1.97 and 3.67
kg·m–2 of covering weight, respectively, and living grass (Trifolium repens, Medicago sativa and Festuca arun-
dinacea) with 50 kg·hm–2 of sowings were used as mulching materials, with no covering as the control.
Important findings The contents of alkali-hydrolyzable nitrogen (N), available potassium (K), total N, total K
and organic matter of the rhizospheric and non-rhizospheric soils were significantly increased by straw and living
grass mulching, except for total phosphorus (P) and available P in the living grass treatment. Quantities of am-
monification bacteria, fungi and actinomycetes, as well as soil moisture, pH value and activities of urease and
phosphatase significantly increased in all treatments. Greatest mean increases of alkali-hydrolyzable N (99%),
available K (270%), total N (267%), total K (117%), organic matter (272%), quantities of ammonification bacteria
(158%) and fungi (141%) and activities of urease (156%) and phosphatase (64%) occurred in the Trifolium repens
treatment. Soil alkali-hydrolyzable N, available K, total N, total K and organic matter showed significantly posi-
tive correlation with the amount of ammonification bacteria, fungi and actinomycetes and activities of urease and
alkaline phosphatase, except for soil available K with actinomycetes and phosphatase. Path analysis indicated that
soil urease activity was the most important factor affecting the accumulation of alkali-hydrolyzable N, available
K, total N, total K and organic matter in the three types of soil microbes and two kinds of enzymes.
Key words grass, peach orchard, soil enzyme, soil microbial populations, soil nutrients, straw
张桂玲: 秸秆和生草覆盖对桃园土壤养分含量、微生物数量及土壤酶活性的影响 1237
doi: 10.3724/SP.J.1258.2011.01236
果园秸秆和生草覆盖能增加土壤含水量, 提高
土壤肥力, 改善土壤结构, 加快土壤物质循环、提
高土壤养分利用率和降低投入成本, 是一项效果显
著的土壤管理技术(Oelbermann et al., 2004; Som-
mer et al., 2004; Fang et al., 2005; King & Berry,
2005; 李玲玲等, 2005; Abbona et al., 2007; 李会科
等, 2007; Monteiro & Lopes, 2007)。土壤理化性质是
反映土壤肥力的一个综合指标。它与土壤微生物数
量和土壤酶活性之间有着密切的关系。它反映的是
土壤遭受干扰时各种长期的复杂的变化, 是一个缓
慢的过程。而土壤微生物数量和酶活性反映的是土
壤遭受干扰时各种短期的微小的变化, 它直接影响
土壤养分的有效性和土壤肥力状况(Spring, 1992;
薛泉宏, 2000)。土壤微生物种类与酶活性能为土壤
的变化提供更快速可靠的直接证据, 是表征土壤质
量变化最敏感、最有潜力的生物学指标(Tiquia et al.,
2002; 唐玉姝等, 2007)。在土壤微生物种群中, 纤维
素分解菌是影响土壤有机质含量的最重要的微生
物因子, 放线菌是影响土壤氮(N)、磷(P)、钾(K)的
最重要的微生物因子(惠竹梅等, 2010)。土壤酶催化
有机物的矿化, 参与有机物的形成, 反映土壤各种
化学反应的动向, 其活性容易检测, 是土壤质量评
价中常用的指标(徐福利等, 2004; 郑勇等, 2008)。
在土壤各种酶中, 脲酶和磷酸酶活性可作为土壤肥
力的指标, 且酶活性大小受到土壤化学性质的影响
(贾伟等, 2008)。过氧化氢酶、脲酶、蔗糖酶、磷酸
酶活性可用于评价丘陵茶园土壤C、N肥力(徐华勤
等, 2007, 2008, 2009)。目前, 国内外有关秸秆和生
草覆盖桃园土壤微生物数量、酶活性与土壤养分含
量之间关系的研究不多, 并且土壤是一个复杂有机
体, 不同土地利用方式、不同环境条件下影响有机
质含量的生物因子和酶因子不同(马建军等, 2007)。
本文研究不同秸秆和生草覆盖对桃园土壤养分含
量、微生物数量和酶活性的影响, 分析微生物数量、
酶活性与土壤养分含量之间的关系, 探讨将土壤微
生物数量和土壤酶活性作为评价桃园土壤质量优
劣指标的可行性, 旨在为有机桃园的土壤健康质量
评价提供参考。
1 材料和方法
1.1 研究地概况
试验园位于山东省临沂市(117°24″–119°11″ E、
34°22″–36°22″ N), 海拔197.9 m, 属温带季风大陆
性气候, 年平均气温14.1 ℃, 降水量849 mm, 无霜
期200天以上。土壤为褐土, 覆盖前0–60 cm土层土
壤全N含量为0.39 g·kg–1, 全P为0.47 g·kg–1, 全K为
4.09 g·kg–1, 土壤碱解N为67.40 mg·kg–1, 速效P为
3.82 mg·kg–1, 速效K为38.4 mg·kg–1, 有机质含量为
9.13 g·kg–1, pH值为5.28, 土壤容重为1.35 g·cm–3。
1.2 试验设计
秸秆覆盖以小麦(Triticum aestivum)秸(覆盖重
量为3.25 kg·m–2)、玉米(Zea mays)秸(覆盖重量为
1.97 kg·m–2)、狗尾草(Setaira viridis)等禾本科杂草
(覆盖重量为3.67 kg·m–2)为材料, 覆盖厚度均为10
cm。2006年7月, 用粉碎机粉碎后进行覆盖, 于第二
年11月份进行补加, 以保证10 cm的覆盖厚度。生草
覆盖以白三叶草(Trifolium repens)、高羊茅(Festuca
arundincea)、紫花苜蓿(Medicago sativa)的种子为材
料, 2006年春季播种, 撒播草种量为50 kg·hm–2, 于
第二年3月份补栽。不覆盖为对照, 共设7个处理,
每个处理分3个小区(3次重复), 各处理小区土壤灌
水施肥条件一致, 试验均采用随机区组, 各小区覆
盖面积为110 m2。
1.3 土壤样品收集
于2008年4月、7月和11月, 分别收集各处理小
区根际土样。收集方法为: 在各处理小区内随机选
择桃树(Amygdalus persica) 3株, 先用铁铲除去覆盖
物, 再用土壤刀挖去上层覆土, 沿侧根的伸展方向
找到须根部分, 剪下分枝, 小心将须根带土取出,
保留距根表4 mm左右的土壤, 采用抖落法取土样
(刘久俊, 2007)。收集非根际土壤时, 收集细根外(>4
mm)的土壤(刘久俊, 2007), 保存于4 ℃冰箱中, 进
行各指标测定, 取3次测定结果的平均值。
1.4 测定项目与方法
土壤全N采用硫酸-高氯酸消煮法测定; 土壤碱
解N采用碱解-扩散法测定; 土壤全P和速效P采用
钼锑抗比色法测定; 全K和速效K采用原子吸收光
谱法测定; 土壤有机物采用K2Cr2O7氧化外加热法
测定(鲍士旦, 2000); 土壤脲酶活性采用比色法测
定(以24 h后1 g土样中NH3-N的毫克数表示); 土壤
磷酸酶活性采用磷酸苯二钠比色法测定(以2 h后
100 g土样中P2O5的mg数表示) (关松荫, 1983); 土
壤pH值采用电位法测定; 土壤含水量采用烘干法
测定; 土壤微生物数量采用稀释平板法测定(中国
1238 植物生态学报 Chinese Journal of Plant Ecology 2011, 35 (12): 1236–1244
www.plant-ecology.com
科学院南京土壤研究所, 1985)。氨化细菌培养采用
蛋白胨氨化培养基; 真菌培养用马丁氏-孟加拉红
培养基; 放线菌培养采用马铃薯蔗糖琼脂培养基
(中国科学院南京土壤研究所, 1985)。
1.5 数据分析
数据采用SAS 9.0数据分析软件进行统计分析
及通径分析, 并用邓肯法(明道绪, 2007)进行多重比
较。
2 结果和分析
2.1 不同覆盖材料对土壤含水率和pH的影响
表1显示, 与对照相比, 所有处理均能显著提
高根际和非根际土壤的含水率和pH值, 其中秸秆
处理与生草处理之间差异达到显著水平, 秸秆和生
草不同处理内部两两差异均不显著, 这说明秸秆覆
盖能更有效地减少地表土壤水分蒸发, 增加土壤水
分入渗, 提高土壤含水量, 调节土壤pH, 使土壤pH
接近中性。
2.2 不同覆盖材料对土壤养分含量的影响
表2和表3的结果表明, 与对照相比, 除了高羊
茅处理根际和非根际土壤碱解N、全N和全K差异不
显著外, 其他处理根际和非根际土壤碱解N、速效
K、全N、全K和有机质的含量差异均达到显著水平
(p < 0.05), 其中白三叶草处理的平均升幅均最高,
分别为99%、270%、267%、117%和272%。与对照
相比, 白三叶草、紫花苜蓿和高羊茅处理根际和非
根际土壤速效P和全P含量差异均不显著, 禾本科杂
草、小麦秸和玉米秸处理根际和非根际土壤速效P
和全P含量差异均达到显著水平, 其中禾本科杂草
的平均升幅最大, 分别为84%和36%。
表1 不同覆盖材料对土壤含水率和pH的影响(平均值±标准误差)
Table 1 Effects of different mulching materials on moisture content and pH of soil (mean ± SE)
含水率
Moisture content (%)
pH 处理
Treatment
根际
Rhizosphere
非根际
Non-rhizosphere
根际
Rhizosphere
非根际
Non-rhizosphere
白三叶草 Trifolium repens 30.21 ± 2.49b 27.27 ± 2.36b 5.90 ± 0.20b 5.78 ± 0.27b
紫花苜蓿 Medicago sativa 28.90 ± 2.38b 26.90 ± 2.09b 5.92 ± 0.25b 5.75 ± 0.19b
高羊茅 Festuca arundincea 27.65 ± 2.19b 25.87 ± 2.18b 5.61 ± 0.19b 5.65 ± 0.20b
玉米秸 Corn stalks 37.15 ± 2.45a 32.55 ± 2.75a 6.31 ± 0.30a 6.25 ± 0.24a
小麦秸 Wheat straw 35.74 ± 2.87a 31.39 ± 2.52a 6.24 ± 0.25a 6.14 ± 0.22a
禾本科杂草 Gramineal weeds 35.28 ± 3.12a 27.89 ± 3.51a 6.35 ± 0.23a 6.27 ± 0.22a
对照 Control 15.23 ± 2.91c 13.14 ± 2.91c 5.60 ± 0.22c 5.54 ± 0.31c
同列不同小写字母表示处理间差异显著(p < 0.05)。
Different small letters in the same column meant significant difference at 0.05 level among treatments.
表2 不同覆盖材料对土壤速效养分含量的影响(平均值±标准误差)
Table 2 Effects of different mulching materials on soil available nutrient contents (mean ± SE)
同列不同小写字母表示处理间差异显著(p < 0.05)。
Different small letters in the same column meant significant difference at 0.05 level among treatments.
碱解氮
Alkali-hydrolyzable nitrogen (mg·kg–1)
速效磷
Available phosphorus (mg·kg–1)
速效钾
Available potassium (mg·kg–1)
处理
Treatment
根际
Rhizosphere
非根际
Non-rhizosphere
根际
Rhizosphere
非根际
Non-rhizosphere
根际
Rhizosphere
非根际
Non-rhizosphere
白三叶草 Trifolium repens 152.10 ± 9.05a 139.55 ± 9.56a 5.48 ± 0.24c 4.57 ± 0.22c 201.36 ± 11.85a 174.02 ± 13.01a
紫花苜蓿 Medicago sativa 123.46 ± 8.60b 119.25 ± 8.55b 5.50 ± 0.31c 4.69 ± 0.29c 105.22 ± 9.96b 86.22 ± 7.54c
高羊茅 Festuca arundincea 75.56 ± 6.70d 70.20 ± 6.50d 5.30 ± 0.36c 4.75 ± 0.41c 190.05 ± 11.94a 144.11 ± 5.39b
玉米秸 Corn stalks 96.02 ± 8.55c 91.60 ± 8.00c 7.29 ± 0.40b 6.64 ± 0.37b 89.93 ± 5.98b 62.29 ± 4.07d
小麦秸 Wheat straw 95.77 ± 8.46c 91.35 ± 8.54c 7.06 ± 0.46b 6.65 ± 0.43b 88.79 ± 4.94b 60.04 ± 5.00d
禾本科杂草 Gramineal weeds 95.69 ± 9.90c 90.05 ± 9.86c 9.22 ± 0.56a 8.38 ± 0.54a 86.71 ± 4.10b 61.27 ± 4.97d
对照 Control 74.18 ± 6.90d 72.75 ± 6.35d 5.07 ± 0.32c 4.50 ± 0.47c 54.28 ± 5.04c 47.22 ± 3.68e
张桂玲: 秸秆和生草覆盖对桃园土壤养分含量、微生物数量及土壤酶活性的影响 1239
doi: 10.3724/SP.J.1258.2011.01236
表3 不同覆盖材料对土壤全氮(N)、全磷(P)、全钾(K)和有机质含量的影响(平均值±标准误差)
Table 3 Effects of different mulching materials on the contents of total nitrogen (N), total phosphorus (P), total potassium (K) and
organic matter of soil (mean ± SE)
全N
Total N (g·kg–1)
全P
Total P (g·kg–1)
全K
Total K (g·kg–1)
有机质
Organic matter (g·kg–1)
处理
Treatment
根际
Rhizosphere
非根际
Non-
rhizosphere
根际
Rhizosphere
非根际
Non-
rhizosphere
根际
Rhizosphere
非根际
Non-
rhizosphere
根际
Rhizosphere
非根际
Non-
rhizosphere
白三叶草
Trifolium repens
1.87 ± 0.20a 1.62 ± 0.16a 0.69 ± 0.04b 0.58 ± 0.08b 12.24 ± 0.85a 10.28 ± 0.71a 53.45 ± 2.35a 50.09 ± 2.52a
紫花苜蓿
Medicago sativa
1.86 ± 0.16a 1.63 ± 0.15a 0.70 ± 0.04b 0.59 ± 0.03b 11.91 ± 0.96a 9.66 ± 0.54a 48.78 ± 2.60b 45.35 ± 1.53b
高羊茅
Festuca arundincea
0.78 ± 0.10c 0.59 ± 0.11c 0.65 ± 0.03b 0.54 ± 0.02b 6.93 ± 0.94c 4.24 ± 0.39c 48.56 ± 1.45b 46.31 ± 2.50b
玉米秸
Corn stalks
1.22 ± 0.12b 1.05 ± 0.16b 0.86 ± 0.07a 0.73 ± 0.07a 9.17 ± 0.98b 7.05 ± 0.67b 27.02 ± 1.55c 24.62 ± 1.81c
小麦秸
Wheat straw
1.20 ± 0.13b 1.02 ± 0.14b 0.87 ± 0.06a 0.72 ± 0.03a 9.07 ± 0.77b 6.92 ± 0.54b 25.23 ± 1.78c 22.53 ± 1.26cd
禾本科杂草
Gramineal weeds
1.17 ± 0.10b 0.98 ± 0.16b 0.88 ± 0.03a 0.74 ± 0.05a 9.18 ± 0.62b 6.88 ± 0.25b 24.90 ± 1.06c 20.97 ± 1.72d
对照 Control 0.53 ± 0.09c 0.42 ± 0.15c 0.62 ± 0.04b 0.57 ± 0.07b 5.99 ± 0.54c 4.38 ± 0.68c 11.18 ± 1.90d 10.77 ± 2.34e
同列不同小写字母表示处理间差异显著(p < 0.05)。
Different small letters in the same column meant significant difference at 0.05 level among treatments.
表4 不同覆盖材料对土壤氨化细菌、真菌和放线菌数量的影响(平均值±标准误差)
Table 4 Effects of different mulching materials on quantities of ammonification bacteria, fungi and actinomyces of soil (mean ± SE)
氨化细菌
Ammonification bacteria (×105·g–1)
真菌
Fungi (×104·g–1)
放线菌
Actinomyces (×103·g–1)
处理
Treatment
根际
Rhizosphere
非根际
Non-rhizosphere
根际
Rhizosphere
非根际
Non-rhizosphere
根际
Rhizosphere
非根际
Non-rhizosphere
白三叶草 Trifolium repens 13.39 ± 1.23a 9.63 ± 0.75a 6.27 ± 0.32a 4.76 ± 0.32a 6.89 ± 0.36b 5.21 ± 0.20b
紫花苜蓿 Medicago sativa 13.78 ± 1.25a 10.85 ± 0.81a 5.99 ± 0.26a 4.70 ± 0.21a 7.77 ± 0.50a 6.71 ± 0.32a
高羊茅 Festuca arundincea 10.28 ± 0.92b 8.94 ± 0.62b 5.33 ± 0.23b 4.28 ± 0.17b 3.21 ± 0.34d 2.19 ± 0.16d
玉米秸 Corn stalks 8.36 ± 0.83c 7.14 ± 0.55c 3.58 ± 0.20c 2.28 ± 0.15c 4.85 ± 0.27c 3.65 ± 0.14c
小麦秸 Wheat straw 8.45 ± 0.85c 7.10 ± 0.48c 3.49 ± 0.19c 2.58 ± 0.10c 4.65 ± 0.21c 3.54 ± 0.12c
禾本科杂草 Gramineal weeds 8.38 ± 0.77c 7.08 ± 0.39c 3.37 ± 0.15c 2.44 ± 0.08c 3.20 ± 0.19d 2.18 ± 0.08d
对照 Control 6.67 ± 0.43d 5.25 ± 0.22d 2.67 ± 0.12d 1.90 ± 0.05d 2.49 ± 0.13e 1.56 ± 0.05e
同列不同小写字母表示处理间差异显著(p < 0.05)。
Different small letters in the same column meant significant difference at 0.05 level among treatments.
以上说明生草覆盖和秸秆覆盖不仅能增加土
壤总的养分含量, 还可以增加土壤速效养分含量,
同时减少化肥的使用量, 有利于田园土壤的生态健
康, 因此, 可以根据当地的实际情况选择合适的覆
盖材料来提高土壤养分含量。
2.3 不同覆盖材料对土壤氨化细菌、真菌和放线菌
数量的影响
由表4可见, 与对照相比, 所有处理均能显著
提高根际和非根际土壤的氨化细菌、真菌和放线菌
数量。不同处理之间根际和非根际土壤的氨化细菌
和真菌数量均有差异, 除了白三叶草与紫花苜蓿之
间, 玉米秸、小麦秸和禾本科杂草两两之间差异不
显著外, 其余处理两两之间差异均达到显著水平,
其中白三叶草处理的平均升幅最高, 分别为158%
和141%, 其次是紫花苜蓿处理, 平均升幅为140%
和134%; 不同处理之间根际和非根际土壤放线菌
数量有差异, 除了玉米秸与小麦秸之间, 高羊茅与
禾本科杂草之间差异不显著外, 其余处理两两之间
差异均达到显著水平, 其中紫花苜蓿处理平均升幅
最大, 为258%。
2.4 不同覆盖材料对土壤脲酶和磷酸酶活性的影
响
表5表明, 与对照相比, 所有处理均能显著提
高根际和非根际土壤脲酶和磷酸酶的活性, 且不同
1240 植物生态学报 Chinese Journal of Plant Ecology 2011, 35 (12): 1236–1244
www.plant-ecology.com
处理之间有差异, 从对土壤脲酶活性的影响来看,
除了白三叶草与紫花苜蓿之间, 高羊茅、玉米秸和
小麦秸两两之间差异不显著外, 其余处理两两之间
差异均达到显著水平, 其中白三叶草和紫花苜蓿处
理的平均升幅均较高, 分别为156%和142%; 从对
土壤磷酸酶活性的影响来看, 除了高羊茅、玉米秸、
小麦秸和禾本科杂草两两之间差异不显著外, 其余
处理两两之间差异均达到显著水平, 其中白三叶草
处理的平均升幅最高, 为64%。
2.5 土壤微生物数量、酶活性与土壤养分含量之间
的相关分析
表6表明, 氨化细菌、真菌、放线菌、脲酶和磷
酸酶分别与土壤碱解N、速效K (放线菌和磷酸酶除
外)、全N、全K和有机质呈显著或极显著的正相关,
与速效P和全P多数呈负相关, 且相关性不显著, 与
含水率和pH相关性不显著(脲酶与含水率除外)。
2.6 土壤微生物数量、酶活性与土壤养分含量之间
的通径分析
表7表明, 在3种微生物和2种酶对土壤养分含
量的影响中, 脲酶是影响土壤碱解N、速效K、全N、
全K和有机质的主要因子, 其中对速效K的直接作
用为负, 其决定系数和间接通径系数之和均较大,
说明脲酶主要是通过其他因素的间接作用起作用
的, 对土壤碱解N、全N、全K和有机质的直接作用
为正, 其决定系数较大, 而间接通径系数之和较小,
说明脲酶主要是直接起作用的。磷酸酶对土壤碱解
N和速效K的影响也较大, 直接作用为正, 决定系
数较大, 而间接通径系数之和较小, 说明磷酸酶是
直接起作用的。真菌是影响速效K和有机质的主要
微生物因子, 对速效K和有机质的影响作用为正,
是直接起作用的。放线菌也是影响速效K的主要微
生物因子, 决定系数和间接通径系数之和均较大,
表5 不同覆盖材料对土壤酶活性的影响(平均值±标准误差)
Table 5 Effects of different mulching materials on enzyme activities of soil (mean ± SE)
脲酶
Urease (mg·g–1·24 h–1)
磷酸酶
Phosphatase (µg·g –1·2 h –1)
处理
Treatment
根际
Rhizosphere
非根际
Non-rhizosphere
根际
Rhizosphere
非根际
Non-rhizosphere
白三叶草 Trifolium repens 0.49 ± 0.03a 0.43 ± 0.04a 128.40 ± 4.10a 119.50 ± 4.50a
紫花苜蓿 Medicago sativa 0.47 ± 0.02a 0.40 ± 0.02a 117.90 ± 2.50b 109.90 ± 3.60b
高羊茅 Festuca arundincea 0.36 ± 0.02b 0.30 ± 0.01b 97.20 ± 3.00c 85.30 ± 3.30c
玉米秸 Corn stalks 0.37 ± 0.03b 0.29 ± 0.03b 97.60 ± 5.10c 84.80 ± 4.80c
小麦秸 Wheat straw 0.38 ± 0.02b 0.31 ± 0.02b 98.90 ± 4.20c 86.40 ± 3.70c
禾本科杂草 Gramineal weeds 0.23 ± 0.01c 0.20 ± 0.01c 98.00 ± 5.00c 85.90 ± 4.40c
对照 Control 0.19 ± 0.01d 0.17 ± 0.01c 77.00 ± 3.40d 74.40 ± 2.60d
同列不同小写字母表示处理间差异显著(p < 0.05)。
Different small letters in the same column meant significant difference at 0.05 level among treatments.
表6 土壤微生物数量、酶活性与土壤养分含量的相关系数
Table 6 Correlation coefficients among soil microbial quantity, enzyme activity and soil nutrient content
**, p < 0.01; *, p < 0.05。临界值: R0.05 = 0.532, R0.01 = 0.661。
**, p < 0.01; *, p < 0.05. Critical value: R0.05 = 0.532, R0.01 = 0.661.
相关因子
Correlation factor
碱解氮
Alkali-hydrolyzable
nitrogen
速效磷
Available
phosphorus
速效钾
Available
potassium
全氮
Total
nitrogen
全磷
Total
phosphorus
全钾
Total
potassium
有机质
Organic
matter
含水率
Moisture
content
pH
氨化细菌
Ammonification bacteria
0.735** –0.205 0.664** 0.824** 0.100 0.827** 0.839** 0.364 –0.054
真菌
Fungi
0.643* –0.287 0.799** 0.690** –0.060 0.672* 0.906** 0.342 –0.130
放线菌
Actinomyces
0.851** –0.295 0.461 0.904** –0.010 0.873** 0.728** 0.217 –0.093
脲酶
Urease
0.878** –0.056 0.594* 0.948** 0.259 0.924** 0.772** 0.575* 0.201
磷酸酶
Phosphatase
0.961** –0.113 0.526 0.945** 0.128 0.944** 0.668** 0.346 0.089
张桂玲: 秸秆和生草覆盖对桃园土壤养分含量、微生物数量及土壤酶活性的影响 1241
doi: 10.3724/SP.J.1258.2011.01236
表7 土壤微生物数量、酶活性与土壤养分含量的通径系数
Table 7 Path coefficients of soil microbial quantity and enzyme activity to soil nutrient content
加粗的数据为直接通径系数。Y1, 碱解氮; Y2, 速效钾; Y3, 全氮; Y4, 全钾; Y5, 有机质; X1, 氨化细菌; X2, 真菌; X3, 放线菌; X4, 脲酶; X5, 磷酸
酶。
Bold data are direct path coefficients. Y1, alkali-hydrolyzable nitrogen; Y2, available potassium; Y3, total nitrogen; Y4, total potassium; Y5, organic
matter. X1, ammonification bacteria; X2, fungi; X3, actinomyces; X4, urease; X5, phosphatase.
是间接起作用的。氨化细菌对土壤碱解N、全N和
有机质的直接作用为负, 对速效K和全K的直接作
用为正。
土壤微生物因子和酶因子在对土壤有机质含
量的影响中, 脲酶是最强的影响因子, 其次是真菌,
氨化细菌的影响最小。
3 讨论
生草和秸秆覆盖均能显著提高根际和非根际
土壤的含水率和pH, 这说明生草和秸秆覆盖后减
少了地表土壤水分的蒸发, 增加了土壤水分的入渗
作用, 提高了土壤的含水量, 调节了土壤pH, 使土
壤pH接近中性, 起到保水保墒的作用, 这与姚健等
(2009)的研究结果一致。
除高羊茅外, 不同覆盖材料均能显著提高土壤
根际和非根际全N、全P、全K、土壤碱解N、速效P、
速效K和有机质的含量, 其中白三叶草覆盖土壤的
碱解N、速效K、全N、全K和有机质含量平均升幅
均最高, 禾本科杂草、小麦秸和玉米秸覆盖土壤的
速效P、全P含量的平均升幅均较高, 这与贺军奇等
因变量
Dependent
variable
自变量
Independent
variable
X1 Χ2 Χ3 Χ4 Χ5 决定系数
Determination
coefficient R2
间接通径系数之和
Sum of indirect
path coefficient
X1 –8.314 4.770 3.534 68.912 11.476 69.123 88.692
X2 –7.493 5.292 2.950 61.202 9.577 28.005 66.236
X3 –7.615 4.046 3.858 67.368 12.513 14.884 76.312
X4 –7.525 4.254 3.414 76.142 12.635 5 797.604 12.778
Y1
X5 –6.945 3.689 3.514 70.026 13.739 188.760 70.284
X1 12.727 31.480 –30.602 –198.413 23.160 161.977 –174.375
X2 11.471 34.930 –25.545 –176.214 19.326 1 220.105 –170.962
X3 11.657 26.706 –33.411 –193.967 25.251 1 116.295 –130.353
X4 11.519 28.076 –29.561 –219.229 25.499 48 061.354 35.533
Y2
X5 10.631 24.347 –30.429 –201.618 27.726 768.731 –197.069
X1 –0.094 –0.004 0.109 3.601 0.042 0.009 3.748
X2 –0.085 –0.005 0.091 3.198 0.035 0.000 3.239
X3 –0.086 –0.004 0.119 3.521 0.046 0.014 3.477
X4 –0.085 –0.004 0.105 3.979 0.046 15.832 0.062
Y3
X5 –0.079 –0.003 0.108 3.659 0.050 0.003 3.685
X1 0.173 –0.345 –0.050 10.382 0.718 0.030 10.705
X2 0.156 –0.383 –0.041 9.220 0.599 0.147 9.934
X3 0.159 –0.293 –0.054 10.149 0.782 0.003 10.797
X4 0.157 –0.308 –0.048 11.471 0.790 131.584 0.591
Y4
X5 0.145 –0.267 –0.049 10.549 0.859 0.738 10.378
X1 –0.289 8.094 0.535 27.068 –0.731 0.084 34.966
X2 –0.260 8.981 0.447 24.039 –0.610 80.658 23.616
X3 –0.264 6.867 0.584 26.461 –0.797 0.341 32.267
X4 –0.261 7.219 0.517 29.907 –0.805 894.429 6.670
Y5
X5 –0.241 6.260 0.532 27.505 –0.875 0.766 34.056
1242 植物生态学报 Chinese Journal of Plant Ecology 2011, 35 (12): 1236–1244
www.plant-ecology.com
(2007)和惠竹梅等(2010)的研究结果基本一致。秸秆
和生草覆盖后不仅向土壤提供了营养物质, 还改善
了土壤的水分、热量和通气状况, 调节了土壤酸碱
度, 促进了微生物活动, 加速了土壤有机质的矿化
作用, 促进了土壤养分的释放, 另外, 豆科植物由
于具有固氮作用提高了土壤N的净输入, 使土壤N
含量升高(King & Berry, 2005; Steenwerth & Belina,
2008)。
生草和秸秆覆盖均能显著提高根际和非根际
土壤的氨化细菌、真菌和放线菌数量, 其中白三叶
草和紫花苜蓿覆盖的土壤氨化细菌和真菌数量的
平均升幅均较高, 紫花苜蓿覆盖的土壤放线菌数量
平均升幅最高, 这可能是由于豆科植物根系具有较
强的固氮能力, 能促进土壤微生物的生长, 提高土
壤微生物数量。另外, 生草和秸秆覆盖后改善了土
壤的含水量, 增加了土壤有机质含量, 使土壤的
C/N发生了变化, 从而导致和刺激土壤微生物的增
加(Fang et al., 2008)。
生草和秸秆覆盖均能显著提高根际和非根际
土壤中脲酶和磷酸酶的活性, 这可能与土壤覆盖后
改善了土壤的水分状况, 调节了土壤的pH, 增加了
土壤有机质有关, 其中白三叶草覆盖的土壤2种酶
活性均最高, 这可能是由于白三叶草根系分泌物使
土壤微生物大量繁殖造成的, 同时根系本身也能向
土壤提供酶(樊军和郝明德, 2003)。
土壤微生物、土壤酶与土壤养分含量之间有一
定的相关性。本试验结果表明, 氨化细菌、真菌、
放线菌、脲酶和磷酸酶分别与土壤碱解N、速效K
(放线菌和磷酸酶除外)、全N、全K、有机质呈显著
或极显著的正相关, 与速效P和全P多数呈负相关,
且相关性不显著, 这说明土壤微生物和土壤酶是土
壤养分和有机质形成和积累的重要因素。
土壤微生物与土壤酶共同参与土壤的新陈代
谢, 二者的变化可以灵敏地反映出土壤有机质的矿
化作用, 在一定程度上可以代表土壤的肥力状况
(张星杰等, 2008)。本试验通径分析结果表明, 在土
壤微生物和酶对有机质含量的影响中, 脲酶是影响
有机质含量的最主要的因子, 这可能与土壤脲酶活
性的高低能反映土壤生物活性和土壤生化反应强
度(de la Paz Jimenez et al., 2002), 与土壤肥力之间
存在着非常密切的相关关系(耿玉清等, 2006)有关,
其次是真菌, 这可能与真菌在土壤中活跃地分解有
机质, 参与土壤中的物质转化过程有关。本研究认
为, 可以用土壤脲酶活性的高低和真菌数量的多少
来评价桃园土壤肥力水平。本研究与徐华勤等
(2009)的报道基本一致, 与徐强等(2007)和惠竹梅
等(2010)的报道有所不同, 这可能与土壤是一个复
杂有机体, 不同环境条件差异较大有关。因此, 对
影响桃园土壤肥力的生物因子和酶因子及其相互
关系, 以及它们对土壤可持续利用的影响还有待进
一步研究。
致谢 山东省星火计划项目(2010XH1233)资助。
参考文献
Abbona EA, Sarandón SJ, Marasas ME, Astier M (2007). Eco-
logical sustainability evaluation of traditional management
in different vineyard systems in Berisso, Argentina. Agri-
culture, Ecosystems and Environment, 119, 335–345.
Bao SD (鲍士旦) (2000). Soil and Agricultural Chemistry
Analysis (土壤农化分析). China Agricultural Press, Bei-
jing. 30–107. (in Chinese)
de la Paz Jimenez M, de la Horra AM, Pruzzo L, Palma RM
(2002). Soil quality: a new index based on microbiological
and biochemical parameters. Biology and Fertility of Soils,
35, 302–306.
Fan J (樊军), Hao MD (郝明德) (2003). Study on long-term
experiment of crop rotation and fertilization in the Loess
Plateau II. Relationship between soil enzyme activities
and soil fertility. Plant Nutrition and Fertilizer Science
(植物营养与肥料学报), 9, 146–150. (in Chinese with
English abstract)
Fang SZ, Li HY, Xie BD (2008). Decomposition and nutrient
release of four potential mulching materials for poplar
plantations on upland sites. Agroforestry Systems, 74,
27–35.
Fang SZ, Xu XZ, Yu X, Li ZC (2005). Poplar in wetland agro-
forestry: a case study of ecological benefits, site produc-
tivity, and economics. Wetlands Ecology and Manage-
ment, 13, 93–104.
Geng YQ (耿玉清), Bai CX (白翠霞), Zhao TR (赵铁蕊),
Wang SS (王树森), Chen JQ (陈峻崎) (2006). Soil en-
zyme activity and its relationship with the soil fertility in
Badaling Mountain area of Beijing. Journal of Beijing
Forestry University (北京林业大学学报), 28(5), 7–11. (in
Chinese with English abstract)
Guan SY (关松荫) (1983). Soil Enzymes and Their Methodol-
ogy (土壤酶及其研究法). China Agricultural Press, Bei-
jing. 294–313. (in Chinese)
He JQ (贺军奇), Wu PT (吴普特), Wang YK (汪有科) (2007).
Study on influence of straw mulch on change of plant-soil
environment of peach orchard. Water Saving Irrigation
张桂玲: 秸秆和生草覆盖对桃园土壤养分含量、微生物数量及土壤酶活性的影响 1243
doi: 10.3724/SP.J.1258.2011.01236
(节水灌溉), (5), 7–10. (in Chinese)
Hui ZM (惠竹梅), Li H (李华), Long Y (龙妍), Zhang J (张
瑾), Pang XL (庞学良) (2010). Variation of soil microbial
populations and relationships between microbial factors
and soil nutrients in cover cropping system of vineyard.
Acta Horticulturae Sinica (园艺学报), 37, 1395– 1402.
(in Chinese with English abstract)
Institute of Soil Science, Chinese Academy of Sciences, Nan-
jing (中国科学院南京土壤硏究所) (1985). Study Method
of Soil Microorganisms (土壤微生物研究法). Science
Press, Beijing. 43–70. (in Chinese)
Jia W (贾伟), Zhou HP (周怀平), Xie WY (解文艳), Guan CL
(关春林), Gao CH (郜春花), Shi YQ (石彦琴) (2008).
Effects of long-term inorganic fertilizer combined with
organic manure on microbial biomass C, N and enzyme
activity in cinnamon soil. Plant Nutrition and Fertilizer
Science (植物营养与肥料学报), 14, 700–705. (in Chinese
with English abstract)
King AP, Berry AM (2005). Vineyard δ15 N, nitrogen and water
status in perennial clover and bunch grass cover crop sys-
tems of California’s central valley. Agriculture, Ecosys-
tems and Environment, 109, 262–272.
Li HK (李会科), Zhang GJ (张广军), Zhao ZY (赵政阳), Li
KR (李凯荣) (2007). Effects of interplanting of herbage
on soil nutrient of non-irrigated apple orchard in the Loess
Plateau. Acta Horticulturae Sinica (园艺学报), 34, 477–
480. (in Chinese with English abstract)
Li LL (李玲玲), Huang GB (黄高宝), Zhang RZ (张仁陟), Jin
XJ (晋小军), Guangdi L, Kwong YC (2005). Effects of
no-till with stubble retention on soil water regimes in
rainfed areas. Journal of Soil and Water Conservation (水
土保持学报), 19(5), 94–96. (in Chinese with English ab-
stract)
Liu JJ (刘久俊) (2007). Effects of Biological Mulching on
Rhizospheric Nutrition and Growth of Poplar Plantation
in Southern Upland Area (生物覆盖对南方山地杨树人
工林根际营养及生长的影响). Master Degree Disserta-
tion, Nanjing Forestry University, Nanjing. 8–9. (in Chi-
nese)
Ma JJ (马建军), Li QF (李青丰), Zhang SL (张树礼) (2007).
The correlation among soil microorganism and soil nutri-
ent in different types of mixed stands of Hippophae
rhamnoides. Journal of Arid Land Resources and Envi-
ronment (干旱区资源与环境), 21(6), 163–167. (in Chi-
nese with English abstract)
Ming DX (明道绪) (2007). Biometry with Design of Experi-
ments (生物统计附试验设计). China Agricultural Press,
Beijing. 90–100. (in Chinese)
Monteiro A, Lopes CM (2007). Influence of cover crop on
water use and performance of vineyard in Mediterranean
Portugal. Agriculture, Ecosystems and Environment, 121,
336–342.
Oelbermann M, Voroney RP, Schlönvoigt AM, Kass DCL
(2004). Decomposition of Erythrina poeppigiana leaves in
3-, 9-, and 18-year-old alleycropping systems in Costa
Rica. Agroforestry Systems, 63, 27–32.
Sommer R, Vlek PLG, de Abreu Sá TD, Vielhauer K, de
Fátima Rodrigues Coelho R, Fölster H (2004). Nutrient
balance of shifting cultivation by burning or mulching in
the Eastern Amazon evidence for subsoil nutrient accu-
mulation. Nutrient Cycling in Agroecosystems, 68,
257–271.
Spring GP (1992). Ratio of microbial biomass to soil organic
matter carbon as a sensitive indicator of changes in soil
organic matter. Australian Journal of Soil Research, 30,
195–207.
Steenwerth K, Belina KM (2008). Cover crops and cultivation:
impacts on soil N dynamics and microbiological function
in a Mediterranean vineyard agroecosystem. Applied Soil
Ecology, 40, 370–380.
Tang YS (唐玉姝), Wei CF (魏朝富), Yan TM (颜廷梅), Yang
LZ (杨林章), Ci E (慈恩) (2007). Biological indicator of
soil quality: a review. Soil (土壤), 39, 157–163. (in Chi-
nese with English abstract)
Tiquia SM, Lioyd J, Herms DNA, Hoiting HAJ, Michel FC
(2002). Effects of mulching and fertilization on soil nutri-
ents, microbial activity and rhizosphere bacterial commu-
nity structure determined by analysis of TRFLPs of
PCR-amplified 16S rRNA genes. Applied Soil Ecology,
21, 31–48.
Xu FL (徐福利), Liang YL (梁银丽), Zhang CE (张成娥), Du
SN (杜社妮), Chen ZJ (陈志杰) (2004). Effect of fertili-
zation on cucumber growth and soil biological character-
istics in sunlight greenhouse. Chinese Journal of Applied
Ecology (应用生态学报), 15, 1227–1230. (in Chinese
with English abstract)
Xu HQ (徐华勤), Xiao RL (肖润林), Song TQ (宋同清), Luo
W (罗文), Ren Q (任全), Huang Y (黄瑶) (2008). Effects
of mulching and intercropping on the functional diversity
of soil microbial communities in tea plantations. Biodiver-
sity Science (生物多样性), 16, 166–174. (in Chinese with
English abstract)
Xu HQ (徐华勤), Xiao RL (肖润林), Xiang ZX (向佐湘),
Song TQ (宋同清), Ren Q (任全), Huang Y (黄瑶), Qin Z
(秦钟) (2009). Soil enzyme activities and their relations
with soil fertility in a tea plantation under straw mulching
and white clover intercropping. Chinese Journal of Ecol-
ogy (生态学杂志), 28, 1537–1543. (in Chinese with Eng-
lish abstract)
Xu HQ (徐华勤), Xiao RL (肖润林), Zou DS (邹冬生), Song
TQ (宋同清), Luo W (罗文), Li SH (李盛华) (2007).
1244 植物生态学报 Chinese Journal of Plant Ecology 2011, 35 (12): 1236–1244
www.plant-ecology.com
Effects of long-term fertilization on functional diversity of
soil microbial community of the tea plantation. Acta
Ecologica Sinica (生态学报), 27, 3355–3361. (in Chinese
with English abstract)
Xu Q (徐强), Cheng ZH (程智慧), Meng HW (孟焕文), Zhang
Y (张昱) (2007). Relationships between soil nutrients and
rhizospheric soil microbial communities and enzyme ac-
tivities in a maize-capsicum intercropping system. Chinese
Journal of Applied Ecology (应用生态学报), 18, 2747–
2754. (in Chinese with English abstract)
Xue QH (薛泉宏) (2000). Microbiology (微生物学). World
Books Press, Xi’an. 37–54. (in Chinese)
Yao J (姚健), Wang D (王丁), Zhang XS (张显松), Xue JH
(薛建辉) (2009). Effects of different types of mulches on
soil moisture, temperature and seedling growth. Journal of
Nanjing Forestry University (Natural Science Edition) (南
京林业大学学报(自然科学版)), 33(5), 7–11. (in Chinese
with English abstract)
Zhang XJ (张星杰), Liu JH (刘景辉), Li LJ (李立军), Wang
ZG (王智功), Wang L (王林), Su SH (苏顺和) (2008).
Effects of different conservation tillage on soil microbes
quantities and enzyme activities in dry cultivation. Journal
of Maize Sciences (玉米科学), 16, 91–95. (in Chinese
with English abstract)
Zheng Y (郑勇), Gao YS (高勇生), Zhang LM (张丽梅), He
YQ (何圆球), He JZ (贺纪正) (2008). Effects of long-
term fertilization on soil microorganisms and enzyme ac-
tivities in an upland red soil. Plant Nutrition and Fertilizer
Science (植物营养与肥料学报), 14, 316–321. (in Chinese
with English abstract)
责任编委: 郭良栋 责任编辑: 王 葳