免费文献传递   相关文献

Effect of neighboring competition on photosynthetic characteristics and biomass allocation of Chinese fir seedlings under low phosphorus stress

邻株竞争对低磷环境杉木幼苗光合特性及生物量分配的影响


选择同一杉木(Cunninghamia lanceolata)无性系幼苗为研究对象, 通过设计邻株竞争处理和3个供磷水平的室内沙培模拟试验, 采用破坏性收获方式, 分别于试验初期、中期和末期测定不同竞争与供磷水平条件下杉木幼苗光合特性和生物量分配的变化规律, 综合分析邻株竞争对低磷环境杉木响应行为的影响。结果表明: 竞争处理、供磷水平和胁迫时期三者对杉木幼苗4个光合特性指标的影响均存在明显的交互作用(p < 0.05), 而对生物量分配的交互作用未达显著水平(p > 0.05)。低磷和不供磷处理条件下杉木幼苗叶片的净光合速率、蒸腾速率和气孔导度均明显较低, 其中缺磷胁迫和邻株竞争对叶片气孔导度的降低具有叠加效应。随着竞争和低磷处理时间的延长, 杉木幼苗叶片蒸腾速率逐渐降低, 但气孔导度和胞间CO2浓度呈先下降后上升的趋势, 而根系生物量和根冠比均显著增加。

Aims To explore the effects of neighbor competition on photosynthetic characteristics in needles and biomass accumulation and allocation of Chinese fir (Cunninghamia lanceolata) seedlings under low phosphorus (P) environment, and to investigate the complex adaptive responses of Chinese fir to available P limitation and intraspecific competition.
Methods The experiment was performed in a greenhouse at Fujian Agriculture and Forestry University with a Chinese fir clone named ‘YANG-020’. The specially designed glass pots of 30 cm length, 30 cm width and 40 cm height were made for the P stress and competition simulation. Two seedlings were planted in each pot, except the control with a single seedling in the center of pot. All the competition treatments were involved three P supply levels: no P supply (0 mg·kg-1 KH2PO4), low P supply (6 mg·kg-1 KH2PO4) and normal P supply (12 mg·kg-1 KH2PO4). The seedlings of each treatment were harvested to determine shoot biomass, root biomass and root: shoot ratio at the prime stage (9th September, 2013), interim stage (30th October, 2013) and last stage (19th December, 2013), separately, after determining the intercellular CO2 concentration, net photosynthetic rate, transpiration rate and stomatal conductance in needles over the the experimental period.
Important findings There were significantly three-way interactive effects among competition treatment, P supply level and stress stage on the photosynthetic indexes of Chinese fir seedlings, including intercellular CO2 concentration, net photosynthetic rate, transpiration rate and stomatal conductance (p < 0.05), but no significantly interactive effect was exhibited among the three factors on the biomass allocation (p > 0.05). Compared to the normal P supply, all of the values (i.e., net photosynthetic rate, transpiration rate and stomatal conductance) decreased markedly in Chinese fir needles. The factors of low P supply and neighboring competition additively affected stomatal conductance of needles. Over the course of the stress experimental period, the value of transpiration rate in needles gradually decreased, but both root biomass and root:shoot ratio sharply increased. For the stomatal conductance and intercellular CO2 concentration, both of them gradually declined from the prime stress stage to the interim stage, while increased during the last stress stage.


全 文 :植物生态学报 2016, 40 (2): 177–186 doi: 10.17521/cjpe.2015.0182
Chinese Journal of Plant Ecology http://www.plant-ecology.com
——————————————————
收稿日期Received: 2015-05-25 接受日期Accepted: 2015-11-27
* 通信作者Author for correspondence (E-mail: fjwupengfei@126.com)
邻株竞争对低磷环境杉木幼苗光合特性及生物量
分配的影响
陈智裕1,2 李 琦1,2,3 邹显花1,2 马祥庆1,2 吴鹏飞1,2*
1福建农林大学林学院, 福州 350002; 2国家林业局杉木工程技术研究中心, 福州 350002; 3驻马店市水土保持监测中心, 河南驻马店 463000
摘 要 选择同一杉木(Cunninghamia lanceolata)无性系幼苗为研究对象, 通过设计邻株竞争处理和3个供磷水平的室内沙培
模拟试验, 采用破坏性收获方式, 分别于试验初期、中期和末期测定不同竞争与供磷水平条件下杉木幼苗光合特性和生物量
分配的变化规律, 综合分析邻株竞争对低磷环境杉木响应行为的影响。结果表明: 竞争处理、供磷水平和胁迫时期三者对杉
木幼苗4个光合特性指标的影响均存在明显的交互作用(p < 0.05), 而对生物量分配的交互作用未达显著水平(p > 0.05)。低磷
和不供磷处理条件下杉木幼苗叶片的净光合速率、蒸腾速率和气孔导度均明显较低, 其中缺磷胁迫和邻株竞争对叶片气孔导
度的降低具有叠加效应。随着竞争和低磷处理时间的延长, 杉木幼苗叶片蒸腾速率逐渐降低, 但气孔导度和胞间CO2浓度呈
先下降后上升的趋势, 而根系生物量和根冠比均显著增加。
关键词 同化物运输; 杉木; 竞争策略; 低磷胁迫; 根冠比
引用格式: 陈智裕, 李琦, 邹显花, 马祥庆, 吴鹏飞 (2016). 邻株竞争对低磷环境杉木幼苗光合特性及生物量分配的影响. 植物生态学报, 40, 177–186.
doi: 10.17521/cjpe.2015.0182
Effect of neighboring competition on photosynthetic characteristics and biomass allocation of
Chinese fir seedlings under low phosphorus stress
CHEN Zhi-Yu1,2, LI Qi1,2,3, ZOU Xian-Hua1,2, MA Xiang-Qing1,2, and WU Peng-Fei1,2*
1College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; 2The State Forestry Administration Fir Engineering Technology
Research Center, Fuzhou 350002, China; and 3Soil and Water Conservation Monitoring Centre of Zhumadian, Zhumadian, Henan 463000, China
Abstract
Aims To explore the effects of neighbor competition on photosynthetic characteristics in needles and biomass
accumulation and allocation of Chinese fir (Cunninghamia lanceolata) seedlings under low phosphorus (P) envi-
ronment, and to investigate the complex adaptive responses of Chinese fir to available P limitation and intraspeci-
fic competition.
Methods The experiment was performed in a greenhouse at Fujian Agriculture and Forestry University with a
Chinese fir clone named ‘YANG-020’. The specially designed glass pots of 30 cm length, 30 cm width and 40 cm
height were made for the P stress and competition simulation. Two seedlings were planted in each pot, except the
control with a single seedling in the center of pot. All the competition treatments were involved three P supply
levels: no P supply (0 mg·kg–1 KH2PO4), low P supply (6 mg·kg–1 KH2PO4) and normal P supply (12 mg·kg–1
KH2PO4). The seedlings of each treatment were harvested to determine shoot biomass, root biomass and root:
shoot ratio at the prime stage (9th September, 2013), interim stage (30th October, 2013) and last stage (19th De-
cember, 2013), separately, after determining the intercellular CO2 concentration, net photosynthetic rate, transpira-
tion rate and stomatal conductance in needles over the the experimental period.
Important findings There were significantly three-way interactive effects among competition treatment, P sup-
ply level and stress stage on the photosynthetic indexes of Chinese fir seedlings, including intercellular CO2 con-
centration, net photosynthetic rate, transpiration rate and stomatal conductance (p < 0.05), but no significantly
interactive effect was exhibited among the three factors on the biomass allocation (p > 0.05). Compared to the
normal P supply, all of the values (i.e., net photosynthetic rate, transpiration rate and stomatal conductance) de-
creased markedly in Chinese fir needles. The factors of low P supply and neighboring competition additively
©?????? Chinese Journal of Plant Ecology
178 植物生态学报 Chinese Journal of Plant Ecology 2016, 40 (2): 177–186

www.plant-ecology.com
affected stomatal conductance of needles. Over the course of the stress experimental period, the value of transpi-
ration rate in needles gradually decreased, but both root biomass and root:shoot ratio sharply increased. For the
stomatal conductance and intercellular CO2 concentration, both of them gradually declined from the prime stress
stage to the interim stage, while increased during the last stress stage.
Key words assimilate transport; Cunninghamia lanceolata; competitive strategy; low phosphorus stress; root:
shoot ratio
Citation: Chen ZY, Li Q, Zou XH, Ma XQ, Wu PF (2016). Effect of neighboring competition on photosynthetic characteristics and
biomass allocation of Chinese fir seedlings under low phosphorus stress. Chinese Journal of Plant Ecology, 40, 177–186. doi:
10.17521/cjpe.2015.0182
自然环境中, 植物无法像动物一样自由移动,
在整个生命周期内持续不断遭受种内或种间对共有
环境资源的竞争(Novoplansky, 2009)。当植物低密度
种植时, 植物间的竞争主要发生于地下(Di Iorio et
al., 2013)。植物可利用根系形态可塑性(Rolo &
Moreno, 2012; Chen et al., 2015)、根系分泌有机物
(Kigathi et al., 2013; Pierik et al., 2013, 2014)等策略
调整自身同化物在根冠间的分配格局, 从而影响邻
株植物间竞争关系(Schmid et al., 2015)。而种植密度
较大时, 植物主要通过叶片红光(R, 波长655–665
nm)与远红光(FR, 波长725–735 nm)比值的变化来
感受邻株植物的竞争强度 (Ballaré et al., 1990;
Gundel et al., 2014)。李建东等(2006)研究发现, 光竞
争优势植物的光合速率、蒸腾速率、气孔导度明显
高于弱势植物 , 但低于非竞争环境下。黄顶菊
(Flaveria bidentis)和藜(Chenopodium album)混种模
式下, 二者的净光合速率等也均明显低于各自单植
模式下, 能有效地抑制黄顶菊的蔓延生长(杨晴等,
2014)。木质藤本植物也可通过改变表型特征, 明显
抑制需光植物的光合能力, 从而增强自身竞争能力
(陈亚军等, 2008)。然而, 地上部分的竞争意味着根
系对养分、水分等资源的竞争也逐渐增强(王平等,
2007)。特别是在养分不足的环境, 邻株植物之间的
竞争关系更为复杂(Mommer et al., 2012; Wu et al.,
2014a)。因此, 养分匮缺环境下植物的竞争行为是
当前的一个研究热点(Cheng et al., 2014; Gundel et
al., 2014; Schmid et al., 2015)。
磷是植物所需的大量元素, 是植物光合作用、
养分运输等生理生化过程的重要参与者(马祥庆和
梁霞, 2004; 蔡丽平等, 2012)。我国约2/3的农林用地
严重缺磷, 极大地限制了植物的正常生长(李杰等,
2011)。杉木(Cunninghamia lanceolata)是我国特有的
优质速生用材树种, 土壤有效磷匮乏已明显抑制杉
木人工林的长期生产力(Chen, 2003; Zhang et al.,
2004; 盛炜彤和范少辉, 2005)。吴鹏飞等(2011)研究
表明低磷胁迫下杉木叶片光系统II (PSII)光合反应
中心破坏严重, 光合效率明显受阻。不同植物或同
种植物不同基因型对低磷胁迫的适应能力存在明显
差异(马祥庆和梁霞, 2004; 吴鹏飞和马祥庆, 2009)。
有些植物可通过降低光合和蒸腾速率、调节气孔大
小等途径, 有效地控制光合作用的同化物质运输,
提高磷素利用效率, 从而缓解缺磷对植物的伤害
(曹翠玲等, 2010; 樊卫国和王立新, 2012)。近年来,
有关高效利用土壤磷杉木基因型的筛选(Wu et al.,
2011b; 吴鹏飞等, 2012), 以及试图通过挖掘并利用
这些基因型对低磷胁迫的形态生理学响应机制, 以
维持杉木长期生产力的研究已有相关报道(梁霞等,
2005; Yu et al., 2008; Wu et al., 2011a; 赵中华等,
2014; Zou et al., 2015)。然而, 这些研究只是考虑单
株栽植的情况, 而有关邻株竞争对这些响应机制的
影响研究甚少。
鉴于此, 本文选择同一杉木无性系幼苗为研究
对象, 通过设计竞争处理和3个供磷水平的室内沙培
模拟试验, 采用破坏性收获方法, 分别于盆栽的初
期、中期和末期测定不同竞争与低磷胁迫条件下杉
木幼苗叶片胞间CO2浓度、净光合速率、蒸腾速率及
气孔导度等光合特性参数的变化规律, 结合不同试
验时期杉木地上部分和根系的干物质分配量, 综合
分析邻株竞争对低磷环境杉木响应策略的影响情况,
为揭示低磷胁迫下杉木光合同化产物积累与分配的
调控机制和提高杉木林生产力提供科学基础。
1 材料和方法
1.1 试验材料
选择福建省洋口林场国家杉木良种基地培育的
无性系(‘洋-020’)为研究对象。该无性系具有冠幅
©?????? Chinese Journal of Plant Ecology
陈智裕等: 邻株竞争对低磷环境杉木幼苗光合特性及生物量分配的影响 179

doi: 10.17521/cjpe.2015.0182
小、树冠稀疏、生长快等特点, 初植密度为3 600–
3 900株·hm–2, 适于定向培育中小径材(李林源等,
2015)。参试材料为18个月生长健壮幼苗, 长势均
一。
1.2 试验设计
于2013年7月采用长30 cm、宽30 cm、高40 cm
的自制玻璃容器在福建农林大学温室大棚进行沙培
盆栽试验。根据所有参试杉木幼苗的平均冠幅(5 cm)
设置竞争处理: 邻株栽植2株杉木的茎间距均为5
cm, 并以单株栽植(非竞争处理)为对照(图1)。培养
基质为洗净的河沙(总磷含量为(0.11 ± 0.004) mg·g–1,
有效磷为痕量), 根据每盆河沙质量(30 kg), 设计3
个供磷水平: 不供磷(0 mg·kg–1 KH2PO4)、低磷处理
(6 mg·kg–1 KH2PO4) 和 正 常 供 磷 (12 mg·kg–1
KH2PO4)。利用具有不含磷素、吸附性强、缓效释
放养分、植物根系可自由穿透等特性的吸水树脂
(water-absorbent resin) (Downie et al., 2012), 在吸附
KH2PO4之后与河沙混匀用于盆栽。为保证试验期间
杉木幼苗对其他养分元素的需求, 每隔3天浇一次
不含磷素的Hoagland营养液(Wu et al., 2011a), 每盆
每次浇100 mL。用KCl平衡不同供磷处理间K+含量
的差异。每天午后浇纯净水100 mL。温室内温度为
18–28 ℃, 相对湿度>80%, 每天光照14 h, 光照强
度约800 μmol·m–2·s–1。分别在培养初期(2013年9月9
日)、中期(2013年10月30日)和末期(2013年12月19
日)测定杉木幼苗叶片的光合参数, 并采用破坏性
收获试验测定生物量。每个处理重复4次。
1.3 测定方法
盆栽开始后, 每隔50天左右, 选择晴天(2013年
9月9日、2013年10月30日、2013年12月19日) 9:00–
11:00, 采用便携式光合测定系统 (LCi-SD Ultra
Compact Photosynthesis System, ADC Bio Scientific,
Hertfordshire, UK)对杉木幼苗第1轮新生枝条上的
健康成熟叶进行叶片胞间CO2浓度、气孔导度、净
光合速率和蒸腾速率等光合参数指标的测定。测定
条件为: 环境CO2浓度395 μmol·mol–1、叶室温度(23
± 0.5) ℃、叶室流速500 μmol·s–1, 光照强度为1 000
μmol·m–2·s–1。并将收获后的杉木幼苗分为地上部分
和根系, 分别用108 ℃杀青后80 ℃烘干至恒质量,
测定干物质质量。
1.4 数据统计
邻株栽植处理中每个数据表示相邻2株相同杉



图1 邻株竞争处理盆栽示意图。
Fig. 1 The design pot used for neighboring competition ex-
periment.


木无性系同一测定指标的平均值。利用SPSS v.19.0
(SPSS, Chicago, USA)进行竞争处理(竞争和非竞
争)、供磷水平(不供磷、低磷处理和正常供磷)和胁
迫时期(初期、中期和末期)这3个因素对杉木幼苗光
合特性、生物量等测定指标的交互作用进行多因素
方差分析, 包括三因素方差分析和任意两个因素间
的双因素方差分析。若各因素间无显著交互作用(p
> 0.05), 则进行单因素方差分析, 利用LSD多重比
较方法进行检验(p = 0.05), 分析3个因素之间对测
定指标的叠加影响效应。所有数据结果以平均值±
标准误差表示, 不同字母表示各处理间差异达显著
水平(p < 0.05)。
2 结果和分析
2.1 低磷胁迫条件下邻株竞争对杉木叶片光合特
性的影响
三因素方差分析结果(表1)表明, 竞争处理、供
磷水平和胁迫时期三者对杉木幼苗叶片胞间CO2浓
度、净光合速率、蒸腾速率和气孔导度等光合特性
指标的影响均存在明显的交互作用(p < 0.05)。其中
©?????? Chinese Journal of Plant Ecology
180 植物生态学报 Chinese Journal of Plant Ecology 2016, 40 (2): 177–186

www.plant-ecology.com
表1 竞争处理、供磷水平和胁迫时期对杉木幼苗光合特性的影响
Table 1 Effects of competition treatment, phosphorus supply level and stress stage on the photosynthesis characteristics of Cunninghamia lanceolata seedlings
F值F value 自由度
Degrees of freedom 胞间CO2浓度
Intercellular CO2 concentration
净光合速率
Net photosynthetic rate
蒸腾速率
Transpiration rate
气孔导度
Stomatal conductance
竞争处理
Competition treatment (a)
1 53.9** 5.807* 11.181** 4.4*
供磷水平
Phosphorus supply level (b)
2 0.7ns 16.698** 15.740** 20.9**
胁迫时期
Stress stage (c)
2 10.4** 0.698ns 18.314** 3.3*
a和b组间交互作用
Effects between a and b
2 29.1** 6.984** 5.919** 0.9ns
a和c组间交互作用
Effects between a and c
2 6.6** 9.382** 3.494* 8.2**
b和c组间交互作用
Effects between b and c
4 8.7** 4.323** 9.111** 10.5**
a、b和c组间交互作用
Effects among a, b and c
4 3.9** 3.522* 8.247** 8.4**
误差
Error
90
*, p < 0.05; **, p < 0.01; ns, p > 0.05。



图2 竞争和非竞争处理下杉木幼苗叶片的光合特性(平均值±标准误差)。不同小写字母表示不同竞争处理间差异显著(p <
0.05)。
Fig. 2 Photosynthetic characteristics of Cunninghamia lanceolata seedlings under neighboring competition treatment (mean ± SE).
Different small letters indicate significant difference between two competition treatments (p < 0.05).


任意2个因素之间对叶片胞间CO2浓度、净光合速率
和蒸腾速率的交互影响作用均达显著水平(p < 0.05,
表1); 但竞争处理与供磷水平这两个因素对叶片气
孔导度的交互作用不显著(p > 0.05, 表1)。
从单个因素对杉木叶片光合特性不同指标的影
响情况来看, 竞争处理对4个光合特性指标的影响
均达显著水平(p < 0.05, 表1)。其中, 竞争处理中杉
木幼苗叶片平均净光合速率、蒸腾速率和气孔导度
均明显低于非竞争的单株种植处理(图2B–2D); 与
之相反, 竞争处理中叶片的胞间CO2浓度明显高于
非竞争处理(图2A)。供磷水平对杉木幼苗叶片胞间
CO2浓度的影响不显著(p > 0.05, 表1; 图3A), 但对
净光合速率、蒸腾速率和气孔导度等3个参数的影响
均达显著水平 (p < 0.05, 表1)。与正常供磷 (12
mg·kg–1 KH2PO4)相比, 低磷和不供磷处理条件下杉
木幼苗叶片的净光合速率、蒸腾速率和气孔导度均
明显较低(图3B–3D)。胁迫时期对杉木幼苗叶片胞
间CO2浓度、蒸腾速率和气孔导度这3个光合参数的
影响具显著水平(p < 0.05, 表1), 但对净光合速率的
影响不显著(p > 0.05, 表1; 图4B)。从图3A、3D可
以看出, 杉木幼苗叶片胞间CO2浓度、气孔导度随着
胁迫时期的延长呈先下降后上升的趋势; 而蒸腾速
率则随着胁迫时期的延长明显降低(图4C)。
2.2 低磷胁迫条件下邻株竞争对杉木生物量积累
与分配的影响
竞争处理、供磷水平和胁迫时期三者对杉木幼
苗地上部分生物量、根系生物量和根冠比的影响均
无明显交互作用(p > 0.05, 表2), 且任意2个因素之
©?????? Chinese Journal of Plant Ecology
陈智裕等: 邻株竞争对低磷环境杉木幼苗光合特性及生物量分配的影响 181

doi: 10.17521/cjpe.2015.0182

图3 不同供磷水平下杉木幼苗叶片的光合特性(平均值±标准误差)。不同小写字母表示不同供磷水平间差异显著(p < 0.05)。
Fig. 3 Photosynthetic characteristics of Cunninghamia lanceolata seedlings under different phosphorus supply levels (mean ± SE).
Different small letters indicate significant difference among three phosphorus supply levels (p < 0.05).


图4 不同胁迫时期杉木幼苗叶片的光合特性(平均值±标准误差)。不同小写字母表示不同胁迫时期间差异显著(p < 0.05)。
Fig. 4 Photosynthetic characteristics of Cunninghamia lanceolata seedlings at different stress stages (mean ± SE). Different small
letters indicate significant difference among three stress stages (p < 0.05).


表2 竞争处理、供磷水平和胁迫时期对杉木幼苗生物量分配的影响
Table 2 Effects of competition treatment, phosphorus supply level and stress stage on the biomass allocation of Cunninghamia lanceolata seedlings
F值 F value 自由度
Degrees of freedom 地上部分
Shoot
根系
Root
根冠比
Root to shoot ratio
竞争处理 Competition treatment (a) 1 1.767ns 0.017ns 0.659ns
供磷水平 Phosphorus supply level (b) 2 0.240** 38.689** 38.096ns
胁迫时期 Stress stage (c) 2 1.624ns 0.710** 4.927**
a和b组间交互作用 Effects between a and b 2 1.225ns 1.411ns 0.007ns
a和c组间交互作用 Effects between a and c 2 2.539ns 0.438ns 1.343ns
b和c组间交互作用 Effects between b and c 4 0.412ns 0.908ns 1.075ns
a、b和c组间交互作用 Effects among a, b and c 4 0.813ns 1.571ns 0.861ns
误差 Error 90
*, p < 0.05; **, p < 0.01; ns, p > 0.05.


间对上述生物量指标的交互作用亦均不显著(p >
0.05, 表2)。
从单个因素的影响情况来看, 竞争处理对杉木
幼苗地上部生物量、根系生物量和根冠比的影响不
显著(p > 0.05, 表2)。其中竞争处理下杉木地上部分
和根系生物量均明显高于非竞争处理(图5A、5B),
但两个处理间的幼苗根冠比差异不明显(图5C)。供
磷水平对杉木幼苗根冠比的影响不显著(p > 0.05,
表2; 图6C), 但对地上部分和根系生物量的影响均
达到显著水平(p < 0.05, 表2)。与正常供磷相比, 不
供磷条件下杉木幼苗地上部分和根系生物量均明显
较低(图6A、6B)。胁迫时期对杉木幼苗根系生物量
和根冠比的影响均达到显著水平(p < 0.05, 表2), 这
两个指标均随胁迫时期的延长明显增大(图7B、7C),
©?????? Chinese Journal of Plant Ecology
182 植物生态学报 Chinese Journal of Plant Ecology 2016, 40 (2): 177–186

www.plant-ecology.com

图5 竞争和非竞争处理下杉木幼苗生物量的分配(平均值±标准误差)。不同小写字母表示不同竞争处理间差异显著(p < 0.05)。
Fig. 5 Biomass allocation of Cunninghamia lanceolata seedlings under neighboring competition treatment (mean ± SE). Different
small letters indicate significant difference between two competition treatments (p < 0.05).


图6 不同供磷水平下杉木幼苗生物量的分配(平均值±标准误差)。不同小写字母表示不同供磷水平间差异显著(p < 0.05)。
Fig. 6 Biomass allocation of Cunninghamia lanceolata seedlings under different phosphorus supply levels (mean ± SE). Different
small letters indicate significant difference among three phosphorus supply levels (p < 0.05).


图7 不同胁迫时期杉木幼苗生物量的分配(平均值±标准误差)。不同小写字母表示不同胁迫时期间差异显著(p < 0.05)。
Fig. 7 Biomass allocation of Cunninghamia lanceolata seedlings at different stress stages (mean ± SE). Different small letters indi-
cate significant difference among three stress stages (p < 0.05).


但胁迫时期对地上部分生物量的影响不显著(p >
0.05, 表2; 图7A)。
3 讨论
在影响植物叶片光合特性的参数中, 气孔导度
的变化是植物感受竞争者是否存在的策略, 当两者
形成竞争关系时, 优势植物可通过减少气孔导度,
以调节光合固碳量, 巩固其竞争地位(Vysotskaya et
al., 2011)。Kropp和Ogle (2014)研究报道种间竞争可
导致灌木Larrea tridentata的气孔导度明显减小, 且
©?????? Chinese Journal of Plant Ecology
陈智裕等: 邻株竞争对低磷环境杉木幼苗光合特性及生物量分配的影响 183

doi: 10.17521/cjpe.2015.0182
不同邻株竞争植物对其影响的程度大小存在明显差
异。特别是人工林分培育过程中, 同种植物往往处
于同一生态位, 当发生种内竞争时, 植物可通过调
节气孔导度, 增强各自的光能利用效率以适应竞争
环境(Niu et al., 2015)。张永强等(2015)研究发现种
内竞争可导致大豆(Glycine max)叶片气孔导度明显
降低, 且不同种植密度对其影响的程度大小存在明
显差异。本文研究表明, 竞争处理中杉木幼苗叶片
气孔导度均明显低于非竞争的单株种植处理(图2D),
平均净光合速率和蒸腾速率表现出相似的规律(图
2B、2C)。这是由于植物可通过调节气孔导度来控
制CO2和水汽进出叶片的浓度, 从而影响光合和蒸
腾速率(Hetherington & Woodward, 2003)。竞争处理
还导致杉木叶片的胞间CO2浓度明显增加(图2A),
由于CO2是光合作用碳同化的底物, 它的浓度高时
有利于增强植物光合速率。但陈根云等(2010)认为
胞间CO2浓度取决于叶片周围空气的CO2浓度、气孔
导度、叶肉导度和叶肉细胞的光合活性等因素的变
化, 故而光合速率和胞间CO2浓度关系较为复杂。但
植物胞间CO2浓度较高一定程度上可加剧叶片气孔
导度的降低(王建林和温学发, 2010)。
许多研究表明, 低磷环境对农作物或林木的气
孔导度、蒸腾速率等光合特征参数均具显著影响(周
建朝等, 2009; 曹翠玲等, 2010; Wu et al., 2014b),
施用磷肥可明显提高植物的光合特性(李跃娜等,
2010)。本文试验表明, 低磷和不供磷处理条件下杉
木幼苗叶片的净光合速率、蒸腾速率和气孔导度均
明显较低(图3B–3D), 但不同供磷处理间胞间CO2
浓度的差异未达显著水平(p > 0.05, 图3A)。从竞争
处理与供磷水平这2个因素之间的交互影响显著性
来分析, 竞争处理与供磷水平对叶片胞间CO2浓度、
净光合速率和蒸腾速率的交互影响作用均达显著水
平(p < 0.05, 表1), 但对叶片气孔导度的交互作用不
显著(p > 0.05, 表1), 说明缺磷和邻株竞争对叶片气
孔导度的降低具有叠加效应。随着试验处理时间的
延长, 杉木幼苗叶片蒸腾速率明显降低(图4C), 但
气孔导度呈先下降后上升的趋势(图4D)。这可能与
低磷环境中具有竞争关系的邻株植物的根系延伸觅
养、同化产物分配与调控等行为的适时调整策略有
关(Mommer et al., 2012; 李琦等, 2014; Kropp &
Ogle, 2014; Wu et al., 2014a)。
植物通常会根据养分胁迫程度不同向根系分配
大部分的生物量, 以保证植物体内部养分平衡和磷
素吸收能力(曹翠玲等, 2010)。廉满红等(2011)研究
发现, 不论低磷胁迫时期多长, 熊猫豆(Phaseolus
coccineus)的根系生物量和根冠比均比对照有明显
增加。本文中, 不供磷条件下杉木幼苗地上部分和
根系的平均生物量均明显较低(图6A、6B), 而根冠
比与正常供磷处理的差异未达显著水平(图6C)。从
供磷水平、竞争处理和胁迫时期对杉木幼苗生物量
指标的综合影响来看, 三者无明显交互作用(p >
0.05, 表2)。总体上, 杉木根系生物量和根冠比均随
处理时间的延长明显增大(图7B、7C)。虽然低磷环
境下杉木幼苗的光合效率明显受阻(图3B), 降低了
苗木的同化能力和碳水化合物的积累, 而且竞争处
理对幼苗的地上部分生物量、根系生物量和根冠比3
个指标的影响均无显著影响(图5A–5C); 但由于邻
株竞争能够明显促进低磷环境下杉木幼苗根系长
度、表面积等形态指标的可塑变化, 以促进苗高的
生长(李琦等, 2014), 使得在相同的处理时间内, 竞
争处理杉木幼苗地上部分和根系生长量大于非竞争
处理。因此, 低磷环境下杉木幼苗生物量增加很可
能是光竞争和营养竞争存在的互补作用导致。
Schmid等(2013)认为植物在公共养分资源耗竭形成
低养胁迫之前, 已通过体内蛋白的变化对邻株植物
做出了反应。因此, 相邻植物之间的竞争关系复杂,
竞争行为多样化, 且与植物的不同发育阶段关系密
切, 难以用统一的响应机制对其进行描述(Pierik et
al., 2013; Schmid et al., 2015)。
植物在对邻株竞争做出响应之前必先通过某些
特定途径来感受邻株植物的存在。近年来, 许多学
者分别从植物对光竞争信号(R:FR)、根际养分浓度、
根系分泌物、挥发性植物激素以及菌根释放化学信
号等方面试图阐明邻株竞争的响应机制(Fang et al.,
2011; Pierik et al., 2013, 2014; Schmid et al., 2015),
但仍无法阐明邻株杉木间竞争策略的内在机理。而
蛋白组学技术有望成为揭示竞争植物相互影响时,
植物通过体内蛋白合成的调控从而诱导生理形态响
应变化的最重要的一种研究手段 (Schmid et al.,
2013; Depuydt, 2014)。
基金项目 国家自然科学基金(31100472和3137-
0619)和福建省自然科学基金杰出青年基金(2014J-
06009)。
致谢 本研究得到福建农林大学林学院青年教师科
©?????? Chinese Journal of Plant Ecology
184 植物生态学报 Chinese Journal of Plant Ecology 2016, 40 (2): 177–186

www.plant-ecology.com
研基金 (6112C035A)资助 ; 福建农林大学林学院
2014届本科生陈俊杰、廖炜林和邹智滢等同学参加
盆栽及室内分析工作, 特此致谢。
参考文献
Ballaré CL, Scopel AL, Sánchez RA (1990). Far-red radiation
reflected from adjacent leaves: An early signal of
competition in plant canopies. Science, 247, 329–332.
Cai LP, Wu PF, Hou XL, Ma XQ, Jiang S, Ren JJ (2012).
Effects of phosphorus stress on photosynthetic character-
istics of pioneer plant Neyraudia reynaudiana on soil and
water conservation. Journal of Soil and Water Conserva-
tion, 26, 281–285. (in Chinese with English abstract) [蔡
丽平, 吴鹏飞, 侯晓龙, 马祥庆, 江硕, 任晶晶 (2012).
磷胁迫对水土保持先锋植物类芦光合特性的影响. 水
土保持学报, 26, 281–285.]
Cao CL, Mao YH, Cao PT, Liu JC, Yang XN (2010). Effect of
phosphorous stress on photosynthesis rate and root
physiological characteristic of cowpea seedlings. Plant
Nutrition and Fertilizer Science, 16, 1373–1378. (in
Chinese with English abstract) [曹翠玲, 毛圆辉, 曹朋涛,
刘建朝, 杨向娜 (2010). 低磷胁迫对豇豆幼苗叶片光合
特性及根系生理特性的影响. 植物营养与肥料学报, 16,
1373–1378.]
Chen BJW, During HJ, Vermeulen PJ, Kroon HD, Poorter H,
Anten NPR (2015). Corrections for rooting volume and
plant size reveal negative effects of neighbour presence on
root allocation in pea. Functional Ecology, 29, 1383–1391.
Chen GY, Chen J, Xu DQ (2010). Thinking about the rela-
tionship between net photosynthetic rate and intercellular
CO2 concentration. Plant Physiology Communications, 46,
64–66. (in Chinese with English abstract) [陈根云, 陈娟,
许大全 (2010). 关于净光合速率和胞间CO2浓度关系的
思考. 植物生理学通讯, 46, 64–66.]
Chen HJ (2003). Phosphatase activity and P fractions in soils of
an 18-year-old Chinese fir (Cunninghamia lanceolata)
plantation. Forest Ecology and Management, 178, 301–
310.
Chen YJ, Cao KF, Cai ZQ (2008). Above-and below-ground
competition between seedlings of lianas and trees under
two light irradiances. Journal of Plant Ecology (Chinese
Version), 32, 639–647. (in Chinese with English abstract)
[陈亚军, 曹坤芳, 蔡志全 (2008). 两种光强下木质藤
本与树木幼苗的竞争关系. 植物生态学报, 32, 639–
647.]
Cheng LY, Tang XY, Vance CP, White PJ, Zhang FS, Shen JB
(2014). Interactions between light intensity and phos-
phorus nutrition affect the phosphate-mining capacity of
white lupin (Lupinus albus L.). Journal of Experimental
Botany, 65, 2995–3003.
Depuydt S (2014). Arguments for and against self and non-self
root recognition in plants. Frontiers in Plant Science, 5,
614.
Di Iorio A, Montagnoli A, Terzaghi M, Scippa GS, Chiatante D
(2013). Effect of tree density on root distribution in Fagus
sylvatica stands: A semi-automatic digitising device
approach to trench wall method. Trees, 27, 1503–1513.
Downie H, Holden N, Otten W, Spiers AJ, Valentine TA,
Dupuy LX (2012). Transparent soil for imaging the rhizos-
phere. PLoS ONE, 7, e44276.
Fan WG, Wang LX (2012). Photosynthetic response to
different phosphorus levels on young Newhall navel
orange trees. Journal of Fruit Science, 29, 166–170. (in
Chinese with English abstract) [樊卫国, 王立新 (2012).
纽荷尔脐橙幼树对不同供磷水平的光合响应. 果树学
报, 29, 166–170.]
Fang SQ, Gao X, Deng Y, Chen XP, Liao H (2011). Crop root
behavior coordinates phosphorus status and neighbors:
From field studies to three-dimensional in situ reconstruc-
tion of root system architecture. Plant Physiology, 155,
1277–1285.
Gundel PE, Pierik R, Mommer L, Ballaré CL (2014). Com-
peting neighbors: Light perception and root function.
Oecologia, 176, 1–10.
Hetherington AM, Woodward FI (2003). The role of stomata in
sensing and driving environmental change. Nature, 424,
901–908.
Kigathi RN, Weisser WW, Veit D, Gershenzon J, Unsicker SB
(2013). Plants suppress their emission of volatiles when
growing with conspecifics. Journal of Chemical Ecology,
39, 537–545.
Kropp H, Ogle K (2014). Seasonal stomatal behavior of a com-
mon desert shrub and the influence of plant neighbors.
Oecologia, 177, 345–355.
Li J, Chen ZW, Shi YL, Zhang Q, Li XL (2011). Effects of
phosphorus activator on different type of phosphorus and
their validities in red soil. Journal of Soil and Water
Conservation, 25, 83–86. (in Chinese with English
abstract) [李杰, 陈智文, 石元亮, 张清, 李筱琳 (2011).
磷素活化剂对红壤磷形态及有效性影响的研究. 水土
保持学报, 25, 83–86.]
Li JD, Sun B, Wang GJ, Yan XF (2006). Mechanism of photo-
synthetic characters of Ambrosia trifida in competition
with Helianthus turberosus. Journal of Shenyang
Agricultural University, 37, 569–572. (in Chinese with
English abstract) [李建东 , 孙备 , 王国骄 , 燕雪飞
(2006). 菊芋对三裂叶豚草叶片光合特性的竞争机理.
沈阳农业大学学报, 37, 569–572.]
Li LY, Lian HP, Xu LP (2015). One forestation experiment by
improved varieties and superior clone of Cunninghamia
plantation. China Forestry Science and Technology, 29(1),
30–32. (in Chinese with English abstract) [李林源, 连华
萍, 许鲁平 (2015). 杉木种子园良种与优良无性系造林
©?????? Chinese Journal of Plant Ecology
陈智裕等: 邻株竞争对低磷环境杉木幼苗光合特性及生物量分配的影响 185

doi: 10.17521/cjpe.2015.0182
试验. 林业科技开发, 29(1), 30–32.]
Li Q, Wu PF, Chen ZY, Zou XH (2014). Effect of competition
for low phosphorus on growth of Chinese fir seedlings.
Journal of Xinyang Normal University (Natural Science
Edition), 27, 351–354. (in Chinese with English abstract)
[李琦, 吴鹏飞, 陈智裕, 邹显花 (2014). 邻株低磷竞争
处理对杉木幼苗生长的影响. 信阳师范学院学报(自然
科学版), 27, 351–354.]
Li YN, Hou LG, Qi CY, Sun HJ, Liu L, Sui PJ, Guo XM, Zhao
GC (2010). Effects of different levels of phosphorus nu-
trient on the photosynthesis characteristic of rice flag leaf.
Agricultural Science & Technology, 11(6), 11–14. (in
Chinese with English abstract) [李跃娜, 侯立刚, 齐春艳,
孙洪娇, 刘亮, 隋朋举, 郭晞明, 赵国臣 (2010). 不同
磷素营养水平对水稻剑叶光合特性的影响. 农业科学
与技术, 11(6), 11–14.]
Lian MH, Tian XH, Cao CL (2011). Effect of phosphorous
stress on photosynthesis characteristics and distribution of
carbohydrate of Phaseolus coccineus L. seedlings.
Agricultural Research in the Arid Areas, 29, 87–93, 99. (in
Chinese with English abstract) [廉满红, 田宵鸿, 曹翠玲
(2011). 低磷条件下熊猫豆光合特性及碳水化合物累积
变化研究. 干旱地区农业研究, 29, 87–93, 99.]
Liang X, Liu AQ, Ma XQ, Feng LZ, Chen YL (2005). The
effect of phosphorus deficiency stress on activities of acid
phosphatase in different clones of Chinese fir. Acta Phy-
toecologica Sinica, 29, 54–59. (in Chinese with English
abstract) [梁霞 , 刘爱琴 , 马祥庆 , 冯丽贞 , 陈友力
(2005). 磷胁迫对不同杉木无性系酸性磷酸酶活性的影
响. 植物生态学报, 29, 54–59.]
Ma XQ, Liang X (2004). Research advances in mechanism of
high phosphorus use efficiency of plants. Chinese Journal
of Applied Ecology, 15, 712–716. (in Chinese with English
abstract) [马祥庆, 梁霞 (2004). 植物高效利用磷机制
的研究进展. 应用生态学报, 15, 712–716.]
Mommer L, van Ruijven J, Jansen C, van de Steeg HM, de
Kroon H (2012). Interactive effects of nutrient heter-
ogeneity and competition: Implications for root foraging
theory? Functional Ecology, 26, 66–73.
Niu YY, Liao K, Jia Y, Pang HX, Xu GX, Jiang ZB (2015).
Analysis on differences in photosynthetic characteristics of
korla fragrant pear among different planting densities.
Agricultural Science & Technology, 16, 862–867. (in
English)
Novoplansky A (2009). Picking battles wisely: Plant behaviour
under competition. Plant, Cell & Environment, 32, 726–
741.
Pierik R, Ballaré CL, Dicke M (2014). Ecology of plant
volatiles: Taking a plant community perspective. Plant,
Cell & Environment, 37, 1845–1853.
Pierik R, Mommer L, Voesenek LACJ (2013). Molecular
mechanisms of plant competition: Neighbour detection
and response strategies. Functional Ecology, 27, 841–853.
Rolo V, Moreno G (2012). Interspecific competition induces
asymmetrical rooting profile adjustments in shrub-
encroached open oak woodlands. Trees, 26, 997–1006.
Schmid C, Bauer S, Bartelheimer M (2015). Should I stay or
should I go? Roots segregate in response to competition
intensity. Plant and Soil, 391, 283–291.
Schmid C, Bauer S, Müller B, Bartelheimer M (2013).
Belowground neighbor perception in Arabidopsis thaliana
studied by transcriptome analysis: Roots of Hieracium
pilosella cause biotic stress. Frontiers in Plant Science, 4,
296.
Sheng WT, Fan SH (2005). Long Term Productivity of Chinese
fir Plantations. Science Press, Beijing. (in Chinese) [盛炜
彤, 范少辉 (2005). 杉木人工林长期生产力保持机制研
究. 科学出版社, 北京.]
Vysotskaya L, Wilkinson S, Davies WJ, Arkhipova T, Ku-
doyarova G (2011). The effect of competition from
neighbours on stomatal conductance in lettuce and tomato
plants. Plant, Cell & Environment, 34, 729–737.
Wang JL, Wen XF (2010). Modeling the response of stomatal
conductance to variable CO2 concentration and its physio-
logical mechanism. Acta Ecologica Sinica, 30, 4815–4820.
(in Chinese with English abstract) [王建林 , 温学发
(2010). 气孔导度对CO2浓度变化的模拟及其生理机制.
生态学报, 30, 4815–4820.]
Wang P, Wang TH, Zhou DW, Zhang HX (2007). A literature
review on the above-and below-ground competition. Acta
Ecologica Sinica, 27, 3489–3499. (in Chinese with
English abstract) [王平 , 王天慧 , 周道玮 , 张红香
(2007). 植物地上竞争与地下竞争研究进展. 生态学报,
27, 3489–3499.]
Wu BZ, Fullen MA, Li JB, An TX, Fan ZW, Zhou F, Zi SH,
Yang YQ, Xue GF, Liu Z, Wu KX (2014a). Integrated
response of intercropped maize and potatoes to
heterogeneous nutrients and crop neighbours. Plant and
Soil, 374, 185–196.
Wu PF, Ma XQ (2009). Research advances in the mechanisms
of high nutrient use efficiency in plants. Acta Ecologica
Sinica, 29, 427–437. (in Chinese with English abstract) [吴
鹏飞, 马祥庆 (2009). 植物养分高效利用机制研究进
展. 生态学报, 29, 427–437.]
Wu PF, Ma XQ, Chen YL, Lin WJ, Huang SY, Liu LQ (2012).
Comparison of phosphorus use efficiency among clonal
test plantations of Chinese fir. Journal of Fujian
Agriculture and Forestry University (Natural Science
Edition), 41, 40–45. (in Chinese with English abstract) [吴
鹏飞 , 马祥庆 , 陈友力 , 林文奖 , 黄诗云 , 刘露奇
(2012). 杉木无性系测定林磷素利用效率的比较. 福建
农林大学学报(自然科学版), 41, 40–45.]
©?????? Chinese Journal of Plant Ecology
186 植物生态学报 Chinese Journal of Plant Ecology 2016, 40 (2): 177–186

www.plant-ecology.com
Wu PF, Ma XQ, Tigabu M, Huang Y, Zhou LL, Cai LP, Hou
XL, Oden PC (2014b). Comparative growth, dry matter
accumulation and photosynthetic rate of seven species of
Eucalypt in response to phosphorus supply. Journal of
Forestry Research, 25, 377–383.
Wu PF, Ma XQ, Tigabu M, Wang C, Liu AQ, Odén PC
(2011a). Root morphological plasticity and biomass
production of two Chinese fir clones with high phosphorus
efficiency under low phosphorus stress. Canadian Journal
of Forest Research, 41, 228–234.
Wu PF, Ma XQ, Zou XH, Hou XL, Miu LJ, Cai LP (2011).
Effect of calcium on chlorophyll content and chlorophyll
fluorescence of Chinese fir leaves under low phosphorus
stress. Chinese Agricultural Science Bulletin, 27(13),
20–24. (in Chinese with English abstract) [吴鹏飞, 马祥
庆, 邹显花, 侯晓龙, 缪丽娟, 蔡丽平 (2011). 钙对低
磷胁迫杉木叶绿素及其荧光特性的影响. 中国农学通
报, 27(13), 20–24.]
Wu PF, Tigabu M, Ma XQ, Oden PC, He YL, Yu XT, He ZY
(2011b). Variations in biomass, nutrient contents and
nutrient use efficiency among Chinese fir provenances.
Silvae Genetica, 60, 95–105.
Yang Q, Li JS, Guo AY, Qi YL, Li YS, Zhang FJ (2014).
Effects of shade and competition of Chenopodium album
on photosynthesis, fluorescence and growth characteristics
of Flaveria bidentis. Chinese Journal of Applied Ecology,
25, 2536–2542. (in Chinese with English abstract) [杨晴,
李婧实, 郭艾英, 齐艳玲, 李彦生, 张风娟 (2014). 遮
阴和藜竞争对黄顶菊光合荧光和生长特性的影响. 应
用生态学报, 25, 2536–2542.]
Yu YC, Yu J, Shan QH, Fang L, Jiang DF (2008). Organic acid
exudation from the roots of Cunninghamia lanceolata and
Pinus massoniana seedlings under low phosphorus stress.
Frontiers of Forestry in China, 3, 117–120.
Zhang XQ, Kirschbaum MUF, Hou ZH, Guo ZH (2004).
Carbon stock changes in successive rotations of Chinese
fir (Cunninghamia lanceolata (Lamb) Hook) plantations.
Forest Ecology and Management, 202, 131–147.
Zhang YQ, Zhang N, Wang N, Tang JH, Xu WX, Li YJ (2015).
Effects of plant population on photosynthetic
characteristics and yield components of summer soybean.
Journal of Nuclear Agricultural Sciences, 29, 1386–1391.
(in Chinese with English abstract) [张永强, 张娜, 王娜,
唐江华, 徐文修, 李亚杰 (2015). 种植密度对夏大豆光
合特性及产量构成的影响. 核农学报, 29, 1386–1391.]
Zhao ZH, Liu AQ, Wu PF, Liu XD, He LL (2014). Variance
analysis of protein extraction and expression for Chinese
fir needles under low phosphorus stress. Journal of Fujian
College of Forestry, 34, 203–207. (in Chinese with
English abstract) [赵中华, 刘爱琴, 吴鹏飞, 刘鑫鼎, 何
琳琳 (2014). 低磷胁迫下杉木针叶蛋白的提取与表达
差异分析. 福建林学院学报, 34, 203–207.]
Zhou JC, Fan J, Wang XC, Wang Y, Deng YH, Xi HG, Yu LH
(2009). Photosynthetic properties of different sugar beet
genotypes under phosphorus deficiency. Plant Nutrition
and Fertilizer Science, 15, 910–916. (in Chinese with
English abstract) [周建朝, 范晶, 王孝纯, 王艳, 邓艳红,
奚红光, 於丽华 (2009). 磷胁迫下不同基因型甜菜的光
合特征. 植物营养与肥料学报, 15, 910–916.]
Zou XH, Wu PF, Chen NL, Wang P, Ma XQ (2015). Chinese
fir root response to spatial and temporal heterogeneity of
phosphorus availability in the soil. Canadian Journal of
Forest Research, 45, 402–410.


责任编委: 冯兆忠 责任编辑: 李 敏





©?????? Chinese Journal of Plant Ecology