免费文献传递   相关文献

珍珠荚蒾的化学成分研究(英文)



全 文 :天然产物研究与开发 Nat Prod Res Dev 2012,24:12-15
文章编号:1001-6880(2012)01-0012-04
Received March 25,2011;Accepted June 30,2011
Foundation Item:This study was supported by National Comprehensive
Technology Platforms for Innovative Drug R&D (2009ZX09301-007).
* Corresponding author Tel:86-21-34204806;E-mail:xbli@ sjtu. edu. cn
珍珠荚蒾的化学成分研究
李薇薇,史海明,王梦月,李晓波*
上海交通大学药学院,上海 200240
摘 要:从珍珠荚蒾(Viburnum foetidum var. ceanothoides)的枝叶中分离得到 14 个化合物,经鉴定分别为:白桦醇
(1) ,熊果醇(2) ,β-谷甾醇(3) ,白桦脂酸(4) ,熊果酸(5) ,对羟基苯甲酸(6) ,4 4-二羟基-a-古柯间二酸(7) ,反
式对香豆酸(8) ,顺式对香豆酸(9) ,红花菜豆酸(10) ,原儿茶酸(11) ,胡萝卜苷(12) ,1-O-(6-O-α-L-rhamnopyr-
anosyl-β-D-glucopyranosyl)-4-allylbenzene(13)和 apigenin 7-O-α-L-rhamnopyranosyl(1→2)-β-D-glucopyranoside
(14)。其中,化合物 1、7、9、10 和 13 为首次从荚蒾属中分离得到;所有化合物均首次从珍珠荚蒾中分离得到。
关键词:珍珠荚蒾;化学成分
中图分类号:R284. 2 文献标识码:A
Chemical Constituents from the Stems and Leaves of
Viburnum foetidum var. ceanothoides
LI Wei-wei,SHI Hai-ming,WANG Meng-yue,LI Xiao-bo*
School of Pharmacy,Shanghai Jiao Tong University,Shanghai 200240,China
Abstract:Fourteen compounds were isolated from the stems and leaves of Viburnum foetidum var. ceanothoides. Their
structures were identified as betulin (1) ,uvaol (2) ,β-sitosterol (3) ,betulinic acid (4) ,ursolic acid (5) ,p-hydroxy-
benzoic acid (6) ,4 4-dihydroxy-a-truxillic acid (7) ,E-p-coumaric acid (8) ,Z-p-coumaric acid (9) ,phaseic acid
(10) ,protocatechuic acid (11) ,daucosterol (12) ,1-O-(6-O-α-L-rhamnopyranosyl-β-D-glucopyranosyl)-4-allyl-
benzene (13) ,and apigenin 7-O-α-L-rhamnopyranosyl(1→2)-β-D-glucopyranoside (14). This is first report of the
presence of compounds 1,7,9,10 and 13 in the genus Viburnum and 1-14 in this plant.
Key words:Viburnum foetidum var. ceanothoides;chemical constituents
Introduction
Viburnum foetidum Wall. var. ceanothoides (C. H.
Wright)Hand. -Mazz. belongs to the genus Viburnum
(Adoxaceae) ,distributed in Yunnan,Sichuan and
Guizhou provinces of China. The roots,stems,leaves
and fruits have been used in Chinese folk medicines to
treat stomatitis,eczema,fractures,bone-setters injury
and trauma hemorrhage[1]. The phytochemical investi-
gation on V. foetidum var. ceanothoides hasn t been re-
ported so far. In our research,fourteen compounds were
isolated. This is first report of the presence of com-
pounds 1,7,9,10 and 13 in the genus Viburnum and 1-
14 in this plant.
Experimental
General
The MS were measured on an Agilent 1100 series mass
spectrometer or Waters UPLC Acquity /QTOFMS Prem-
ier. NMR spectra were measured on Bruker DRX-500
or Bruker Avance Ⅲ 400 instruments. Shimadzu LC-
2010AHT HPLC System and Waters C18 column (7. 8
× 300 mm,6 μm) were used for semipreparative
HPLC. Silica gel for column chromatography and pre-
coated silica GF254 plates for TLC were produced by
Qingdao Haiyang Chemical Co. Ltd. ODS and D101
macroporous resin were purchased from YMC Co. Ltd,
Japan and Tianjin Haiguang Chemical Co. Ltd. respec-
tively.
Plant Material
The stems and leaves of V. foetidum Wall. var.
DOI:10.16333/j.1001-6880.2012.01.004
ceanothoides were collected from Chengjiang County,
Yunnan Province of China,in May 2008,and were i-
dentified by Associate Prof. Wang Meng-Yue. The
voucher specimen of V. foetidum var. ceanothoides (No.
080530)was deposited at School of Pharmacy,Shang-
hai Jiao Tong University.
Extraction and isolation
The dried stems and leaves of V. foetidum var. cean-
othoides (23 kg)were milled and extracted three times
(3 × 2 L)with 75% EtOH for 2h each time,with the
solvent removed under reduced pressure. The 75% eth-
anolic extract was suspended in water,and then was
partitioned with petroleum ether,CHCl3,EtOAc and n-
BuOH successively. The petroleum ether-soluble frac-
tion (90 g)was subjected to silica gel column eluting
with a petroleum ether (PE)-EtOAc (100 ∶ 0 to 2 ∶ 1)
gradient system to yield frs. 1-8. Fr. 4 was chromato-
graphed on a silica gel column eluting with PE-Me2CO
(8∶ 1)to provide frs. 4. 1-4. 5. Fr. 4. 2 followed by
semipreparative HPLC (MeOH-H2O;95∶ 5)to provide
1 (18. 2 mg)and 2 (19. 3 mg). The chloroform-solu-
ble fraction (86 g)was subjected to silica gel column
eluting with a PE-EtOAc (100∶ 0 to 1∶ 1)gradient sys-
tem to yield frs. 1-10. After recrystallization of fr. 3 with
CH3OH,3 (1. 8 g)was obtained. Fr. 4 was chromato-
graphed on a silica gel column eluting with PE-Me2CO
(6 ∶ 1) to afford 4 (200 mg). Fr. 5 was chromato-
graphed on a silica gel column eluting with PE-Me2CO
(5∶ 1)to afford 5 (1. 0 g). The EtOAc-soluble fraction
(90 g)was subjected to silica gel column eluting with
a CH2Cl2-CH3OH (100∶ 0 to 2∶ 1)gradient system to
yield frs. 1-11. Fr. 3 was chromatographed on a silica
gel column eluting with CH2Cl2-CH3OH (10 ∶ 1) to
provide frs. 3. 1-3. 4. Fr. 3. 2 was further purified by
semipreparative HPLC (MeCN∶ H2O (containing 1‰
TFA) = 12 ∶ 88)to provide 6 (6. 2 mg) ,7 (10. 6
mg) ,8 (23. 5 mg)and 9 (13. 5 mg). Fr. 4 was puri-
fied by preparative TLC with CHCl3-CH3OH-HCOOH
(100∶ 25∶ 1) ,10 (24. 2 mg)and 11 (50. 3 mg)were
obtained. Fr. 6 was applied to silica gel and eluted with
CH2Cl2-CH3OH (10∶ 1)to afford 12 (2. 0 g). The n-
BuOH-soluble fraction (320 g)was subjected to a
macroporous resin column with a gradient elution
(20%,40%,60%,80%,95% EtOH /H2O)to yield
frs. 1-5. Fr. 2 and Fr. 3 was chromatographed on a sili-
ca gel column eluting with CH2Cl2-CH3OH (50∶ 1 to 2
∶ 1)to yield frs. 2. 1-2. 8. Fr. 2. 3 was subjected to an
ODS column eluting with 30% MeOH /H2O to afford
Fr. 2. 3. 1-2. 3. 5. Fr. 2. 3. 3 was purified by preparative
TLC with CHCl3-CH3OH-H2O-HCOOH (60∶ 40∶ 10∶ 1)to
provide 13 (58. 2 mg). Fr. 2. 5 was subjected on silica
gel column eluting with CH2Cl2-CH3OH (5∶ 1)to af-
ford 14 (1. 2 g).
Identification
Betulin (1) C30 H50 O2,white powder,ESI-MS m/z:
465. 2[M + Na]+;1H NMR(CDCl3,500 MHz)δ:
3. 19(1H,dd,J = 11. 5,4. 5 Hz,H-3α) ,2. 38(1H,m,
H-19) ,3. 34(1H,d,J = 11. 0 Hz,H-28α) ,3. 80(1H,
dd,J = 11. 0,1. 5 Hz,H-28β) ,4. 58(1H,brs,H-
29α) ,4. 68 (1H,brs,H-29β) ,0. 97,0. 76,0. 83,
1. 02,0. 98,1. 68(each 3H,s,6 × CH3,H-23,24,25,
26,27,30) ;13 C NMR(CDCl3,125 MHz)δ:38. 6(C-
1) ,27. 3(C-2) ,79. 0(C-3) ,38. 8(C-4) ,55. 2(C-5) ,
18. 3(C-6) ,34. 2(C-7) ,40. 9(C-8) ,50. 3(C-9) ,
37. 1(C-10) ,20. 8(C-11) ,25. 1(C-12) ,37. 2(C-
13) ,42. 7(C-14) ,27. 0(C-15) ,29. 1(C-16) ,47. 7
(C-17) ,48. 7(C-18) ,47. 7(C-19) ,150. 5(C-20) ,
29. 7(C-21) ,33. 9(C-22) ,28. 0(C-23) ,15. 4(C-
24) ,16. 1(C-25) ,15. 9(C-26) ,14. 7(C-27) ,60. 5
(C-28) ,109. 7(C-29) ,19. 1(C-30). The NMR spec-
tral data were in consistent with those reported [2].
Uvaol (2) C30 H50 O2,white powder,ESI-MS m/z:
465. 3[M + Na]+;1H NMR(CDCl3,500 MHz)δ:
5. 14(1H,t,J = 3. 2 Hz,H-12) ,3. 53(1H,d,J = 8. 8
Hz,H-28) ,3. 21(2H,m) ,1. 11,1. 00,0. 99,0. 95,
0. 80(each 3H,s,5 × CH3) ,0. 94(3H,d,J = 7. 2 Hz,
H-30) ,0. 81(3H,d,J = 5. 0 Hz,H-29) ;13 C NMR
(CDCl3,125 MHz)δ:38. 7(C-1) ,27. 2(C-2) ,79. 0
(C-3) ,38. 8(C-4) ,55. 1(C-5) ,18. 3(C-6) ,35. 2(C-
7) ,39. 4(C-8) ,47. 6(C-9) ,38. 0(C-10) ,26. 0(C-
11) ,125. 0(C-12) ,138. 7(C-13) ,42. 0(C-14) ,29. 7
(C-15) ,23. 4(C-16) ,36. 9(C-17) ,54. 0(C-18) ,
39. 3(C-19) ,40. 0(C-20) ,32. 8(C-21) ,30. 6(C-
22) ,28. 7(C-23) ,15. 6(C-24) ,15. 7(C-25) ,17. 4
(C-26) ,23. 3(C-27) ,70. 0(C-28) ,16. 8(C-29) ,
31Vol. 24 LI Wei-wei,et al:Chemical Constituents from the Stems and Leaves of Viburnum foetidum var. ceanothoides
21. 3(C-30). The NMR spectral data were in consist-
ent with those reported [3].
Betulinic acid (4) C30H48O3,white powder,ESI-MS
m/z:455. 3[M – H]–;1H NMR(C5D5N,400 MHz)
δ:1. 82(1H,m,H-2) ,3. 42(1H,t,J = 7. 2 Hz,H-3) ,
2. 71(1H,m,H-13) ,1. 51(1H,m,H-16α) ,2. 62
(1H,d,J = 11. 7 Hz,H-16β) ,3. 51(1H,m,H-19) ,
4. 92(1H,s,H-29α) ,4. 74(1H,s,H-29β) ,0. 78,
0. 98,1. 02,1. 03,1. 19,1. 76 (each 3H,s,6 ×
CH3) ;
13 C NMR(C5D5N,100 MHz)δ:40. 5(C-1) ,
29. 6(C-2) ,79. 3(C-3) ,40. 8(C-4) ,57. 2(C-5) ,
20. 0(C-6) ,36. 1(C-7) ,42. 3(C-8) ,52. 2(C-9) ,
38. 8(C-10) ,22. 4(C-11) ,27. 4(C-12) ,39. 8(C-
13) ,44. 1(C-14) ,31. 5(C-15) ,34. 1(C-16) ,57. 9
(C-17) ,51. 0(C-18) ,49. 0(C-19) ,152. 6(C-20) ,
32. 5(C-21) ,38. 9(C-22) ,29. 9(C-23) ,17. 6(C-
24) ,17. 7(C-25) ,17. 7(C-26) ,16. 1(C-27) ,180. 1
(C-28) ,111. 2(C-29) ,20. 7(C-30). The NMR spec-
tral data were in consistent with those reported [4].
p-Hydroxybenzoic acid (6) C7H6O3,white pow-
der,HR-TOF MS m/z:139. 0395[M + H]+,137. 0239
[M – H]–;1H NMR(DMSO-d6,500 MHz)δ:6. 80
(2H,d,J = 8. 0 Hz,H-3,5) ,7. 78(2H,d,J = 8. 0 Hz,
H-2,6) ,10. 27(1H,s,OH) ,12. 40(1H,s,COOH).
The NMR spectral data were in consistent with those
reported [5].
4,4-Dihydroxy-a-truxillic acid (7) C18 H16 O6,
white powder,HR-TOF-MS m/z:327. 0847[M –
H]–;1H NMR(DMSO-d6,500 MHz)δ:3. 65(2H,m,
H-β,β) ,4. 12(2H,m,H-α,α) ,6. 69(4H,d,J = 8. 5
Hz,H-3,3,5,5) ,7. 11(4H,d,J = 8. 5 Hz,H-2,2,
6,6) ,9. 30(2H,s,2 × OH) ,11. 98(2H,s,2 ×
COOH) ;13C NMR(DMSO-d6,125 MHz)δ:40. 3(C-
α,α) ,46. 7(C-β,β) ,114. 9(C-3,3,5,5) ,128. 6
(C-2,2,6,6) ,129. 6(C-1,1) ,156. 1(C-4,4) ,
173. 1(2 × COOH). The 1H NMR spectral data were in
consistent with those reported [6].
E-p-Coumaric acid (8) C9H8O3,white powder,
HR-TOF-MS m/z:165. 0552[M + H]+,163. 0397[M
– H]–。1H NMR(CD3OD,500 MHz)δ:7. 60(1H,d,
J = 16. 0 Hz,H-7) ,7. 44(2H,d,J = 8. 5 Hz,H-2,6) ,
6. 80(2H,d,J = 8. 5 Hz,H-3,5) ,6. 28(1H,d,J =
16. 0 Hz,H-8). The NMR spectral data were in con-
sistent with those reported [7].
Z-p-Coumaric acid (9) C9H8O3,white powder,
HR-TOF MS m/z:165. 0551[M + H]+,163. 0397[M
– H]–;1H NMR(CD3OD,500 MHz)δ:7. 61(2H,d,
J = 8. 5 Hz,H-2,6) ,6. 78(1H,d,J = 12. 5 Hz,H-7) ,
6. 74(2H,d,J = 8. 5 Hz,H-3,5) ,5. 78(1H,d,J =
12. 5 Hz,H-8). The NMR spectral data were in con-
sistent with those reported [7].
Phaseic acid (10) C15 H20 O5,white powder,APCI-
MS m/z:279. 1[M – H]–;1H NMR(CD3OD,500
MHz)δ:1. 01(3H,s,H-9) ,1. 21(3H,s,H-7) ,2. 07
(3H,d,J = 1. 0 Hz,H-6) ,2. 38(1H,dd,J = 18. 0,2. 5
Hz,H-5pro-R) ,2. 47(1H,dd,J = 17. 5,2. 5 Hz,H-3
pro-S) ,2. 70(1H,dd,J = 18. 0,2. 5 Hz,H-5pro-S) ,
2. 80(1H,d,J = 18. 0 Hz,H-3pro-R) ,3. 66(1H,d,J
= 8. 0 Hz,H-8 pro-S) ,3. 94(1H,dd,J = 8. 0,2. 5
Hz,H-8pro-R) ,5. 79(1H,brs,H-2) ,6. 45(1H,d,J
= 15. 5 Hz,H-5) ,8. 10(1H,d,J = 15. 5 Hz,H-4) ;
13C NMR(CD3OD,125 MHz)δ:170. 0(C-1) ,120. 2
(C-2) ,151. 4(C-3) ,133. 2(C-4) ,133. 9(C-5) ,21. 5
(C-6) ,83. 2(C-1) ,88. 1(C-2) ,54. 3(C-3) ,211. 2
(C-4) ,53. 5(C-5) ,49. 8(C-6) ,19. 7(C-7) ,78. 9
(C-8) ,16. 1(C-9). The NMR spectral data were in
consistent with those reported [8].
Protocatechuic acid(11) C7H6O4,white powder,
APCI-MS m/z:152. 9[M – H]–;1H NMR(CD3OD,
500 MHz)δ:6. 73(1H,d,J = 8. 5 Hz,H-5) ,7. 35
(1H,dd,J = 8. 5,2. 0 Hz,H-6) ,7. 42(1H,d,J = 2. 0
Hz,H-2). The NMR spectral data were in consistent
with those reported [9].
1-O-(6-O-α-L-rhamnopyranosyl-β-D-glucopyrano-
syl)-4-allylbenzene(13) C21 H30 O10,white powder,
ESI-MS m/z:465. 2[M + Na]+;1H NMR(CD3OD,
500 MHz)δ:1. 22(3H,d,J = 6. 0 Hz,H-6) ,3. 33
(3H,m,H-3,H-4,H-4) ,3. 38(2H,m,H-7) ,3. 47
(1H,m,H-2) ,3. 55(1H,m,H-5) ,3. 62(1H,dd,J
= 11. 0,6. 5 Hz,H-6α) ,3. 68(1H,dd,J = 6. 0,3. 0
Hz,H-5) ,3. 72(1H,dd,J = 9. 5,3. 5 Hz,H-3) ,
3. 86(1H,m,H-2) ,4. 03(1H,dd,J = 11. 0,1. 5 Hz,
H-6β) ,4. 73(1H,d,J = 1. 0 Hz,H-1) ,4. 82(1H,
d,H-1) ,5. 02(1H,m,H-9α) ,5. 06(1H,m,H-9β) ,
5. 94(1H,m,H-8) ,7. 03(2H,d,J = 8. 5 Hz,H-3,5) ,
7. 12(2H,d,J = 8. 5 Hz,H-2,6) ;13 C NMR(CD3OD,
41 Nat Prod Res Dev Vol. 24
125 MHz)δ:157. 4(C-1) ,117. 9(C-2) ,130. 5(C-
3) ,135. 3(C-4) ,130. 5(C-5) ,40. 3(C-7) ,139. 1(C-
8) ,115. 7(C-9) ,102. 5(C-1) ,74. 9(C-2) ,78. 0
(C-3) ,71. 5 (C-4) ,76. 8 (C-5) ,67. 8 (C-6) ,
102. 1(C-1) ,72. 4(C-2) ,72. 1(C-3) ,74. 0(C-
4) ,69. 8(C-5) ,17. 9(C-6). The NMR spectral
data were in consistent with those reported [10].
Apigenin 7-O-α-L-rhamnopyranosyl(1→2)-β-
D-glucopyranoside(14) C27H30O14,yellow needles,
ESI-MS m/z:579. 2[M + H]+;1H NMR(DMSO-d6,
400 MHz)δ:1. 20(3H,d,J = 6. 0 Hz,H-6) ,5. 13
(brs,H-1) ,5. 23(1H,d,J = 7. 5 Hz,H-1) ,6. 37
(1H,d,J = 2. 0 Hz,H-6) ,6. 79(1H,d,J = 2. 0 Hz,H-
8) ,6. 88(1H,s,H-3) ,6. 95(2H,d,J = 9. 0 Hz,H-3,
5) ,7. 94(2H,d,J = 8. 5 Hz,H-2,6) ;13 C NMR
(DMSO-d6,100 MHz)δ:164. 2(C-2) ,103. 2(C-3) ,
182. 0(C-4) ,161. 4(C-5) ,99. 3(C-6) ,162. 5(C-7) ,
94. 5(C-8) ,157. 0(C-9) ,105. 4(C-10) ,121. 0(C-
1) ,128. 5(C-2,6) ,116. 0(C-3,5) ,161. 1(C-
4) ,97. 8(C-1) ,76. 2(C-2) ,77. 2(C-3) ,69. 6
(C-4) ,77. 0(C-5) ,60. 4(C-6) ,100. 4(C-1) ,
70. 5(C-2) ,70. 4(C-3) ,71. 8(C-4) ,68. 3(C-
5) ,18. 0(C-6). The NMR spectral data were in
consistent with those reported [11].
β-Sitosterol (3) ,ursolic acid (5) and daucosterol
(12)were identified by comparison of Rf value with
the authentic samples.
References
1 Yunnan Institute of Botany. Yunnan Flora(云南植物志).
Beijing:Science Press,1991:385-386.
2 Tinto WF,Blair LC,Alli A,et al. Lupane triterpenoids of Sa-
lacia cordata. J Nat Prod,1992,55:395-398.
3 Xie GB(谢光波) ,Zhou SX(周思祥) ,Lei LD(雷连娣) ,et
al. Studies on triterpenoid constituents in leaf of Ilex pernyi.
Chin J Chin Mater Med(中国中药杂志) ,2007,32:1890-
1892.
4 Cichewicz RH,Kouzi SA. Chemistry,biological activity,and
chemotherapeutic potential of betulinic acid for the preven-
tion and treatment of cancer and HIV infection. Med Res Rev,
2004,24:90-114.
5 Cho JY,Moon JH,Seong KY,et al. Antimicrobial activity of
4-hydroxybenzoic acid and trans 4-hydroxycinnamic acid iso-
lated and identified from rice hull. Biosci Biotech Bioch,
1998,62:2273-2276.
6 Chi YM,Nakamura M,Zhao XY,et al. Antinociceptive activ-
ities of α-truxillic acid and β-truxinic acid derivatives. Biol
Pharm Bull,2006,29:580-584.
7 Bergman M,Varshavsky L,Gottlieb HE,et al. The antioxi-
dant activity of aqueous spinach extract:Chemical identifica-
tion of active fractions. Phytochemistry,2001,58:143-152.
8 Hirai N,Kondo S,Ohigashi H. Deuterium-labeled phaseic
acid and dihydrophaseic acids for internal standards. Biosci
Biotech Bioch,2003,67:2408-2415.
9 Watanabe M,Ohshita Y,Tsushida T. Antioxidant compounds
from buckwheat (Fagopyrum esculentum Mench)Hulls. J
Agric Food Chem,1997,45:1039-1044.
10 Ly TN,Yamauchi R,Shimoyamada M,et al. Isolation and
structural elucidation of some glycosides from the rhizomes of
smaller galanga (Alpinia officinarum Hance). J Agric Food
Chem,2002,50:4919-4924.
11 Kee DY,Doc GJ,Yun HH,et al. Inhibitors of osteoclast dif-
ferentiation from Cephalotaxus koreana. J Nat Prod,2007,
70:2029-2032.
51Vol. 24 LI Wei-wei,et al:Chemical Constituents from the Stems and Leaves of Viburnum foetidum var. ceanothoides