免费文献传递   相关文献

Effects of sodium naphthalene acetate on growth and physiological characteristics of tomato seedlings under suboptimal temperature and light condition.

亚适宜温光下萘乙酸钠对番茄幼苗生长与生理特性的影响


以番茄“中杂105”为试材,研究亚适宜温光条件下根施10 mg·L-1萘乙酸钠对番茄幼苗生长与生理特性的影响.结果表明: 亚适宜温光处理番茄幼苗生物量、壮苗指数、根系活力、光合速率、根系和叶片中全氮含量均显著下降,超氧化物歧化酶和过氧化物酶活性升高,过氧化氢酶活性降低,玉米素核苷含量显著下降,而脱落酸含量显著增加.亚适宜温光条件下,与对照相比,根施10 mg·L-1萘乙酸钠可使番茄幼苗全株干质量、壮苗指数分别提高16.4%、22.9%,并使根、叶中全N含量及光合速率分别增加8.5%、28.5%、37.0%,提高根系活力和保护酶活性,增加吲哚乙酸和玉米素核苷含量,抑制脱落酸含量的增加.亚适宜温光处理下,根施10 mg·L-1萘乙酸钠可以通过提高番茄幼苗根系活力、保护酶活性和光合速率,调控内源激素水平变化,促进番茄幼苗生长.
 

Taking tomato ‘Zhongza 105’ as test material, the influences of sodium naphthalene acetate (SNA) on growth and physiological characteristics of tomato seedlings under suboptimal temperature and light condition were investigated. The results showed that the dry mass, vigorous seedling index, root activity, total nitrogen content, net photosynthesis rate (Pn) of tomato seedlings were significantly decreased by suboptimum temperature and light treatment. In addition, the catalase activity and zeatin riboside (ZR) concentration were also reduced. However, the superoxide dismutase, peroxidase activity and the content of abscisic acid (ABA) were increased. Compared with treatment of the same volume distilled water on tomato seedlings under suboptimum temperature and light condition, the dry mass of whole plant and vigorous seedling index of tomato seedlings were significantly increased by 16.4% and 22.9%, as the total N contents in roots and leaves and Pn were also increased by 8.5%, 28.5%and 37.0%, respectively, with the treatment of root application of 10 mg·L-1SNA. Besides protective enzyme activity and the root activity were improved, the indole acetic acid (IAA) and ZR concentration of tomato were raised, and ABA concentration was reduced. The results indicated that root application of certain concentration of SNA could promote the growth of tomato seedlings by increasing the tomato root activity, protective enzymes activity, Pn and regulating endogenous hormone concentration under suboptimum temperature and light condition.


全 文 :亚适宜温光下萘乙酸钠对番茄幼苗
生长与生理特性的影响∗
郭允娜  李衍素  贺超兴  于贤昌∗∗
(中国农业科学院蔬菜花卉研究所, 北京 100081)
摘  要  以番茄“中杂 105”为试材,研究亚适宜温光条件下根施 10 mg·L-1萘乙酸钠对番茄
幼苗生长与生理特性的影响.结果表明: 亚适宜温光处理番茄幼苗生物量、壮苗指数、根系活
力、光合速率、根系和叶片中全氮含量均显著下降,超氧化物歧化酶和过氧化物酶活性升高,
过氧化氢酶活性降低,玉米素核苷含量显著下降,而脱落酸含量显著增加.亚适宜温光条件
下,与对照相比,根施 10 mg·L-1萘乙酸钠可使番茄幼苗全株干质量、壮苗指数分别提高
16.4%、22.9%,并使根、叶中全 N含量及光合速率分别增加 8.5%、28.5%、37.0%,提高根系活
力和保护酶活性,增加吲哚乙酸和玉米素核苷含量,抑制脱落酸含量的增加.亚适宜温光处理
下,根施 10 mg·L-1萘乙酸钠可以通过提高番茄幼苗根系活力、保护酶活性和光合速率,调控
内源激素水平变化,促进番茄幼苗生长.
关键词  番茄; 萘乙酸钠; 亚适宜温光; 壮苗指数
文章编号  1001-9332(2015)10-3053-06  中图分类号  S626  文献标识码  A
Effects of sodium naphthalene acetate on growth and physiological characteristics of tomato
seedlings under suboptimal temperature and light condition. GUO Yun⁃na, LI Yan⁃su, HE
Chao⁃xing, YU Xian⁃chang ( Institute of Vegetables and Flowers, Chinese Academy of Agricultural
Sciences, Beijing 100081, China) . ⁃Chin. J. Appl. Ecol., 2015, 26(10): 3053-3058.
Abstract: Taking tomato ‘Zhongza 105’ as test material, the influences of sodium naphthalene
acetate (SNA) on growth and physiological characteristics of tomato seedlings under suboptimal
temperature and light condition were investigated. The results showed that the dry mass, vigorous
seedling index, root activity, total nitrogen content, net photosynthesis rate (Pn) of tomato seed⁃
lings were significantly decreased by suboptimum temperature and light treatment. In addition, the
catalase activity and zeatin riboside (ZR) concentration were also reduced. However, the superox⁃
ide dismutase, peroxidase activity and the content of abscisic acid (ABA) were increased. Com⁃
pared with treatment of the same volume distilled water on tomato seedlings under suboptimum tem⁃
perature and light condition, the dry mass of whole plant and vigorous seedling index of tomato
seedlings were significantly increased by 16.4% and 22.9%, as the total N contents in roots and
leaves and Pn were also increased by 8.5%, 28.5%and 37.0%, respectively, with the treatment of
root application of 10 mg·L-1SNA. Besides protective enzyme activity and the root activity were im⁃
proved, the indole acetic acid (IAA) and ZR concentration of tomato were raised, and ABA con⁃
centration was reduced. The results indicated that root application of certain concentration of SNA
could promote the growth of tomato seedlings by increasing the tomato root activity, protective en⁃
zymes activity, Pn and regulating endogenous hormone concentration under suboptimum temperature
and light condition.
Key words: tomato; sodium naphthalene acetate; suboptimum temperature and light intensity;
vigorous seedling index.
∗国家自然科学基金项目(31101583,31272212)、现代农业产业技术体系建设专项资金项目(CARS⁃25⁃C⁃01)、中国农业科学院科技创新工程
项目(CAAS⁃ASTIP⁃IVFCAAS)和农业部园艺作物生物学与种质创制重点实验室项目资助.
∗∗通讯作者. E⁃mail: xcyu1962@ 163.com
2014⁃12⁃19收稿,2015⁃05⁃20接受.
应 用 生 态 学 报  2015年 10月  第 26卷  第 10期                                                         
Chinese Journal of Applied Ecology, Oct. 2015, 26(10): 3053-3058
    我国北方日光温室内长期存在亚适宜温光环境
(18 ℃左右,200 ~ 400 μmol·m-2·s-1) [1],蔬菜生
长受到显著影响.亚适宜温光可降低黄瓜 N 运转蛋
白基因的表达量,进而降低 N 代谢相关酶活性和 N
含量[2],同时使黄瓜光合作用、矿质元素含量及
ATP 酶活性下降[3],抑制了黄瓜生长.目前,对缓解
低温弱光不利影响的研究多集中在补光[4]、增温[5]
等方面.补光、增温等措施虽可缓解或消除亚适宜温
光对植物的影响,但大幅度增加生产成本,难以推广
普及.有研究表明,在亚适温较弱光照下,喷施特定
浓度的增产胺(DCPTA)、5⁃氨基乙酰丙酸(ALA)、
亚硫酸氢钠、氯化胆碱(CC)等可以显著提高黄瓜幼
苗的净光合速率及叶绿素含量,其中以 0.5 mg·L-1
ALA效果最好[6] .而其他外源物质对植物生长影响
的研究多集中在抗寒性、盐胁迫、干旱胁迫等方面,
对亚适宜温光环境下施用外源物质调控蔬菜的抗性
研究较少.
植物生长调节剂调节植物对生物和非生物逆境
的抗性,影响其产量和品质[7-9] .作为生长素类植物
生长调节剂,萘乙酸钠(SNA)能促进细胞迅速分裂
与扩大,具有促进生根、调节生长等作用[10-11],同时
也可增强植物的抗镉(Cd)胁迫[12]、抗盐碱[13]、抗
寒[14]的能力.有研究发现,水稻移栽前使用 10
mg·kg-1萘乙酸(NAA)蘸根处理可以有效促进水稻
前期根数和根质量的增加,提高根系活力和抗衰老
能力[15];0.02%萘乙酸钠与 0.02%复硝酚钠复配灌
根可显著促进茄子根系生长[16] .然而,尚未见亚适
宜温光条件下萘乙酸钠对番茄幼苗生长影响的研
究.本试验利用人工气候室模拟亚适宜温光环境,通
过对番茄幼苗根施萘乙酸钠,研究其对番茄幼苗生
长和生理相关指标的影响,为结合水肥一体化根区
施用萘乙酸钠促进番茄生长提供技术指导.
1  材料与方法
1􀆰 1  供试材料与试验设计
试验于 2014年 4—8月在中国农业科学院蔬菜
花卉研究所日光温室和人工气候室进行.供试番茄
品种为“中杂 105”.育苗基质为草炭 ∶ 蛭石 = 2 ∶ 1
(V / V),穴盘育苗.待幼苗长至三叶一心时,选择长
势一致的幼苗,移栽至营养钵(12 cm×12 cm),钵内
基质同育苗基质.其中,一半幼苗用 10 mg·L-1萘乙
酸钠(SNA)灌根,每株 100 mL,另一半幼苗浇灌等
量蒸馏水,在日光温室培养 2 d 后转移至人工气候
室,正常温光预处理 2 d,控制温度 25 ℃ / 15 ℃,光
照强度 500 μmol·m-2·s-1,光周期 16 h / 8 h,相对
湿度 80%.分别将萘乙酸钠和蒸馏水处理幼苗的一
半搬至另一间亚低温亚弱光处理的人工气候室,控
制温度和光照强度分别为 15 ℃ / 10 ℃, 250
μmol·m-2·s-1,分别为“亚适宜温光+SNA”、“亚适
宜温光+蒸馏水”处理.其余 1 / 2 幼苗继续在正常温
光条件下培养,分别为“正常温光+SNA”、“正常温
光+蒸馏水”处理.
处理 10 d后取样测量各指标,每处理 20 株.株
高、茎粗、生物量和光合特性指标的测定重复 8 次.
N、P、K、Ca 含量、叶绿素含量、根系活力、保护性酶
活性及内源激素水平测定重复 3次.
1􀆰 2  测定项目与方法
1􀆰 2􀆰 1生物量  测量茎基部到生长点的长度记为株
高,第一片真叶下的粗度记为茎粗.将幼苗分地上、
地下部洗净后用蒸馏水冲洗 2次,擦干,用电子天平
分别称量幼苗地上部和地下部鲜质量、干质量.壮苗
指数=(地下部干物质量 /地上部干物质量+茎粗 /株
高)×全株干物质量.
1􀆰 2􀆰 2生理指标  利用氯化三苯基四氮唑(TTC)法
测定根系活力,用丙酮浸提法测定叶绿素含量.使用
凯氏定氮法测定番茄幼苗根、叶的 N 含量[17];用微
波消煮⁃电感耦合等离子体原子发射光谱( ICP)方
法测定磷(P)、钾(K)、钙(Ca)等元素.考马斯亮蓝
G⁃250 染色法测定幼苗可溶性蛋白含量,丙二醛
(MDA)含量测定采用硫代巴比妥酸(TBA)比色法,
过氧化物酶(POD)、超氧化物歧化酶(SOD)、过氧
化氢酶(CAT)活性的测定分别采用氮蓝四唑(NBT)
法、愈创木酚法和紫外分光光度法[18] .
采用 Li⁃6400XT 便携式光合仪(美国 Li⁃Cor 公
司)分别在不同温光(25 ℃,500 μmol·m-2·s-1;
15 ℃,250 μmol·m-2 ·s-1 )、 CO2浓度 350 ~ 360
μL·L-1下测定不同处理番茄幼苗功能叶片的光合
速率(Pn).PFD、CO2浓度和叶温分别由仪器的可调
光源、内置式 CO2供气系统和温度监控装置控制.
在中国农业大学农学与生物技术学院实验室用
酶联免疫吸附法(ELISA)测定样品中的吲哚乙酸
(IAA)、脱落酸(ABA)和玉米素核苷(ZR)含量.
1􀆰 3  数据处理
采用 DPS v7.05 软件对数据进行差异显著性检
验(α= 0.05).利用 Excel 2010软件作图.
4503 应  用  生  态  学  报                                      26卷
表 1  亚适宜温光下萘乙酸钠对番茄幼苗地上部、地下部和全株干质量及壮苗指数的影响
Table 1  Effects of SNA on dry mass of shoots, roots and whole plant, and vigorous seedling index of tomato seedlings under
suboptimal temperature and light intensity
处理
Treatment
地上部干质量
Dry mass of
shoots (g)
地下部干质量
Dry mass of
roots (g)
全株干质量
Dry mass of
whole plant (g)
壮苗指数
Vigorous seedling
index
Nor⁃W 1.00±0.04b 0.17±0.01ab 1.17±0.05b 0.56±0.02b
Nor⁃SNA 1.21±0.03a 0.18±0.01a 1.40±0.04a 0.66±0.02a
Sub⁃W 0.68±0.03c 0.12±0.01c 0.81±0.04d 0.45±0.03c
Sub⁃SNA 0.79±0.03c 0.16±0.01b 0.94±0.03c 0.57±0.02b
Nor⁃W: 正常温光+蒸馏水 Normal temperature and light intensity+distilled water; Nor⁃SNA: 正常温光+SNA Normal temperature and light intensity +
SNA; Sub⁃W: 亚适宜温光+蒸馏水 Suboptimum temperature and light intensity+distilled water; Sub⁃SNA: 亚适宜温光+SNA Suboptimum temperature
and light intensity+SNA. 同列不同小写字母表示处理间差异显著(P<0.05)Different letters in the same column meant significant difference at 0.05
level. 下同 The same below.
表 2  亚适宜温光下萘乙酸钠对番茄幼苗叶绿素含量、光合速率、全 N含量的影响
Table 2  Effects of SNA on chloroplast pigment content, net photosynthesis rate and total nitrogen content of tomato seed⁃
lings under suboptimal temperature and light intensity
处理
Treatment
叶绿素 a
Chlorophyll a
(mg·g-1)
叶绿素 b
Chlorophyll b
(mg·g-1)
类胡萝卜素
Carotenoids
(mg·g-1)
光合速率
Net photosynthesis
rate
(μmol·m-2·s-1)
全 N Total N
(mg·g-1DM)
叶片
Leaf
根系
Root
Nor⁃W 2.54±0.04a 0.98±0.02a 0.41±0.02a 5.42±0.20b 15.73±1.23b 28.61±0.27b
Nor⁃SNA 2.69±0.06a 1.01±0.03a 0.38±0.01a 7.20±0.25a 21.43±0.41a 31.01±0.53a
Sub⁃W 1.87±0.08b 0.63±0.02b 0.31±0.00b 3.12±0.15d 15.40±0.39b 15.40±0.39b
Sub⁃SNA 1.58±0.14b 0.55±0.02b 0.24±0.01b 4.28±0.06c 20.22±0.01a 31.06±0.91a
2  结果与分析
2􀆰 1  亚适宜温光下萘乙酸钠对番茄幼苗生物量的
影响
由表 1知,正常温光条件下,萘乙酸钠处理番茄
幼苗全株干质量、壮苗指数较对照提高 19. 9%、
16􀆰 9%.亚适宜温光处理引起番茄幼苗全株干质量
及壮苗指数显著下降.亚适宜温光条件下,萘乙酸钠
处理使番茄幼苗全株干质量、壮苗指数显著提高,分
别为 16.5%、22.9%,明显缓解了亚适宜温光环境引
起的幼苗生物量下降.
2􀆰 2  亚适宜温光下萘乙酸钠对番茄幼苗叶绿素含
量和光合特性的影响
从表 2 可以看出,番茄叶绿素含量随着温度和
光照强度的降低而降低.而在正常温光及亚适宜温
光条件下,根施 10 mg·L-1萘乙酸钠处理对番茄叶
绿素含量无影响.
正常温光条件下,萘乙酸钠处理 Pn较对照显著
提高 33.0%.亚适宜温光条件下,番茄幼苗光合速率
Pn显著降低,而根施萘乙酸钠使番茄 Pn较蒸馏水处
理提高 37.0%.
与 Pn变化趋势一致,亚适宜温光处理使番茄幼
苗根、叶中全 N 含量下降,而根施萘乙酸钠处理使
番茄幼苗根系、叶片中的全 N 含量分别较蒸馏水处
理提高 8.5%、28.5%.
2􀆰 3  亚适宜温光下萘乙酸钠对番茄幼苗根系活力
的影响
与正常温光条件相比,亚适宜温光处理使番茄
幼苗根系活力降低至 123.8 μg·g-1,仅为正常温光
处理的 32.7%.亚适宜温光下,根施萘乙酸钠处理番
茄幼苗根系活力为 170.4 μg·g-1,比蒸馏水处理增
加 37.7%(图 1).
图 1  亚适宜温光下萘乙酸钠对番茄幼苗根系活力的影响
Fig.1  Effects of SNA on root activity of tomato seedlings under
suboptimal temperature and light intensity.
Nor⁃W: 正常温光+蒸馏水 Normal temperature and light intensity+dis⁃
tilled water; Nor⁃SNA:正常温光+SNA Normal temperature and light in⁃
tensity+SNA; Sub⁃W: 亚适宜温光+蒸馏水 Suboptimum temperature
and light intensity+distilled water; Sub⁃SNA: 亚适宜温光+SNA Subop⁃
timum temperature and light intensity+SNA.不同小写字母表示处理间
差异显著(P<0.05)Different letters meant significant difference at 0.05
level. 下同 The same below.
550310期                    郭允娜等: 亚适宜温光下萘乙酸钠对番茄幼苗生长与生理特性的影响           
2􀆰 4  亚适宜温光下萘乙酸钠对番茄幼苗可溶性蛋
白、丙二醛含量的影响
由图 2 可以看出,番茄幼苗叶片中可溶性蛋白
及丙二醛(MDA)含量随着温度和光照强度的降低
而升高.正常温光条件下,萘乙酸钠处理可使番茄幼
苗叶片和根中可溶性蛋白含量分别显著提高 37.3%
和 4.3%.亚适宜温光条件下,萘乙酸钠处理使叶片
和根中的可溶性蛋白含量分别提高 54.0%、19.7%;
与之相反,萘乙酸钠处理显著降低了番茄幼苗叶片
和根系中 MDA含量,分别为蒸馏水处理的 67.3%和
51.9%.
2􀆰 5  亚适宜温光下萘乙酸钠对番茄幼苗保护性酶
活性的影响
由表 3可知,与正常温光条件相比,亚适宜温光
处理显著提高了番茄幼苗 SOD 和 POD 活性,但降
低了 CAT 活性.亚适宜温光下,萘乙酸钠处理番茄
叶片和根中 SOD 活性分别为 169 和 180 U·μg-1
FM,比蒸馏水处理分别提高 5.1%和 4.4%;POD 活
性分别为 32和 34 U·μg-1FM,比蒸馏水处理分别
提高 35.0%和 18.4%;CAT 活性分别为 1.33 和 8.32
U·μg-1 FM,比蒸馏水处理分别提高 178. 0%和
67􀆰 7%.
2􀆰 6  亚适宜温光下萘乙酸钠对番茄幼苗 IAA、ZR
和 ABA的影响
由表 4可知,与正常温光条件相比,亚适宜温光
处理引起番茄幼苗 IAA 和 ZR 含量不同程度的降
低,ABA 含量显著增加.亚适宜温光下,萘乙酸钠处
理番茄幼苗叶片、根系中 IAA 含量为 72 和 84
ng·g-1FM,比蒸馏水处理分别提高 28.6%、61.7%;
ZR含量分别为 11和 7 ng·g-1FM,较蒸馏水处理分
别提高 19.8%、27.9%;而 ABA含量分别为 114和 81
ng·g-1FM,较蒸馏水处理分别降低 7.5%、32.7%.
图 2  亚适宜温光下萘乙酸钠对番茄幼苗可溶性蛋白及丙二醛含量的影响
Fig.2  Effects of SNA on soluble protein and MDA contents of tomato seedlings under suboptimal temperature and light intensity.
A: 叶片 Leaf; B: 根系 Root.
表 3  亚适宜温光下萘乙酸钠对番茄幼苗 SOD、POD、CAT活性的影响
Table 3  Effects of SNA on SOD, POD and CAT activities of tomato seedlings under suboptimal temperature and light inten⁃
sity (U·μg-1 FM)
处理
Treatment
SOD
叶片
Leaf
根系
Root
POD
叶片
Leaf
根系
Root
CAT
叶片
Leaf
根系
Root
Nor⁃W 96±5.8b 169±0.9b 17±1.0c 27±0.8b 1.4±0.2a 10.0±0.7a
Nor⁃SNA 101±4.1b 173±1.9b 27±1.6b 24±2.1b 1.5±0.2a 6.8±0.6bc
Sub⁃W 161±1.0a 172±1.4b 24±1.7b 29±2.6ab 0.5±0.1b 5.0±0.4c
Sub⁃SNA 169±7.0a 180±1.5a 32±0.7a 34±0.8a 1.3±0.3a 8.3±1.1ab
6503 应  用  生  态  学  报                                      26卷
表 4  亚适宜温光下萘乙酸钠对番茄幼苗内源激素含量的影响
Table 4  Effects of SNA on concentration of endogenous hormone in tomato seedlings under suboptimal temperature and
light intensity (ng·g-1 FM)
处理
Treatment
IAA
叶片
Leaf
根系
Root
ZR
叶片
Leaf
根系
Root
ABA
叶片
Leaf
根系
Root
Nor⁃W 56±1.11b 60±2.62b 11±0.05b 8±0.02a 103±1.21c 73±2.10c
Nor⁃SNA 76±0.41a 83±0.36a 13±0.35a 10±0.06a 95±2.40d 48±1.90d
Sub⁃W 56±2.83b 52±0.91b 9±0.16c 6±0.49c 124±0.62a 121±1.54a
Sub⁃SNA 72±3.48a 84±4.76a 11±0.17b 7±0.56b 114±0.84b 81±3.39b
3  讨    论
亚适宜温光处理会引起植物株高和叶面积日增
加、干鲜质量和根冠比显著降低,同时植物体内 N、
P、K、Ca和 Mg含量显著降低,进而影响植株的生理
代谢活动和生长发育[3] .向干旱处理的大豆喷施萘
乙酸钠可增强其叶片的光合速率[19] .本试验表明,
亚适宜温光环境下,番茄幼苗生物量、壮苗指数、根
系活力及全 N含量较正常温光处理显著降低,而在
正常温光及亚适宜温光环境下,根施 10 mg·L-1萘
乙酸钠处理可以显著增加番茄根系活力和 Pn,促进
了番茄对 N的吸收,使番茄幼苗干质量明显增加.
可溶性蛋白和 MDA 含量通常认为与植物抗低
温胁迫能力相关[20] .植物体内 SOD、POD、CAT 共同
组成一个有效的活性氧(ROS)清除抗氧化酶系统,
维持植物体内 ROS 代谢平衡[21-23] .前人研究发现,
喷施 NAA可提高大豆 POD活性、降低丙二醛含量、
减轻膜脂过氧化作用[19] .本研究中,在正常温光及
亚适宜温光环境下,根施萘乙酸钠处理可以促进番
茄幼苗体内可溶性蛋白含量的积累,显著降低 MDA
含量,提高植株抗性.亚适宜温光处理引起番茄幼苗
SOD、POD 活性显著升高,CAT 活性降低;在亚适宜
温光条件下,根施 10 mg·L-1萘乙酸钠处理番茄幼
苗较对照提高 SOD、POD 活性,同时缓解 CAT 活性
的降低,这与前人研究结果基本一致[14] .说明在亚
适宜温光条件下,萘乙酸钠可以通过诱导 SOD、POD
活性的增强来降低番茄幼苗的 MDA 含量,促进可
溶性蛋白含量的积累,提高抗逆能力,酶保护系统中
SOD、POD起主要作用.另一方面,有研究表明,棉花
可通过过量表达叶绿体中抗氧化酶基因 SOD 等来
提高光化学光能的利用[24] .亚适宜温光下萘乙酸钠
处理提高了番茄幼苗 SOD、POD、CAT 活性,可能通
过保护植物光合结构免受膜脂过氧化伤害来提高光
合速率.
在植物遭受逆境胁迫时,生长素、细胞分裂素也
发挥着重要作用[25-26] .外源萘乙酸钠通过增加茉莉
新梢中 IAA 含量,降低 ZR 含量来抑制成花,而对
ABA 含 量 无 影 响[27]; 另 有 研 究 表 明, 喷 施
35 mg·L-1萘乙酸钠可以降低辣椒叶片 ABA、IAA
含量,增加 GA 和 ZR 含量,提高辣椒产量[28] .本研
究表明,在正常温光与亚适宜温光环境下,根施萘乙
酸钠处理均可显著提高番茄幼苗叶片和根系的
IAA、ZR含量,明显降低 ABA含量,说明根施萘乙酸
钠可以通过调控番茄幼苗内激素水平,进而促进
生长.
综上所述,亚适宜温光条件下,根施 10 mg·L-1
萘乙酸钠可提高番茄根系活力,促进番茄幼苗生长.
本研究为结合肥水一体化,利用萘乙酸钠缓解亚适
宜温光条件对番茄生长的抑制作用提供了科学依
据.而根施萘乙酸钠对番茄后期生长、产量和品质等
的影响还有待进一步研究.
参考文献
[1]  Liu Y⁃M (刘玉梅). Regulation Principle and Tech⁃
nique of Photosynthesis of Cucumber under Suboptimal
Temperature and Suboptimal Light. PhD Thesis.
Tai’an: Shandong Agricultural University, 2006 ( in
Chinese)
[2]  Yao J (姚  娟), Li Y⁃S (李衍素), Guo Y⁃N (郭允
娜), et al. Effects of suboptimum temperature and sub⁃
optimum PFD in a short time on enzymes activities and
genes expression related to nitrogen absorption of the cu⁃
cumber plants. Acta Horticulture Sinica (园艺学报),
2013, 40(7): 1289-1297 (in Chinese)
[3]  Shang H (尚  辉). Effects of Suboptimal Temperature
and PFD Treatments on Growth Characters and Nitrogen
Metabolism of Cucumber Seedlings. Master Thesis.
Tai’an: Shandong Agricultural University, 2012 ( in
Chinese)
[4]  Gajc⁃Wolska J, Kowalczyk K, Metera A, et al. Effect of
supplementary lighting on selected physiological para⁃
meters and yielding of tomato plants. Folia Horticulture,
2014, 25: 153-159
[5]  Zhao Y⁃L (赵云龙), Yu X⁃C (于贤昌), Li Y⁃S (李
衍素), et al. Application of electric carbon crystal soil⁃
750310期                    郭允娜等: 亚适宜温光下萘乙酸钠对番茄幼苗生长与生理特性的影响           
warming system for tomato production in greenhouse.
Transactions of the Chinese Society of Agricultural Engi⁃
neering (农业工程学报), 2013, 29(7): 131-138 (in
Chinese)
[6]  Guo X⁃Q (郭晓青). Effects of 5⁃aminolevulinic Acid on
Physiological Characteristics of Tomato under Suboptimal
Temperature and Light Intensity. Master Thesis. Tai’an:
Shandong Agricultural University, 2011 (in Chinese)
[7]  Shahsavari E, Maheran AA, Akmar ASN. The effect of
plant growth regulators on optimization of tissue culture
system in Malaysian upland rice. African Journal of Bio⁃
technology, 2012, 9: 1684
[8]  Echegaray ER, Cloyd RA. Effects of reduced⁃risk pesti⁃
cides and plant growth regulators on rove beetle (Cole⁃
optera: Staphylinidae) adults. Journal of Economic En⁃
tomology, 2012, 105: 2097-2106
[9]  Waqas M, Khan AL, Kamran M. Endophytic fungi pro⁃
duce gibberellins and indoleacetic acid and promotes
host⁃plant growth during stress. Molecules, 2012, 17:
10754-10773
[10]  Dolci M, Navissano G, Gay G, et al. Comparison among
18 hexyl esters 1⁃naphthylacetic acid used on grapevine.
Journal of Agricultural and Food Chemistry, 1999, 47:
1767-1770
[11]   Murillo Pulgarín JA, Fernández López P, García Ber⁃
mejo LF, et al. Fast kinetic determination of 1⁃naphthyl⁃
acetic acid in commercial formulations, soils, and fruit
samples using stopped⁃flow phosphorimetry. Journal of
Agricultural and Food Chemistry, 2003, 51: 6380-6385
[12]  Huang Y⁃X (黄运湘), Liao B⁃H (廖柏寒), Xiao L⁃T
(肖浪涛), et al. Relieving of Cd toxicity to Glycine
max seedlings by spraying NAA and added Zn. Ecology
and Environment (生态环境), 2008, 17(1): 232 -
236 (in Chinese)
[13]  Zheng P⁃S (郑平生), Jin F (金  芳), Yan L⁃P (燕
丽萍). Effect of exogenous hormones on growth of straw⁃
berry test⁃tube plantlets in salt stress. Journal of Gansu
Agricultural University (甘肃农业大学学报), 2004,
39(3): 277-280 (in Chinese)
[14]  Qu Y⁃Y (曲亚英), Tao X⁃L (陶兴林). Effect of seed
soaled with S3307 and IBA +NAA on cold resistance of
sweet pepper seedlings. Journal of Gansu Agricultural
University (甘肃农业大学学报), 2006, 41(4): 52-
55 (in Chinese)
[15]  Hua Z⁃T (华泽田), Wang Y⁃R (王彦荣), Chen W⁃F
(陈温福), et al. Effects of naphthylacetic acid and uni⁃
conazole on root physiological characteristics on super ja⁃
ponica hybrid rice Liaoyou 3225. Chinese Journal of Rice
Science (中国水稻科学), 2004, 18(3): 229-233 (in
Chinese)
[16]  Hu Z⁃P (胡兆平), Li W (李  伟), Chen J⁃Q (陈建
秋), et al. Effect of sodium nitrophenolate, DA⁃6 and
NAA on the eggplant yield and quality. Chinese Agricul⁃
tural Science Bulletin (中国农学通报), 2013, 29
(25): 168-172 (in Chinese)
[17]  Zhao S⁃J (赵世杰). Plant Physiology Experiment Gui⁃
dance. Beijing: China Agricultural Science and Technol⁃
ogy Press, 1998 (in Chinese)
[18]  Li H⁃S (李合生). Principles and Techniques of Plant
Physiological and Biochemical Experiments. Beijing:
Higher Education Press, 2002 (in Chinese)
[19]  Liang P (梁  鹏), Xing X⁃H (邢兴华), Zhou Q (周
琴), et al. Effect of NAA on growth and photosynthetic
characteristic of soybean seedling under drought and re⁃
watering. Soybean Science (大豆科学), 2011, 30(1):
50-57 (in Chinese)
[20]  Liu M⁃C (刘明池). Studies on improving cucumber
chilling resistance by seedling hardening. Acta Agricultu⁃
rae Boreali⁃Sinica (华北农学报), 1994, 9(3): 52-
58 (in Chinese)
[21]  Noctor G, Foyer CH. Ascorbate and glutathione: Kee⁃
ping active oxygen under control. Annual Review of Plant
Physiology and Plant Molecular Biology, 1998, 49:
249-279
[22]  Mutlu S, Atici O, Esim N, et al. Essential oils of cat⁃
mint (Nepeta meyeri) induce oxidative stress in early
seedlings of various weed species. Acta Physiologiae
Plantarum, 2011, 33: 943-951
[23]  Esim N, Tiryaki D, Karadagoglu O, et al. Toxic effects
of boron on growth and antioxidant system parameters of
maize (Zea mays L.) roots. Toxicology and Industrial
Health, 2013, 29: 800-805
[24]  Kornyenev D, Logan BA, Payton P. Enhanced photo⁃
chemical light utilization and decreased chilling induced
photoinhibition of photosystemⅡ in cotton overexpress⁃
ing genes encoding chloroplast⁃targeted antioxidant en⁃
zymes. Physiologia Plantarum, 2001, 113: 323-331
[25]  Peleg Z, Blumwald E. Hormone balance and abiotic
stress tolerance in crop plants. Current Opinion in Plant
Biology, 2011, 14: 290-295
[26]   Jones B, Gunneras SA, Petersson S, et al. Cytokinin
regulation of auxin synthesis in Arabidopsis involves a
homeostatic feedback loop regulated via auxin and cyto⁃
kinin signal transduction. The Plant Cell, 2011, 22:
2956-2969
[27]   Huang C⁃M (黄诚梅), Jiang W (江  文), Wu J⁃M
(吴建明), et al. Floral bud formation and endogenous
hormone changes of Jasminum sambac L. with NAA or
PP333 treatments. Acta Botanica Boreali⁃Occidentalia
Sinica (西北植物学报), 2009, 29(4): 742-748 ( in
Chinese)
[28]   Zhang H⁃J (张红菊), Zhao H⁃Y (赵怀勇), Yu J⁃H
(郁继华). Effects of α⁃NAA on yield and endogenous
hormones of greenhouse grown pepper in desert area.
Journal of Desert Research (中国沙漠), 2013, 33(5):
1390-1399 (in Chinese)
作者简介  郭允娜,女,1990年生,硕士研究生. 主要从事设
施蔬菜栽培研究. E⁃mail: yunnaguo@ 126.com
责任编辑  孙  菊
8503 应  用  生  态  学  报                                      26卷