免费文献传递   相关文献

定位拟南芥中生物钟核心调控元件



全 文 :chemokines. Nature Immunology, 2(2): 123~128
Nomiyama H, Hieshima K, Osada N, Kato-Unoki Y,
Otsuka-Ono K, Takegawa S, Izawa T, Yoshizawa A,
Kikuchi Y, Tanase S, Miura R, Kusuda J, Nakao M and
Yoshie O, 2008. Extensive expansion and diversification
of the chemokine gene family in zebrafish: Identification
of a novel chemokine subfamily CX. BMC Genomics, 9:
222
Peatman E and Liu Z, 2006. CC chemokines in zebrafish:
Evidence for extensive intrachromosomal gene
duplications. Genomics, 88(3): 381~385
Rotman J, van Gils W, Butler D, Spaink H P and Meijer A H,
2011. Rapid screening of innate immune gene expression
in zebrafish using reverse transcription - multiplex
ligation-dependent probe amplification. BMC Research
Notes, 4: 196
Salamov A A and Solovyev V V, 2000. Ab initio gene finding
in Drosophila genomic DNA. Genome Research, 10 (4):
516~522
Steinke D, Salzburger W and Meyer A, 2006. Novel
relationships among ten fish model species revealed based
on a phylogenomic analysis using ESTs. Journal of
molecular evolution, 62(6): 772~784
Stockhammer O W, Zakrzewska A, Hegedus Z, Spaink H P
and Meijer A H, 2009. Transcriptome profiling and
functional analyses of the zebrafish embryonic innate
immune response to Salmonella infection. Journal Of
Immunology, 182(9): 5641~5653
Suyama M, Torrents D and Bork P, 2006. PAL2NAL: robust
conversion of protein sequence alignments into the
corresponding codon alignments. Nucleic Acids Research,
34(Web Server issue): W609~612
van der Aa L M, Chadzinska M, Tijhaar E, Boudinot P and
Verburg-van Kemenade B M, 2010. CXCL8 chemokines
in teleost fish: Two lineages with distinct expression
profiles during early phases of inflammation. PLoS ONE,
5(8): e12384
Wu Z, Zhang W, Lu Y and Lu C, 2010. Transcriptome
profiling of zebrafish infected with Streptococcus suis.
Microbial Pathogenesis, 48(5): 178~187
Yoshie O, Imai T and Nomiyama H, 2001. Chemokines in
immunity. Advances In Immunology, 78: 57~110
Zdobnov E M and Apweiler R, 2001. InterProScan--an
integration platform for the signature-recognition methods
in InterPro. Bioinformatics, 17(9): 847~848
Zlotnik A and Yoshie O, 2000. Chemokines: a new
classification system and their role in immunity.
Immunity, 12(2): 121~127
鲤 CC型趋化因子 CCL-C5a样基因的克隆、组织表达与进化分析
Cloning, Tissue Expressions and Evolutional Analysis of Cyprinus carpio CC chemokine CCL-C5a-like Gene
定位拟南芥中生物钟核心调控元件
Mapping the Core of the Arabidopsis Circadian Clock Defines the Network
Structure of the Oscillator
生物钟在动物植物生理调节中都发挥着重要的作用,但是目前对于其调节机制的了解仍然十分有限。在植物中存在白
昼和夜晚的振荡器,这些振荡器包含了拟南芥中已经发现的一些相关的生物钟基因。目前的模型认为白昼振荡器相关基因
是由夜晚振荡器基因(TOC1)所激活并上调。而西班牙巴塞罗那农业基因组中心的研究人员最近的发现否定了当前的模型。
他们的实验结果表明,TOC1并不能够激活白昼振荡器相关基因,相反,TOC1对于大部分生物钟相关基因有抑制作用。他们
通过核小体免疫共沉淀技术,发现 TOC1通过结合到这些生物钟相关基因的启动子来抑制基因的表达;通过激素可控诱导
表达 TOC1基因和 RNAi技术,证明了 TOC1基因在夜间特异性地抑制了白昼相关生物钟基因表达。这项结果颠覆了之前
被广泛接受的模型,并表明了拟南芥植物中生物钟的调节是通过控制 TOC1基因所抑制的靶向基因来完成的。研究结果使
人们更加深入理解植物生物钟的调节,并推动其在农业中的应用前进了一大步。此研究发表在 2012年 4月 6日的《科学》
杂志。
编者:张力烨(美国宾州州立大学),本刊通讯员
本文引用格式:张力烨, 2012,定位拟南芥中生物钟核心调控元件,农业生物技术学报, 20(4):435
信息来源:Science(2012)doi/10.1126/science.1219075
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
435