全 文 :第 39卷 第 1期
2014年 2月
昆明理工大学学报(自然科学版)
Journal of Kunming University of Science and Technology (Natural Science Edition)
Vol. 39 No. 1
Feb. 2014
Received 2013 - 06 - 19. Foundation Project:Supported by the National Natural Science Foundation of China (No.
20962013).
Author biographical notes:HUANG Zhong - hui (1988 - ),male,Master of Engineering. Research area:natural medici-
nal chemistry. E -mail:zhonghui23@ hotmail. com
Author for correspondence:LI Hai - zhou (1975 - ) ,male,associate professor. Research area:natural medicinal chemistry.
E -mail:lihaizhou@ yninfo. com
doi:10. 3969 / j. issn. 1007 - 855x. 2014. 01. 016
Chemical Constituents from Rhizomes
of Smilax china Linn.
HUANG Zhong-hui,HAO Qian,LI Rong-tao,LI Hai-zhou
(Faculty of Life Science and Technology,Kunming University of Science and Technology,Kunming 650500,China)
Abstract:12 compounds are isolated from the rhizomes of Smilax china Linn. by various column chromatograph-
ic methods,including open column and preparative HPLC. Their structures are elucidated as (2R,3R)- di-
hydrokaempferol - 3 - O - β - D - glucopyranoside (1),(2R,3R)- dihydroquercetin - 3 - O - β - D - gluco-
pyranoside (2) ,astilbin (3) ,isoastilbin (4) ,3,5,7,3,5 - pentahydroxy -(2R,3R)- flavanonol - 3 -
O - α - L - rhamnopyranoside (5) ,rutin (6) ,astragalin (7) ,4,6 - dihydroxy - 2 - O -(β - D - glucopyr-
anosyl)acetophenone (8) ,methyl 2 - O - β - D - glucopyranosyl - 2,4,6 - trihydroxybenzoate (9) ,oxyres-
veratrol (10) ,protodioscin (11) ,dioscin (12)by spectral analysis as well as physical and chemical proper-
ties. Compounds 1,4 - 5,7 - 9 are obtained from S. china for the first time. In addition,based on the contrast
of chemical constituents between Smilax china Linn. and Smilax glabra Roxb.,it is concluded that steroid sapo-
nins and flavonoids are the major chemical constituents of S. china,while S. glabra holds flavonoids as the ma-
jor chemical constituents.
Key words:Smilax china Linn.;chemical constituents;flavonoid;Smilax glabra Roxb.;chemical difference
CLC Number:R284. 1 Document Code:A Article ID:1007 - 855X(2014)01 - 0080 - 07
菝葜的化学成分研究
黄钟辉,郝 倩,李蓉涛,李海舟
(昆明理工大学 生命科学与技术学院,云南 昆明 650500)
摘要:采用常压柱色谱和制备型高效液相色谱等色谱方法,从菝葜根茎中分离得到 12 个化合
物,通过理化性质和波谱分析鉴定为(2R,3R)-二氢山奈酚 - 3 - O - β - D -葡萄糖苷 (1),
(2R,3R)-二氢槲皮素 - 3 - O - β - D -葡萄糖苷(2),落新妇苷 (3),异落新妇苷(4),3,5,7,
3 ,5 -五羟基 - 2R,3R -二氢黄酮 - 3 - O - α - L -鼠李糖苷(5),芦丁 (6),紫云英苷 (7),4,
6 -二羟基苯乙酮 - 2 - O - β - D -葡萄糖苷(8),4,6 -二羟基苯甲酸甲酯 - 2 - O - β - D -葡
萄糖苷(9),氧化白藜芦醇(10),原薯蓣皂苷 (11),薯蓣皂苷 (12).化合物 1,4 - 5,7 - 9 为首
次从该植物中分离得到.此外,通过比较菝葜和土茯苓中化学成分的差异,发现菝葜的主要成分
为甾体皂苷和黄酮类化合物,而土茯苓中主要为黄酮类化合物.
关键词:菝葜;化学成分;黄酮类化合物;土茯苓;化学成分差异
0 Introduction
Smilax china Linn. (family Liliaceae)which is a perennial herbaceous plant,is widely distributed in
southern regions of china. In traditional Chinese medicine (TCM),its rhizomes have been used as medicinal
herbs for a long time [1].
Previous studies on S. china have suggested the presence of steroid saponins and flavonoid glycosides as the
major chemical constituents [2]. In the course of a continuing search for compounds from S. china,we systemati-
cally examined the rhizomes of S. china purchased in Wuhan,Hubei Province. As a result,12 compounds were
isolated and identified as (2R,3R)- dihydrokaempferol - 3 - O - β - D - glucopyranoside (1),(2R,3R)-
dihydroquercetin - 3 - O - β - D - glucopyranoside (2) ,astilbin (3) ,isoastilbin (4) ,3,5,7,3,5 - pen-
tahydroxy -(2R,3R)- flavanonol - 3 - O - α - L - rhamnopyranoside (5) ,rutin (6) ,astragalin (7) ,4,6 -
dihydroxy - 2 - O -(β - D - glucopyranosyl)acetophenone (8) ,methyl 2 - O - β - D - glucopyranosyl - 2,4,
6 - trihydroxybenzoate (9) ,oxyresveratrol (10) ,protodioscin (11) ,dioscin (12) ,respectively (Fig. 1). And
compounds 1,4 - 5,7 - 9 are obtained from S. china for the first time.
1 Experimental
1. 1 General
1D and 2D NMR spectra were recorded on a Bruker AM -400 or DRX -500 NMR spectrometer instrument
(1H:400 /500 MHz,13C:100 /125 MHz). Chemical shifts are given as δ values relative to TMS as internal
18第 1 期 黄钟辉,郝 倩,李蓉涛,等:菝葜的化学成分研究
standard,and coupling constants are given in Hz. ESI - MS data were obtained on an API Qstar Pulsar - 1 mass
instrument.
Silica gel (100 - 200 mesh,200 - 300 mesh,Qingdao Marine Chemical Factory,China),Diaion HP -
20ss (Mitsubishi Chemical Co.,Ltd.,Japan) ,Toyopearl HW - 40C (TOSOH Co.,Ltd.,Japan) ,and ODS
(YMC* Gel ODS - A,50 μm,YMC Co.,Ltd.,Japan)were used for column chromatography. Preparative
HPLC was carried out on an Agilent 1200 liquid chromatographic system (Agilent Technologies Co.,Ltd.,
USA)equipped with Zorbax SB - C18 (Agilent,9. 4 mm ×250 mm)column. All chemical solvents used for i-
solation were of analytical grade or higher.
1. 2 Plant material
The rhizomes of S. china were collected in Wuhan,Hubei Province and were identified by Dr. Hai - Zhou
Li. A voucher specimen (KUST20101101)is deposited in the Laboratory of Phytochemistry,the Faculty of Life
Science and Technology,Kunming University of Science and Technology.
1. 3 Extraction and isolation
The air - dried rhizomes of S. china (2. 0 kg)were powdered and extracted three times with 75% MeOH /
H2O (3 × 6 L,24 h,each)at room temperature. The combined MeOH extracts were concentrated under re-
duced pressure to get a residue,which was suspended in H2O and then partitioned with n - BuOH. The n -
BuOH fraction (150 g)was passed through a Diaion HP20ss column successively eluted with H2O and MeOH /
H2O mixtures (3∶7,6∶4,9∶1)to give six fractions (Fr. 1 - 6).
Fr. 1 (16 g)was separated by a Toyopearl HW -40C column,using a gradient mixture of MeOH /H2O (0
∶1,3∶7,6∶4,9:1)to obtain nine fractions (1 - 9)based on TLC analysis. Subfraction 1 - 3 (0. 98 g)was
subjected to ODS silica gel column chromatography eluting with a stepwise MeOH /H2O gradient (1∶9 - 10∶0,v /
v),followed by silica gel column chromatography with CHCl3 /MeOH /H2O (8 ∶ 2 ∶ 02)to yield compound 8
(11. 5mg). Compounds 7 (7. 2 mg),9 (3. 5 mg)were obtained from subfraction 1 - 4 (1. 18 g)using the
same method as subfraction 1 - 3.
Fr. 2 (11 g)was also subjected on a Toyopearl HW - 40C column,eluting with a gradient mixture of
MeOH /H2O (0:1,3∶7,6∶4,9∶ 1)to produce fifteen fractions (1 - 15). Subfraction 2 - 7 (213. 3 mg)was
separated by preparative HPLC (CH3CN /H2O,15∶ 85,v /v)to give 1 (5. 4 mg),2 (20 mg) ,6 (13 mg).
From subfraction 2 - 10 (276. 2 mg) ,compounds 3 (8. 0 mg) ,4 (17. 4 mg)were gained by above method.
Subfraction 2 - 11 (404. 5 mg)was also submitted to preparative HPLC (CH3CN /H2O,20∶80,v /v)to obtain
5 (17. 4 mg). Subfraction 2 - 14 (2. 0 g)was separated by silica gel using CHCl3 /MeOH /H2O (8∶2∶0. 2)as
eluent and then purified by preparative HPLC (CH3CN /H2O,20∶80,v /v)to yield 10 (50. 9 mg).
Fr. 5 (795. 6 mg)and Fr. 6 (401. 9 mg)were applied to MPLC on silica gel column,eluting with a step-
wise gradient mixture of CHCl3 /MeOH /H2O (10 ∶ 1 ∶ 0. 1,8 ∶ 2 ∶ 0. 2,7 ∶ 3 ∶ 0. 5)to get 11 (20. 3 mg)and 12
(18. 2 mg),respectively.
2 Structural identification
(2R,3R)- Dihydrokaempferol - 3 - O - β - D - glucopyranoside (1)Yellow powder,C21H22O11,ESI -
MS:m/z 449,[M - H]-;1H NMR (DMSO - d6,400 MHz)δ:5. 09 (1H,d,J = 7. 0 Hz,H - 3),5. 32
(1H,d,J = 7. 0 Hz,H -2) ,5. 89 (1H,s,H -8) ,6. 26 (1H,s,H -6) ,6. 75 (2H,d,J = 8. 0 Hz,H -
3,5) ,7. 27 (2H,d,J = 8. 0 Hz,H -2,6) ;13C NMR (DMSO - d6,100 MHz)δ:82. 1 (C -2),73. 4
(C -3) ,190. 8 (C -4) ,163. 6 (C -5) ,96. 3 (C - 6) ,168. 6 (C - 7) ,95. 4 (C - 8) ,160. 5 (C - 9) ,
28 昆明理工大学学报(自然科学版) 第 39 卷
100. 5 (C -10),127. 9 (C - 1) ,129. 4 (C - 2) ,114. 9 (C - 3) ,157. 7 (C - 4) ,114. 9 (C - 5) ,
129. 4 (C -6) ,102. 5 (C -1) ,72. 6 (C -2) ,76. 0 (C -3) ,69. 5 (C -4) ,77. 4 (C -5) ,60. 6
(C -6). The NMR and MS data were identical to those of the literature [3].
(2R,3R)- Dihydroquercetin - 3 - O - β - D - glucopyranoside (2)Yellow powder,C21 H22 O12,ESI -
MS:m/z 465,[M - H]-;1H NMR (DMSO - d6,400 MHz)δ:4. 57 (1H,d,J = 11. 4 Hz,H - 3),5. 00
(1H,d,J = 11. 3 Hz,H -2) ,5. 86 (1H,s,H -6) ,5. 90 (1H,s,H -8) ,6. 82 (1H,d,J = 8. 2 Hz,H
-5) ,7. 00 (1H,d,J = 8. 1 Hz,H - 6) ,7. 23 (1H,s,H - 2) ;13C NMR (DMSO - d6,100 MHz)δ:
82. 9 (C -2),71. 4 (C -3) ,197. 9 (C - 4) ,163. 3 (C - 5) ,96. 1 (C - 6) ,167. 0 (C - 7) ,95. 1 (C -
8) ,162. 5 (C -9) ,100. 4 (C -10) ,128. 2 (C -1) ,115. 6 (C -2) ,147. 3 (C -3) ,144. 9 (C - 4) ,
116. 6 (C -5) ,122. 9 (C -6) ,102. 1 (C -1) ,73. 3 (C -2) ,77. 2 (C -3) ,69. 8 (C -4) ,76. 0
(C -5) ,60. 6 (C -6). The NMR and MS data were accorded with those of the literature [4].
Astilbin (3)Yellow powder,C21H22O11,ESI - MS:m/z 449,[M - H]
-;1H NMR (CD3OD,400 MHz)
δ:1. 18 (3H,d,J = 6. 0 Hz,H -6),4. 03 (1H,s,H -1) ,4. 57 (1H,d,J = 10. 6 Hz,H -3) ,5. 06
(1H,d,J = 10. 6 Hz,H -2) ,5. 89 (1H,s,H -6) ,5. 91 (1H,s,H -8) ,6. 80 (1H,d,J = 8. 0 Hz,H
-5) ,6. 83 (1H,d,J = 8. 2 Hz,H -6) ,6. 95 (1H,s,H -2) ;13C NMR (CD3OD,100 MHz)δ:84. 0
(C -2),78. 5 (C - 3) ,196. 0 (C - 4) ,165. 5 (C - 5) ,97. 3 (C - 6) ,168. 6 (C - 7) ,96. 3 (C - 8) ,
164. 1 (C -9) ,102. 4 (C - 10) ,129. 2 (C - 1) ,115. 4 (C - 2) ,146. 5 (C - 3) ,147. 4 (C - 4) ,
116. 3 (C -5) ,120. 5 (C -6) ,102. 1 (C -1) ,71. 8 (C -2) ,72. 1 (C -3) ,73. 8 (C -4) ,70. 5
(C -5) ,17. 9 (C -6). The NMR and MS data were in agreement with those of the literature [5].
Isoastilbin (4)Yellow powder,C21 H22 O11,ESI - MS:m/z 449,[M - H]
-;1H NMR (CD3OD,500
MHz)δ:0. 93 (3H,d,J = 6. 14 Hz,H -6),4. 17 (1H,d,J = 2. 2 Hz,H - 3) ,5. 41 (1H,d,J = 1. 8
Hz,H -2) ,5. 92 (1H,s,H -6) ,5. 97 (1H,s,H -8) ,6. 79 (1H,d,J = 8. 1 Hz,H -6) ,6. 83 (1H,
d,J = 8. 2 Hz,H -5) ,6. 94 (1H,s,H -2) ;13C NMR (CD3OD,125 MHz)δ:82. 1 (C -2),75. 6 (C
-3) ,194. 3 (C - 4) ,166. 2 (C - 5) ,97. 4 (C - 6) ,168. 9 (C - 7) ,96. 3 (C - 8) ,164. 5 (C - 9) ,
101. 8 (C -10) ,128. 7 (C - 1) ,115. 3 (C - 2) ,146. 7 (C - 3) ,146. 4 (C - 4) ,116. 4 (C - 5) ,
119. 4 (C -6) ,100. 2 (C -1) ,72. 1 (C -2) ,72. 1 (C -3) ,73. 4 (C -4) ,70. 4 (C -5) ,17. 8
(C -6)The NMR and MS data were consistent with those of the literature [6].
3,5,7,3,5 - Pentahydroxy -(2R,3R)- flavanonol 3 - O - α - L - rhamnopyranoside (5)Yellow
powder,C21H22O11,ESI - MS:m/z 449,[M - H]
-;1H NMR (DMSO - d6,400 MHz)δ:1. 02 (3H,d,J
= 6. 0 Hz,H -6),4. 63 (1H,d,J = 10 Hz,H -2) ,5. 21 (1H,d,J = 10 Hz,H -3) ,5. 85 (1H,s,H
-8) ,5. 87 (1H,s,H -6) ,6. 72 (2H,s,H - 2,6) ,6. 87 (1H,s,H - 4) ;13C NMR (DMSO - d6,
100 MHz)δ:81. 5 (C -2),75. 6 (C -3) ,194. 5 (C -4) ,163. 4 (C -5) ,96. 1 (C -6) ,167. 3 (C -7) ,
95. 2 (C -8) ,162. 2 (C -9) ,100. 9 (C -10) ,127. 0 (C -1) ,115. 4 (C -2) ,145. 2 (C -3) ,118. 9
(C -4) ,145. 9 (C -5) ,114. 8 (C -6) ,100. 1 (C -1) ,70. 4 (C -2) ,70. 1 (C -3) ,71. 6 (C -
4) ,69. 0 (C -5) ,17. 7 (C -6). The NMR and MS data were equal to those of the literature [7].
Rutin (6)Yellow powder,C27 H30 O15,ESI - MS:m/z 593,[M - H]
-;1H NMR (DMSO - d6,400
MHz)δ:0. 97 (3H,d,J = 6. 0 Hz,H -6),4. 36 (1H,brs,H -1) ,5. 31 (1H,d,J = 6. 3 Hz,H -
1) ,6. 15 (1H,d,J = 2. 0 Hz,H -6) ,6. 34 (1H,d,J = 2. 0 Hz,H -8) ,6. 81 (1H,d,J = 8. 2 Hz,H -
5) ,7. 51 (1H,d,J = 2. 0 Hz,H -2) ,7. 53 (1H,dd,J = 2. 0,8. 2 Hz,H -6) ;13C NMR (DMSO - d6,
100 MHz)δ:156. 5 (C -2),133. 3 (C -3) ,177. 3 (C -4) ,161. 2 (C -5) ,98. 9 (C -6) ,164. 0 (C -
7) ,93. 7 (C -8) ,156. 4 (C -9) ,103. 7 (C - 10) ,121. 6 (C - 1) ,115. 2 (C - 2) ,144. 8 (C - 3) ,
38第 1 期 黄钟辉,郝 倩,李蓉涛,等:菝葜的化学成分研究
148. 6 (C -4),116. 2 (C -5) ,121. 1 (C -6) ,101. 3 (C -1) ,74. 1 (C -2) ,75. 9 (C -3) ,71. 8
(C -4) ,76. 4 (C -5) ,67. 0 (C -6) ,100. 8 (C -1) ,70. 4 (C -2) ,70. 6 (C -3) ,71. 8 (C
-4) ,68. 3 (C -5) ,17. 8 (C -6). The NMR and MS data were in accordance with those of the litera-
ture [8].
Astragalin (7)Yellow powder,C21H20O11,ESI - MS:m/z 447,[M - H]
-;1H NMR (DMSO - d6,400
MHz)δ:6. 65 (1H,d,J = 2. 0 Hz,H -6),6. 68 (1H,d,J = 2. 0 Hz,H -8) ,6. 90 (2H,d,J = 8. 8 Hz,
H -3,5) ,8. 00 (2H,d,J = 8. 8 Hz,H -2,6) ;13C NMR (DMSO - d6,100 MHz)δ:143. 6 (C - 2),
137. 2 (C -3) ,171. 8 (C -4) ,158. 8 (C -5) ,102. 5 (C -6) ,162. 4 (C -7) ,97. 2 (C -8) ,158. 2 (C
-9) ,106. 2 (C -10) ,121. 7 (C - 1) ,129. 2 (C - 2) ,115. 5 (C - 3) ,157. 3 (C - 4) ,115. 5 (C -
5) ,129. 2 (C -6) ,103. 2 (C -1) ,73. 5 (C -2) ,75. 7 (C -3) ,69. 6 (C -4) ,77. 3 (C -5) ,
60. 7 (C -6). The NMR and MS data showed to be identical with astragalin [9] by compariso.
4,6 - Dihydroxy - 2 - O -(β - D - glucopyranosyl)acetophenone (8)White powder,C14H18O9,ESI -
MS:m/z 329,[M - H]-;1H NMR (DMSO - d6,400 MHz)δ:2. 61 (3H,s,- CH3),4. 90 (1H,d,J =
7. 28 Hz,H -1) ,5. 90 (1H,d,J = 2. 12 Hz,H -5) ,6. 10 (1H,d,J = 2. 12 Hz,H -3) ;13C NMR (DM-
SO - d6,100 MHz)δ:104. 9 (C - 1),164. 9 (C - 2) ,100. 7 (C - 3) ,165. 8 (C - 4) ,94. 2 (C - 5) ,
161. 2 (C -6) ,96. 7 (C -1) ,73. 2 (C -2) ,76. 7 (C -3) ,69. 4 (C -4) ,77. 2 (C -5) ,60. 5 (C -
6) ,33. 0 (- Me) ,203. 0 (C = O). The NMR and MS data were the same with those of the literature [10].
Methyl 2 - O - β - D - glucopyranosyl - 2,4,6 - trihydroxybenzoate (9)White powder,C14H18O10,ESI
- MS:m/z 345,[M - H]-;1H NMR (CD3OD,500 MHz)δ:3. 83 (3H,s,- OCH3),4. 90 (1H,d,J =
6. 6 Hz,H -1) ,6. 00 (1H,d,J = 2. 4 Hz,H -5) ,6. 23(1H,d,J = 1. 8 Hz,H -3) ;13C NMR (CD3OD,
125 MHz)δ:98. 8 (C -1),164. 9 (C -2) ,96. 6 (C -3) ,165. 0 (C -4) ,98. 4 (C -5) ,161. 4 (C -6) ,
102. 6 (C -1) ,75. 0 (C -2) ,78. 1 (C -3) ,71. 2 (C -4) ,78. 4 (C -5) ,62. 5 (C -6) ,172. 2 (C
= O) ,52. 6 (- OMe) ;The NMR and MS data were consistent with those of the literature [11].
Oxyresveratrol (10)Yellow powder,C14H12O4,ESI - MS:m/z 243,[M - H]
-;1H NMR (CD3OD,500
MHz)δ:6. 15 (1H,s,H -4),6. 46 (2H,d,J = 1. 66 Hz,H -2,6) ,6. 82 (1H,d,J = 16. 35 Hz,H -
α) ,7. 27 (1H,d,J = 16. 45 Hz,H - β) ,7. 32 (1H,d,J = 8. 96 Hz,H - 6) ;13 C NMR (CD3OD,125
MHz)δ:142. 2 (C -1),105. 7 (C -2) ,159. 5 (C -3) ,102. 3 (C -4) ,159. 5 (C -5) ,105. 7 (C -6) ,
128. 5 (C - α) ,126. 5 (C - β) ,117. 9 (C -1) ,157. 3 (C -2) ,103. 6 (C -3) ,159. 2 (C -4) ,108. 5
(C -5) ,124. 8 (C -6). The NMR and MS data were in agreement with those of the literature [12].
Protodioscin (11)White powder,C51H84O22,ESI - MS:m/z 1047,[M - H]
-;1H NMR (pyridine - d5,
500 MHz)δ:0. 80 (3H,s,Me -18),0. 99 (3H,d,J = 6. 7 Hz,Me -27) ,1. 03 (3H,s,Me -19) ,1. 18
(3H,d,J = 6. 8 Hz,Me -21) ,1. 61 (3H,d,J = 6. 1 Hz,Rha I H -6) ,1. 76 (3H,d,J = 6. 3 Hz,Rha II
H - 6) ,3. 26 (3H,s,22 - OMe) ,3. 87 (1H,m,H -3) ,4. 84 (1H,d,J = 7. 8 Hz,Glc II H - 1) ,4. 93
(1H,d,J = 7. 0Hz,Glc I H - 1) ,5. 31 (1H,d,J = 4. 0 Hz,H - 6) ,5. 84 (1H,brs,Rha I H - 1) ,
6. 38 (1H,brs,Rha II H - 1) ;13C NMR (pyridine - d5,125 MHz)δ:37. 6 (C - 1),30. 3 (C - 2) ,78. 3
(C -3) ,39. 1 (C -4) ,141. 0 (C -5) ,121. 9 (C -6) ,32. 2 (C -7) ,31. 8 (C -8) ,50. 5 (C -9) ,37. 2
(C -10) ,21. 2 (C -11) ,40. 0 (C - 12) ,40. 9 (C - 13) ,56. 7 (C - 14) ,32. 4 (C - 15) ,81. 4 (C -
16) ,64. 3 (C -17) ,16. 5 (C -18) ,19. 5 (C - 19) ,40. 6 (C - 20) ,16. 4 (C - 21) ,110. 8 (C - 22) ,
37. 3 (C -23) ,28. 3 (C -24) ,34. 3 (C -25) ,75. 3 (C -26) ,17. 4 (C -27) ;Glc I:δ 100. 4 (C - 1) ,
78. 6 (C -2) ,77. 1 (C -3) ,78. 0 (C -4) ,78. 1 (C -5) ,61. 4 (C -6) ;Rha I:δ 102. 2 (C -1) ,72. 6
(C -2) ,72. 8 (C -3) ,74. 0 (C -4) ,69. 5 (C -5) ,18. 6 (C -6) ;Rha II:δ 103. 0 (C -1) ,72. 6 (C -
48 昆明理工大学学报(自然科学版) 第 39 卷
2),73. 0 (C -3) ,74. 1 (C -4) ,70. 6 (C -5) ,18. 7 (C -6) ;Glc II:δ 105. 1 (C - 1) ,75. 3 (C - 2) ,
78. 7 (C -3) ,71. 9 (C -4) ,78. 6 (C -5) ,63. 0 (C -6). The NMR and MS data were in accordance with
those of the literature [13].
Dioscin (12)White powder,C45H72O16,ESI - MS:m/z 903,[M + Cl]
-;1H NMR (pyridine - d5,500
MHz)δ:0. 69 (3H,d,J = 5. 0 Hz,Me - 27),0. 82 (3H,s,Me - 18) ,1. 04 (3H,s,Me - 19) ,1. 13
(3H,d,J = 6. 7 Hz,Me -21) ,1. 61 (3H,d,J = 6. 0 Hz,Rha I H -6) ,1. 75 (3H,d,J = 6. 0 Hz,Rha II
H - 6) ,3. 89 (1H,m,H -3) ,4. 93 (1H,d,J = 7. 3 Hz,Glc H -1) ,5. 32 (1H,d,J = 4. 5 Hz,H -6) ,
5. 83 (1H,brs,Rha I H -1) ,6. 37 (1H,brs,Rha II H - 1) ;13C NMR (pyridine - d5,125 MHz)δ:37. 6
(C -1),30. 2 (C -2) ,78. 2 (C -3) ,39. 2 (C -4) ,140. 9 (C -5) ,121. 9 (C -6) ,32. 2 (C -7) ,31. 8
(C -8) ,50. 4 (C -9) ,37. 2 (C -10) ,21. 2 (C -11) ,40. 2 (C -12) ,40. 6 (C -13) ,56. 7 (C - 14) ,
32. 4 (C -15) ,81. 2 (C -16) ,63. 0 (C -17) ,16. 5 (C -18) ,19. 5 (C -19) ,42. 1 (C -20) ,15. 2 (C
- 21) ,109. 3 (C -22) ,31. 9 (C -23) ,29. 8 (C -24) ,30. 7 (C -25) ,67. 1 (C -26) ,17. 4 (C -27) ;
Glc:δ 100. 3 (C -1) ,78. 6 (C -2) ,77. 1 (C -3) ,78. 0 (C -4) ,78. 1 (C -5) ,61. 4 (C -6) ;Rha I:δ
102. 1 (C -1) ,72. 6 (C -2) ,72. 8 (C -3) ,74. 0 (C -4) ,69. 5 (C -5) ,18. 6 (C -6) ;Rha II:δ 103. 0
(C -1) ,72. 6 (C -2) ,72. 9 (C -3) ,74. 1 (C -4) ,70. 0 (C -5) ,18. 7 (C -6). The NMR and MS data
were identical to those of the literature [13].
3 Discussion
The rhizomes of Smilax china Linn. (chinese name“Ba Qia”)and the rhizomes of Smilax glabra Roxb.
(chinese name“Tu Fu Ling”),which are listed in Chinese Pharmacopoeia,are two commonly used herbal ma-
terials in TCM. S. china is used for treatment of diverse diseases,such as diuretic,detoxication,lumbago,
tumor and inflammatory diseases. And S. glabra is used to treat syphilis,acute bacterial dysentery,acute and
chronic nephritis. Pharmacological investigation reveale that S. china has antimicrobial,anti - inflammatory,an-
ti - tumour,free radical scavenging and antioxidant activities[2],while S. glabra has bioactivities of anti - in-
flammatory,antimicrobial,immunomodulatory[14].
Based on previous phytochemical investigations on S. china,we can make a conclusion that steroid saponins
and flavonoids are the major chemical constituents of this plant. Moreover steroid saponins are mostly diosgenin
and protodiosgenin glycosides,many of flavonoids are flavanonols and their glycosides,including dihydro-
kaempferol,engeletin,isoengeletin,astilbin,dihydrokaempferol - 5 - O - β - D - glucopyranoside,dihydro-
quercetin - 3 - O - β - D - glucopyranoside[15,16]. While previous articles on S. glabra revealed the presence of
flavonoids as the major chemical constituents,such as taxifolin,astilbin,neoastilbin,isoastilbin,neoisoastilbin,
engeletin,isoengeletin,(2R,3R)- taxifolin - 3 - O - β - D - glucopyranoside[17 - 20],rarely reporting steroid
saponins from it. That indicates the composition of flavonoids is extremely similar in the two species. Moreover
Zhang Qing - Feng[14]made a comparison of chemical components in the two species by HPLC - DAD - MS /MS.
And he also came to a conclusion that many common constituents were found in both species,including shikimic
acid,5 - O - caffeoylshikimic acid,trans - resveratrol,taxifolin,astilbin and its three stereoisomers,engeletin
and isoengeletin. It is well known that the bioactivities of herbs result from their chemical constituents. Therefore
we consider that S. china and S. glabra possess the same bioactivities of anti - inflammatory and antimicrobial
owing to their common flavonoids,while they reveal different effect because of characteristic composition,such
as steroid saponins.
It is a common phenomenon that one medicinal material comes from several plants belonging to the same ge-
58第 1 期 黄钟辉,郝 倩,李蓉涛,等:菝葜的化学成分研究
nus for a long time. However,there is no doubt about the difference of chemical components in any species. It is
because of distinguishing bioactivities and function that medicinal materials should be applied rationally based
symptom.
References:
[1] Shao B,Guo HZ,Cui YJ,et al. Steroidal saponins from Smilax china and their anti-inflammatory activities[J]. Phytochem-
istry,2007,68(5):623 - 630.
[2]郝倩,姚尧,李晓蕾,等. 菝葜中三个新的二氢山奈酚酰化糖苷[J]. 天然产物研究与开发,2012,24(7):861 - 865.
[3] Kang J,Xie C H,Li Z M,et al. Flavonoids from acai (Euterpe oleracea Mart.)pulp and their antioxidant and anti - inflam-
matory activities[J]. Food chemistry,2011,128(1) :152 - 157.
[4] Lee S I,Yang J H,Kim D K. Antioxidant flavonoids from the twigs of Stewartia koreana[J]. Biomolecules & Therapeutics,
2010,18(2) :191 - 196.
[5] Huang H Q,Cheng Z H,Shi H M,et al. Isolation and characterization of two flavonoids,engeletin and astilbin,from the
leaves of Engelhardia roxburghiana and their potential anti - inflammatory properties[J]. J Agric Food Chem,2011,59(9) :
4562 - 4569.
[6] Lam S H,Chen C K,Wang J S,et al. Investigation of flavonoid glycosides from Neolitsea sericea var. aurata via the general
method and HPLC - SPE - NMR[J]. J Chin Chem Soc,2008,55(2) :449 - 455.
[7] Konishi T,Yamazoe K,Kanzato M,et al. Three diterpenoids (Excoecarins V1 - V3)and a flavanone glycoside from the fresh
stem of Excoecaria agallocha[J]. Chem Pharm Bull,2003,51(10) :1142 - 1146.
[8]雷军,肖云川,王文静,等. 糯米藤中黄酮类化学成分研究[J]. 中国中药杂志,2012,37(4):478 - 482.
[9]邓芳叶,王国才,王春华,等. 理肺散化学成分研究[J]. 中草药,2012,43(5):861 - 865.
[10]周先礼,吴奶珠,黄帅,等. 藏药樱草杜鹃中的酚性成分[J]. 中国药学杂志,2012,47(2):95 - 97.
[11] Xu M,Zhang M,Wang D,et al. Phenolic compounds from the whole plants of Gentiana rhodantha (Gentianaceae) [J].
Chemistry & Biodiversity,2011,8(10) :1891 - 1900.
[12]乔欣,赵婷,王萌,等. 白桂木中的黄酮类化合物[J]. 中国中药杂志,2011,36(21):2975 - 2979.
[13] Zheng Q A,Zhang Y J,Li H Z,et al. Steroidal saponins from fresh stem of Dracaena cochinchinensis[J]. Steroids,2004,
69(2) :111 - 119.
[14] Zhang Q F,Guo Y X,Zheng G D,et al. Chemical constituents comparison between Rhizoma Smilacis Glabrae and Rhizoma
Smilacis Chinae by HPLC - DAD - MS /MS[J]. Nat Prod Res,2013,27(3) :277 - 281.
[15]冯峰,柳文媛,陈优生,等. 菝葜中黄酮和芪类成分的研究[J]. 中国药科大学学报,2003,34(2):119 - 121.
[16]邵波,郭洪祝,果德安. 菝葜中黄酮和二苯乙烯类成分的研究[J]. 中草药,2009,40(11):1700 - 1703.
[17]袁久志,窦德强,陈英杰,等. 土茯苓二氢黄酮醇类成分研究[J]. 中国中药杂志,2004,29(9):867 - 870.
[18]陈广耀,沈连生,江佩芬. 土茯苓中二氢黄酮醇苷的研究[J]. 中国中药杂志,1996,21(6):355 - 357.
[19]易以军,曹正中,杨大龙,等. 土茯苓化学成分研究(IV)[J]. 药学学报,1988,33(11):873 - 875.
[20] Chen T,Li J X,Cao J S,et al. A new flavanone isolated from rhizoma smilacis glabrae and the structural requirements of its
derivatives for preventing immunological hepatocyte damage[J]. Planta Medica,1999,65(1) :56 - 59.
68 昆明理工大学学报(自然科学版) 第 39 卷