免费文献传递   相关文献

Characteristics of arbuscular mycorrhizal fungal diversity and functions in salinealkali land.

盐碱地生境中丛枝菌根真菌多样性与功能变化特征


丛枝菌根(AM)真菌广泛分布于土壤生态系统中,是土壤生物重要的功能组分,对促进土壤演化、保持土壤健康与可持续生产力具有不可替代的作用.盐碱地属于特殊生境之一,在人类活动对自然界的影响、硫和氮沉降增大、臭氧增加、温室效应增强、气候异常、外来生物入侵等一系列因素影响下,盐碱土壤的盐渍化、土壤生物多样性与功能也必然随之变化,进而影响到农林牧业生产和生态系统生产力的可持续发展.在简要介绍全球变化背景下盐碱地面积与次生盐渍化变化特点的基础上,重点综述了盐碱地生境中AM真菌多样性及其功能的变化特征;分析了影响AM真菌多样性与功能的因子及其变化特点,旨在为进一步探讨全球变化背景下盐碱地生境中AM真菌的地位、角色和作用,为有效修复盐碱地农田生态系统提供新的思路和途径.

 

Arbuscular mycorrhizal (AM) fungi, widely distributing in various terrestrial ecosystems, are one of the important functional biotic components in soil habitats and play a vital role in improving soil evolution, maintaining soil health and sustainable productivity. Saline-alkali soil is a special habitat affecting plant growth and grain yield. Under the influence of a series of factors, such as human activities on the nature, S and N deposition, ozone, greenhouse effect, climate anomalies, and alien species invasions etc., soil salinization, biodiversity and functions of saline farmlands may be greatly affected, which could consequently influence agricultural production and the sustainable development of ecosystems. Followed by an introduction of the changing characteristics of saline soil area and the secondary salinization under the background of global changes, the present review mainly discussed the changing features of diversity and functions of AM fungi in saline habitats, summarized the factors influencing AM fungal diversity and functions, and the factors’ changing characters under the global changes, in order to provide new ideas and ways in further elucidating the position, role and function of AM fungi in saline soil, and in strengthening saline farmland remediation in response to global changes.
 


全 文 :盐碱地生境中丛枝菌根真菌多样性
与功能变化特征∗
杨海霞1,2  郭绍霞1,2  刘润进1∗∗
( 1青岛农业大学菌根生物技术研究所, 山东青岛 266109; 2青岛农业大学园林与林学院, 山东青岛 266109)
摘  要  丛枝菌根(AM)真菌广泛分布于土壤生态系统中,是土壤生物重要的功能组分,对促
进土壤演化、保持土壤健康与可持续生产力具有不可替代的作用.盐碱地属于特殊生境之一,
在人类活动对自然界的影响、硫和氮沉降增大、臭氧增加、温室效应增强、气候异常、外来生物
入侵等一系列因素影响下,盐碱土壤的盐渍化、土壤生物多样性与功能也必然随之变化,进而
影响到农林牧业生产和生态系统生产力的可持续发展.在简要介绍全球变化背景下盐碱地面
积与次生盐渍化变化特点的基础上,重点综述了盐碱地生境中 AM 真菌多样性及其功能的变
化特征;分析了影响 AM真菌多样性与功能的因子及其变化特点,旨在为进一步探讨全球变
化背景下盐碱地生境中 AM真菌的地位、角色和作用,为有效修复盐碱地农田生态系统提供
新的思路和途径.
关键词  丛枝菌根真菌; 多样性; 功能; 盐碱地; 全球变化; 次生盐渍化; 生物修复
文章编号  1001-9332(2015)01-0311-10  中图分类号  Q949  文献标识码  A
Characteristics of arbuscular mycorrhizal fungal diversity and functions in saline⁃alkali land.
YANG Hai⁃xia1,2, GUO Shao⁃xia1,2, LIU Run⁃jin1 ( 1 Institute of Mycorrhizal Biotechnology, Qing⁃
dao Agricultural University, Qingdao 266109, Shandong, China; 2College of Landscape Architecture
and Forestry, Qingdao Agricultural University, Qingdao 266109, Shandong, China) .⁃Chin. J. Ap⁃
pl. Ecol., 2015, 26(1): 311-320.
Abstract: Arbuscular mycorrhizal (AM) fungi, widely distributing in various terrestrial ecosys⁃
tems, are one of the important functional biotic components in soil habitats and play a vital role in
improving soil evolution, maintaining soil health and sustainable productivity. Saline⁃alkali soil is a
special habitat affecting plant growth and grain yield. Under the influence of a series of factors, such
as human activities on the nature, S and N deposition, ozone, greenhouse effect, climate anoma⁃
lies, and alien species invasions etc., soil salinization, biodiversity and functions of saline farmlands
may be greatly affected, which could consequently influence agricultural production and the sustain⁃
able development of ecosystems. Followed by an introduction of the changing characteristics of saline
soil area and the secondary salinization under the background of global changes, the present review
mainly discussed the changing features of diversity and functions of AM fungi in saline habitats,
summarized the factors influencing AM fungal diversity and functions, and the factors’ changing
characters under the global changes, in order to provide new ideas and ways in further elucidating
the position, role and function of AM fungi in saline soil, and in strengthening saline farmland re⁃
mediation in response to global changes.
Key words: arbuscular mycorrhizal fungi; diversity; function; saline⁃alkali land; global change;
secondary salinization; bioremediation.
∗国家自然科学基金项目(31272210)、青岛市科技计划基础研究项
目(12⁃1⁃4⁃5⁃(14)⁃jch)、“泰山学者”建设工程专项和青岛农业大学
研究生创新计划项目(QYC201316)资助.
∗∗通讯作者. E⁃mail: liurj@ qau.edu.cn
2014⁃08⁃12收稿,2014⁃11⁃19接受.
    丛枝菌根(AM)真菌是土壤微生物群落中生物
量最大、最重要的成员之一,广泛分布于包括盐碱地
在内的各种土壤生境中,在地球岩石圈和生物圈中
扮演着重要的角色[1],对维持大气成分平衡、增加
生物多样性、保持生态系统稳定、提高生态系统可持
续生产力发挥着重要作用[2] .然而,最近 20 年来,全
球变化对生态系统的影响日益加剧,对人类赖以生
存的自然环境和社会经济的可持续发展构成威胁.
应 用 生 态 学 报  2015年 1月  第 26卷  第 1期                                                         
Chinese Journal of Applied Ecology, Jan. 2015, 26(1): 311-320
人类面临温室效应与臭氧层破坏、持续高温与低温、
旱涝与极端天气频发、土地沙漠化、酸化与退化、森
林面积与物种多样性锐减等诸多全球性环境恶化的
挑战.特别是进入 21 世纪以来,盐碱地和土壤次生
盐渍化问题已经严重影响到农林牧业生产和生态环
境的可持续发展[3] .盐碱土壤中 AM 真菌群落结构
与功能也必然随之发生相应变化.当前,生态系统中
特别是一些特殊生境中 AM真菌群落结构与功能已
成为研究热点之一[4] .因此,探究全球变化背景下盐
碱地生境中 AM真菌多样性及其功能具有重要的现
实意义和科学价值.本文总结了全球变化背景下盐
碱地生境中 AM 真菌多样性特征与功能变化的特
点,以期为探索全球变化背景下 AM 真菌修复盐碱
地农田生态系统提供新的思路和途径.
1  盐碱地面积与盐渍化的变化特点
土壤盐渍化是农田生态系统中一个严重的全球
性土地退化问题,特别是在干旱和半干旱地区尤为
严重[5-6] .据 UNESCO 和 FAO 统计[7],20 世纪全球
盐碱地约为 9.55亿 hm2,占地球表面的 7%.据估计,
20%的灌溉土地受到盐渍化的影响[8],干旱半干旱
区近 50%的灌溉土地存在不同程度的盐渍化问
题[9] .每年因盐碱化而弃耕的土地约有 10 × 106
hm2[9] .而进入 21 世纪,全球有 1 / 3 的农田受盐渍化
影响[10] .据推测,未来 25年内将有 30%的耕地因受
盐渍化影响而损失,至 21世纪中叶盐碱地面积将超
过全球农业用地面积的 50%(图 1).
    可以预测,如继续以该速度持续下去,盐碱地将
会带给人类全球性的毁灭效应[11-12] .中国是世界上盐
渍化最严重和盐渍土面积最大的国家之一,约有盐渍
化土壤 0.17亿 hm2,其中耕地盐渍化面积达到 920.9
万 hm2[13] .自 20世纪以来,中等盐度和重等盐度面积
不断加大;21世纪前 10年的中等盐度盐碱地面积增
长速度高于 20世纪[14] .这与全球气候变化引起的气
候干燥、日照强烈、蒸发量大及土地荒漠化,使得盐碱
地面积不断增加有关[15] .全球 CO2升高引起的温室效
应,使沿海地区海平面上升,海水入侵也是沿海地区
形成土壤盐碱化的主要原因[16-17] .人类过载放牧、随
意开垦草原种植农作物、疯狂掠夺破坏盐碱地薄弱的
植被,致使地表长期积水,枯水后变成盐碱地[18] .全球
气候变化引起的土地荒漠化、水土流失等一系列因素
致使土壤贫瘠,而人类大量施用化肥,肥料中可利用
的成分被作物吸收后剩下的硫酸根离子、氯离子等在
土壤中产生硫酸盐、氯化物,使土壤中盐离子浓度增
加,加重了土壤盐碱化程度[19] .
全球变化下农田盐渍化导致土壤理化性质变化
和作物减产,制约农林牧业的可持续发展.因此,改良
和利用盐渍土资源,是 21 世纪农业发展面临的主要
挑战之一.盐碱土壤的生物改良方法主要包括植物改
良方法、动物改良方法和微生物改良方法[20] .其中,利
用植物共生的微生物,特别是根围促生细菌(PGPR)
与 AM真菌提高植物耐盐性是非常有效的方法[21] .
2  盐碱地生境中 AM真菌多样性特征
从 20世纪学者们就开始收集包括盐碱地在内
的各生境中 AM 真菌资源[22-23],进入 21 世纪则重
点研究 AM真菌多样性[24-25],由于全球变化增加盐
碱地面积、加重盐渍程度,这一格局的变化则深刻影
响了 AM真菌的多样性.与非盐碱土壤相比,随盐渍
化程度增加,盐碱土壤中 AM 真菌属的相对多度和
种丰度呈现降低趋势(表 1 和图 2) [26-27] .说明盐渍
程度是影响 AM 真菌多样性的重要因素之一,这也
体现了全球变化对 AM 真菌多样性的影响.盐碱地
生境中,以盐碱地农田中的 AM真菌最丰富,其次是
沿海沼泽,沙漠最低(表 1) [27] .因此可以推断,除了
高盐碱化可能还有其他因子制约了 AM真菌的多样
图 1  全球变化下农田生态系统中盐碱地所占比例的变化趋势[8,10-12]
Fig.1  Variation tendency of soil salinization in agricultural ecosystems under global change[8,10-12] .
a)20世纪末期 The late 20 century; b)21世纪初期 The early 21 century; c)21世纪中期 The mid 21 century.Ⅰ: 盐碱地 Saline⁃alkali land; Ⅱ: 非
盐碱地 Non saline⁃alkali land.
213 应  用  生  态  学  报                                      26卷
表 1  不同土壤类型和盐度土壤中丛枝菌根真菌的多样
性[27]
Table 1  Diversity of arbuscular mycorrhizal fungi in soils
with different types and saline severity[27]
土壤类型与盐度
Soil type and
saline severity
种丰度
Species
richness
多样性指数
Diversity
index
均匀度
Evenness
沙漠 Sand marsh 2.4 0.44 0.43
沿海沼泽 Coastal meadow 4.5 1.18 0.81
农田 Farm land 6.7 1.42 0.78
盐度 Saline level
  轻度 Slight salinity 5.0 1.23 0.78
  中度 Moderate salinity 5.0 1.18 0.80
  重度 Strong salinity 2.2 0.37 0.32
  极度 Severe salinity 2.8 0.49 0.47
性[28] .盐渍土壤中的 AM 真菌往往群落结构独特,
很可能蕴藏着具有特殊功能尤其是抗逆性强的 AM
真菌种类[29-30] .从黄河三角洲只获得 3属 AM真菌,
其中包括 6 种 Acaulospora spp.、 2 种 Archaeospora
spp.、24种 Glomus spp.[31];从甘肃、内蒙古和宁夏盐
碱地中则分离到 4属 AM真菌,其中包括 20 种 Glo⁃
mus spp.、4 种 Acaulospora spp.、Diversispora sp.和 Ar⁃
chaeospora sp.各 2种,Glomus intraradices和 Archaeos⁃
pora leptotichum 分离频度最高[32] .最近从多地采集
了不同属的 AM 真菌,其中球囊霉属(Glomus)分布
频率最高,如莱州湾盐渍土壤中 AM 真菌多样性丰
富,且发现了新种[27,32-34] .G. intraradices和 G. mosse⁃
ae是葡萄牙北部高度盐碱化土壤的优势种[35] .通过
孢子系统发育分析发现,泰国酸性硫酸盐土壤中
AM真菌分类单元有 4个,分别为 Glomus、Entrophos⁃
pora、Paraglomus 和未知属[36] .可见,盐渍生境中
Glomus占有非常重要的地位,多个国家盐渍生境样
地中均发现 G. intraradices的分布,可以推测该种可
能具有较高的耐盐性以及提高植物抗 /耐盐性的潜
力[29-30] .
    AM真菌能够侵染生长在盐渍土壤中的大多数
植物形成菌根[37] .Rozema等[38]观察到 21 种盐生植
物中的 11种能被 AM真菌侵染,且根围土中存在大
量 AM真菌孢子.AM真菌能不同程度地侵染中欧海
滨和内陆盐沼泽内生长的各种植物,尤其在盐害条
件下藜科滨藜属(Atriplex)的植物均能被 AM真菌侵
染[39] .黄河三角洲野生芦苇(Phragmites australis)、
碱蓬 ( Suaeda glauca)等植物根内均有丛枝和泡
囊[40] .日本冲绳县海滨植被厚藤 ( Ipomoea pesca⁃
prae)、滨豇豆(Vigna marina)和双穗雀稗(Paspalum
distichum)根内发现了 Glomus 的 2 种优势类群类型
A和 B,其中类型 A 是靠近面向海洋植被边缘的优
势种类,而类型 B 与 G. intraradices 密切相关[41] .其
他植物如海蒿(Artemisia maritima)、海乳草(Glaux
maritima) 以及欧洲南部的菊科植物 Inula crith⁃
moides 也能被 AM 真菌大量侵染[42-43] . 蟛蜞菊
(Wedelia chinensis)根内检测到 5个 AM真菌分类单
元,包括 Glomus 2个,Acaulospora、Entrophospora和未
知属各 1 个[36] .内蒙古盐碱土由于具有丰富的植物
多样性,与这些植物共生的 AM真菌多样性亦较高,
不仅优势植物冰草 ( Agropyron cristatum)、芨芨草
(Achnatherum splendens)、芦苇等具有较高的菌根侵
染率,一些过去认为不能或不易被 AM 真菌侵染的
莎草科和藜科植物也形成了典型的AM真菌结
图 2  韩国新万金填海土地丛枝菌根真菌 Glomeromycota门相对多度和相对丰度
Fig.2  Genus relative abundance of phylum Glomeromycota and total genus distribution in Saemangeum reclaimed land[26] .
a)非盐碱地 Non saline⁃alkali land (EC<2 dS·m-1); b)轻度盐碱地 Slightly saline⁃alkali land (EC = 2~ 4 dS·m-1); c)中度盐碱地 Moderately
saline⁃alkali land (EC= 4~8 dS·m-1); d)重度盐碱地 Severe saline⁃alkali land (EC = 8 ~ 16 dS·m-1 ); e)非常严重盐碱地 Extremely severe
saline⁃alkali land (EC>16 dS·m-1); f)所有属分布 Total genus distribution.
3131期                        杨海霞等: 盐碱地生境中丛枝菌根真菌多样性与功能变化特征           
构[44] .表明在盐碱生境中,盐生植物对 AM 真菌群
落的依赖性较大,并且 AM 真菌多样性受寄主植物
的种类及多样性影响很大,随盐碱地生境中盐浓度
的增加,植物种类及多样性减少,AM 真菌多样性也
随之降低.
3  AM真菌对盐碱地的影响
3􀆰 1  AM真菌对盐碱地土壤质量的影响
AM 真菌能有效改善盐碱地土壤结构,主要表
现在改善土壤团粒结构、透气性、蓄水性和透水性,
进而改善作物的水分和养分代谢.AM真菌能够增加
植物根围土壤有机质含量[45],提高生态系统对土壤
资源的利用率.AM 真菌分泌的土壤蛋白酶、多酚氧
化酶、脲酶和蔗糖酶等酶类及有机酸,能促进土壤中
有机质和矿物质的分解,提高土壤中养分的有效性,
加速土壤养分循环[46-47] .AM 真菌还能通过减少土
壤中碳的流失来改善土壤结构[48] .AM 真菌分泌的
球囊霉素是土壤活性有机碳库最重要的来源,其含
量是腐殖质的 2~24倍,占土壤有机碳源的 27%[49] .
一些小的土壤颗粒在 AM真菌根外菌丝产生的球囊
霉素的作用下缠绕黏结成一些大的土壤团聚体,土
壤团聚体数量的增加减少了土壤中营养元素的流
失,保护了土壤中的有机物,使土壤保持较好的通
气、透水状况[50-51] .土壤团聚体水稳定性越高,土壤
结构状况越好[52] .此外,AM 真菌自身菌丝体的长
度、活性和位置对土壤结构的稳定性也有一定作
用[53] .AM真菌还能调节土壤 pH,通过对土壤 pH的
调节来影响土壤质量[54] .AM 真菌能提高植物根系
活性,如提高有机酸的分泌能力,提高土壤酸度,增
加根围土壤中部分元素的有效性[47] .可见,AM真菌
可通过改善土壤的理化性状来提高盐碱土壤的
质量.
3􀆰 2  盐碱地生境中 AM真菌的生理生态功能
以 AM真菌主导的菌根共生系统已成为应对全
球变化的一种新型生物修复主体,可以缩短受损或
退化生态系统修复周期,提高重建的成功率并保证
修复效果的稳定性[55] .AM 真菌除对盐碱土壤有重
要作用外,对该生境中生长的植物个体、种群、群落、
其他生物或非生物都会产生作用[56] .特别是当今全
球变化背景下,AM 真菌有助于减轻全球变化造成
的盐碱地生境恶化、极端气候变化、外来物种入侵和
污染等不良影响[57] .
AM真菌通过其庞大的菌丝网络将植物联结起
来,在菌根真菌与植物之间、菌根真菌与微生物之
间、植物与微生物之间进行养分运转,形成完整的生
物群落[58] .AM真菌能增加植物叶片气孔导度、胞间
CO2浓度和蒸腾速率,促进 CO2吸收和固定[59],降低
了大气 CO2浓度.AM真菌是土壤微生物中生物量最
大的类群[60],是 C从植物根系流向土壤的重要调节
者,具有重要的碳汇功能,可减缓由土壤有机碳转化
为 CO2释放到大气中的速度,缓解由温室气体排放
增加引起的温室效应[61] .AM 真菌可显著促进植物
对水分、矿质元素的吸收及磷素利用[62],促进植物
生长,这有利于增加碳同化.菌根也有利于植物对碳
的分配[63] .庞大的菌根网络可以为土壤提供相当于
凋落物 40%的碳,这些有机质成为土壤微生物的主
要碳源,使土壤微生物的组成和数量增加.AM 真菌
与植物共生以及形成的菌根网络能驱动土壤营养元
素循环,影响植物群落的生产力[64],这将有助于盐
碱地植物群落的形成、促进盐碱地农田环境修复.因
此,AM真菌在生物群落竞争演替、物种多样性的形
成及群落空间分布格局对全球变化的响应中均起着
重要的调节作用[65] .
4  影响盐碱地生态系统 AM真菌多样性的因子
影响盐碱地生态系统中 AM 真菌多样性的因
子,如人类对自然的破坏、硫和氮沉降、臭氧增加、温
室效应增强、气候异常、降水量分布失衡、生物入侵
等,是造成全球生物多样性减少的主要原因[66],这
些因子通过影响与 AM真菌共生的植物而间接影响
AM真菌多样性,也能对 AM 真菌多样性起直接作
用[67] .
4􀆰 1  人类活动对盐碱地生态系统中 AM 真菌多样
性与功能的影响
人为烧荒、耕作、盲目开发导致物种濒临灭绝、
不合理的灌溉引起或加剧土壤盐碱化、盲目开荒造
成土壤侵蚀和河流泛滥、砍伐森林导致气候干旱和
水土流失、工业“三废”等人为干扰对生态环境的破
坏都会直接或通过影响植物多样性间接地降低 AM
真菌的多样性[68] .长期过度放牧导致 AM 真菌群落
密度和种群数量显著降低,AM 真菌群落结构的改
变影响了整个草原的生态系统稳定性[69] .施肥特别
是磷肥也会降低 AM真菌侵染率、孢子密度、相对多
度和种丰度,施肥还能降低 AM 真菌多样性指
数[70],华北地区长期(>20年)施肥显著降低了农田
生境中 AM真菌多样性[71] .生活污水排放显著抑制
了海沼泽红树林与 AM 真菌共生,泡囊和丛枝对污
水更敏感[72] .在过去的 20 年里,与自然栖息地相
413 应  用  生  态  学  报                                      26卷
比,人类活动干扰会导致生态系统中 AM 真菌多样
性降低[67],人为干扰程度大的农田生境中 AM 真菌
多样性水平要低于人为干扰程度较轻的农田[73] .说
明 AM真菌多样性降低程度与人为干扰的方式和强
度密切相关[74] .因此,减少人类活动的干扰将有助
于保持 AM真菌群落结构稳定和功能的正常发挥.
4􀆰 2  盐度对盐碱地生态系统中 AM 真菌多样性与
功能的影响
盐度直接影响真菌的生长,减少真菌的菌丝体
形成和菌根侵染率,进而抑制菌根形成[75] . Jahromi
等[76]研究发现,对照(无盐)与 0.3% NaCl 对 G. in⁃
traradices菌丝长度及具有吸收结构的分支无显著差
异,而 0.6%的处理显著减少了菌丝长度和吸收结构
分支数量.高盐胁迫通常抑制 AM 真菌对植物根系
的侵染,尤其是初侵染,且不同真菌受抑制程度不
同[77] .盐胁迫下 AM真菌对植物会有不同程度的侵
染,菌根侵染率与植物电导率、Na+浓度呈负相关
性,表明盐胁迫是菌根生长的限制因子[78] .这可能
与 AM真菌种类在类似生态系统[79]或不同环境条
件[43]的不同习性有关,如侵染初期 Gigaspora deci⁃
pens 比 Scutellospora calospora 更易受 NaCl 的抑
制[77] .虽然 NaCl降低菌根早期侵染率,但后期则不
然[80],这可能是其推迟孢子萌发所致[75] .在中欧不
同类型的盐渍化土壤中 ( NaCl、 Na2 CO3、Na2 SO4、
CaSO4为主要生境)均分离出了 AM真菌孢子[78],说
明 AM真菌能广泛存在于各种类型的盐渍土中.AM
真菌孢子萌发率和最大萌发量也可能依赖盐的类
型,相同渗透势的不同类型盐(如硝酸钠和硫酸钠)
胁迫对孢子萌发率和最大萌发量的影响差异显著,
而这取决于最终 Na+浓度的差异[81] .可见盐胁迫延
缓或抑制了生境中 AM 真菌生长和菌根形成,进而
降低了 AM真菌的物种多样性[82] .
但也有研究表明,随盐浓度增加,土壤中 AM真
菌孢子数量不但没有显著降低,有时反而增加[80,83] .
Yamato等[41]报道,日本冲绳县沿海地区存在着 AM
真菌,甚至在 1.2%高盐浓度下菌根侵染率也不降
低,这意味着高盐胁迫根系侵染水平较低的情况下
能产生更多的孢子.这可能是由于除 NaCl 外,自然
盐化土壤中还存在着其他不同的盐分,因此由 NaCl
引起的盐度与自然条件下的盐度有很大差异.相关
分析表明,根系形态、土壤 pH、砂粒与黏土比率、有
效磷等与土壤中孢子数有关,而与土壤中离子浓度
及盐渍化无关[83] .关于这一点值得进一步研究,以
阐明不同生态条件下盐的种类和浓度影响 AM真菌
的机制,这对筛选具有抗性的 AM 真菌菌种及其在
农林业生产中的应用具有重要意义.
4􀆰 3  酸雨和氮沉降对盐碱地生态系统中 AM 真菌
多样性与功能的影响
酸雨能改变菌根形态结构特征,导致植物形成
菌根能力下降[84] .酸雨中含硫物质溶解于土壤,使
土壤 pH值降低,释放有毒金属离子,并被植物吸收
利用,导致植物根系生长量减少,进而降低菌根真菌
生长和侵染.而氮富集是全球变化的基本要素之一,
可降低植物群落多样性,影响生态系统的物种丰度,
进而改变菌根真菌的物种多样性[85] .磷水平高的土
壤中,氮增加通常会降低丛枝、菌丝圈和根外生菌丝
数量.湿地中这种响应与 AM 真菌群落内 Gigaspora
的相对多度的变化有关[86] .
人为引起的氮沉降已被列为地球生态系统的首
要威胁之一[87] .氮沉降不仅影响生态系统中植物的
多样性和生产力,而且对 AM 真菌的群落结构与功
能也产生很大影响[88] .盐碱地 AM 真菌与全球气候
变化紧密相关.全球氮沉降对陆地生态系统产生了
重要影响,改变生态系统功能和生物多样性,导致植
被迁移和土壤酸化,同时也导致盐碱地 AM 真菌的
变化.氮沉降主要影响 AM 真菌孢子密度、菌丝长
度、物种多样性和群落结构等[89-90] .为准确预测未
来全球变化背景下 AM 真菌对模拟氮沉降的响应,
采用 454高通量测序研究 AM真菌群落,结果表明,
不同施氮处理之间 AM 真菌物种丰富度差异不显
著,与低氮处理相比,高氮处理有增加 AM真菌物种
丰富度的趋势. MDS(multidimensional scaling)分析
结果显示,不同施氮形式和施氮水平对 AM 真菌群
落组成均无显著影响,但是 AM 真菌群落组成与土
壤 pH、硝态氮和植物生物量显著相关.施NH4NO3降
低了碱性草地土壤的微生物生物量,施(NH4) 2SO4
反而升高了碱性草地土壤的微生物生物量,这种差
异表明氮沉降对土壤微生物生物量的影响可能会因
生态系统性质不同而异.氮沉降对生态系统的影响
与 O3浓度和 CO2浓度存在互作.事实上,自然界中菌
根真菌主要受多因子互作效应的影响[91],今后有待
进行系统研究.进入 21 世纪,臭氧层破坏导致近地
层 O3浓度日益升高,随着臭氧浓度增加,AM真菌对
植物的总侵染率保持不变,而囊泡、菌丝圈和根内菌
丝着生率增加,丛枝则下降.这表明 AM 真菌通过促
进对能量需求较少和养分交换效率较差的器官(菌
丝圈)的发育、以及通过增加储存养分器官(泡囊)
来确保后期生长以应对逆境[92] .臭氧还会通过减少
5131期                        杨海霞等: 盐碱地生境中丛枝菌根真菌多样性与功能变化特征           
豆科植物的结瘤数等来抑制菌根生长,进而使 AM
真菌物种丰富度降低[93] .
4􀆰 4  温室效应对盐碱地生态系统中 AM 真菌多样
性与功能的影响
最近 150 年里 CO2浓度从 280 ppm 上升到
400 ppm[94] .按此速度, 2035 年 CO2 浓度将达到
600 ppm.大气 CO2浓度升高必然导致全球持续升
温,即温室效应.温度不仅通过对植物的影响而间接
影响 AM真菌孢子分布,还能对 AM 真菌产生直接
作用[25] .研究表明,18 ~ 24 ℃是孢子萌发的最适温
度[95],温度偏高或偏低都不利于孢子萌发.温度升
高还能提高土壤氮和磷的有效性,进而减少寄主根
围 AM真菌物种多样性[96],降低侵染率和泡囊数
量[97] .Staddon等[98]研究了大气 CO2浓度升高、土壤
加温和干旱及它们之间的互作对 AM真菌侵染三叶
草根系长度(RLC)和根外菌丝(EMH)密度的影响,
发现升高的大气 CO2浓度不影响菌根侵染数量,但
能促进 EMH 生长,即增加地下碳量向 EMH 的分
配;干旱对 Glomus 种类没有影响,而土壤加温直接
增加该属种类的 RLC 和 EMH 密度;大气 CO2浓度
升高、土壤加温和干旱三者对 RCL 无交互作用,对
EMH却存在显著交互作用.可见温室效应可能会降
低盐碱地生境中 AM 真菌物种多样性,但促进某些
AM真菌的生长,这些还有待试验证实.此外,当大气
CO2浓度在 350 ppm 以下突然增加至 550 ppm 时,
AM真菌种丰富度下降 50%,而大气 CO2浓度逐渐
以 10 ppm增加 21次时(共约 6 年) [99],AM 真菌种
丰富度下降不明显,某些 AM 真菌类群对 CO2浓度
的突然变化非常敏感,如 Gigaspora 和 Scutellospora,
而 Glomus没有明显变化.最近,Dumbrell 等[100]研究
表明,温度升高导致 AM真菌多样性整体下降,并且
推测全球变暖可能会增加某些 AM真菌类群的丰富
度,而导致当地大多数 AM真菌的物种灭绝.
5  研究展望
作为陆地生态系统的重要成员,菌根真菌占据
和调控多种生态位,充当多重角色,并发挥多种生理
生态作用.国内外已开始关注农田、森林、草原、荒漠
以及重金属污染土壤中 AM 真菌群落结构与功能.
面对全球变化的诸多挑战,在较大的时间和空间尺
度上探讨全球气候变化对菌根真菌的影响,菌根及
其菌根真菌在全球变化下的演化特点、在生态系统
中的地位、角色和作用将是今后菌根真菌物种群落
结构与功能研究领域值得关注的研究方向之一.当
前和今后应注重以下几方面的研究:第一,发展和完
善 AM真菌特异性引物的设计、物种多样性测定、基
因功能与表达的差异检测方面的技术和方法(如建
立相对快速、准确的 AM真菌分类鉴定手段);第二,
应用分子方法和原位观测技术全面系统阐明各生态
系统中 AM真菌群落结构特征与功能(如保持生态
系统稳定性和可持续生产力等方面的功能),尤其
长期定位研究逆境环境中菌根及其菌根真菌群落结
构与功能,将有助于阐明全球变化下 AM 真菌的作
用;系统深入研究全球气候变化下 AM 真菌生理生
态功能与作用机制,为进一步筛选评价高效 AM 真
菌菌种及其应用提供技术依据;第三,于上述工作的
基础上,确定具有生物修复作用(如修复退化或盐
碱地土壤)、生防作用(如对植物土传病害的生物防
治)的特定 AM真菌群落结构,并研发各自相应的专
一 AM真菌群落结构制剂.盐碱地改良是一个较为
复杂的综合治理工程,在盐碱地改良利用过程中,采
取的改良措施经历了由单一到综合的过程,在综合
治理的同时,要强调突出重点.今后对盐碱地改良利
用的研究还应建立在长期监测的基础上,以可持续
发展的观点加强生物技术改良.
参考文献
[1]  Xu L⁃J (徐丽娟), Diao Z⁃K (刁志凯), Li Y (李 
岩), et al. Eco⁃physiological functions of mycorrhizal
fungi. Chinese Journal of Applied Ecology (应用生态学
报), 2012, 23(1): 285-292 (in Chinese)
[2]  Dickie IA, Martínez⁃García LB, Koele N, et al. Mycor⁃
rhizas and mycorrhizal fungal communities throughout
ecosystem development. Plant and Soil, 2013, 367:
11-39
[3]  Petelet⁃Giraud E, Négrel P, Guerrot C, et al. Origins
and processes of salinization of a Plio⁃Quaternary Coastal
Mediterranean Multilayer Aquifer: The Roussillon Basin
case study. Procedia Earth and Planetary Science,
2013, 7: 681-684
[4]  Li S⁃M (李素美), Wang Y⁃Q (王银桥), Liu R⁃J (刘
润进 ). Arbuscular mycorrhizal fungal diversity in
unusual niches. Chinese Journal of Applied Ecology (应
用生态学报), 2013, 24(11): 3325- 3332 ( in Chi⁃
nese)
[5]  Evelin H, Kapoor R. Arbuscular mycorrhizal symbiosis
modulates antioxidant response in salt⁃stressed Trigonel⁃
la foenum⁃graecum plants. Mycorrhiza, 2014, 24: 197-
208
[6]  Porcel R, Aroca R, Ruiz⁃Lozano JM. Salinity stress al⁃
leviation using arbuscular mycorrhizal fungi: A review.
Agronomy for Sustainable Development, 2012, 32: 181-
613 应  用  生  态  学  报                                      26卷
200
[7]  Szaboles I. Salinization of soil and water and its relation
to desertification. Desertification Control Bulletin, 1992,
21: 32-37
[8]  Yeo A. Predicting the interaction between the effects of
salinity and climate change on crop plants. Scientia Hor⁃
ticulturae, 1998, 78: 159-174
[9]  O’Hara SL. Irrigation and land degradation: Implica⁃
tions for agriculture in Turkmenistan, central Asia. Jour⁃
nal of Arid Environments, 1997, 37: 165-179
[10]  Lambers H. Introduction, dry land salinity: A key envi⁃
ronmental issue in Southern Australia. Plant and Soil,
2003, 257: 5-7
[11]   Zhang J. Coastal Saline Soil Rehabilitation and Utiliza⁃
tion Based on Forestry Approaches in China. Berlin:
Springer, 2014
[12]  Kapoor R, Evelin H, Mathur P, et al. Arbuscular my⁃
corrhiza: Approaches for abiotic stress tolerance in crop
plants for sustainable agriculture / / Narendra T, Sarva⁃
jeet SG, eds. Plant Acclimation to Environmental Stress.
New York: Springer, 2013: 359-401
[13]  Wang Y (王   燕), Zhao H⁃L (赵哈林), Zhao X⁃Y
(赵学勇), et al. Water and salt dynamics in farmland
salinization in arid oasis. Journal of Soil and Water Con⁃
servation (水土保持学报), 2013, 27(1): 186- 192
(in Chinese)
[14]  Lian Y, Wang J, Tu G, et al. Quantitative assessment
of impacts of regional climate and human activities on
saline⁃alkali land changes: A case study of Qian’ an
County, Jilin Province. Chinese Geographical Science,
2010, 20: 91-97
[15]  Liao J (廖  杰), Wen X (文  星). Dynamic change
of saline and alkali land in Hexi Region based on re⁃
mote⁃sensing. Journal of Arid Land Resources and Envi⁃
ronment (干旱区资源与环境), 2011, 25(9): 96-
101 (in Chinese)
[16]  Manchanda G, Garg N. Salinity and its effects on the
functional biology of legumes. Acta Physiologiae Planta⁃
rum, 2008, 30: 595-618
[17]  Mei D⁃X (枚德新), Zhang D⁃S (张德顺), Wang S
(王  顺). The status and trends of ecological restora⁃
tion of saline⁃alkali land in coastal region. Chinese Agri⁃
cultural Science Bulletin (中国农学通报), 2013, 29
(5): 167-171 (in Chinese)
[18]  Di Bella CE, Jacobo E, Golluscio RA, et al. Effect of
cattle grazing on soil salinity and vegetation composition
along an elevation gradient in a temperate coastal salt
marsh of Samborombón Bay ( Argentina ). Wetlands
Ecology and Management, 2014, 22: 1-13
[19]  Kitamura Y, Yang SL, Shimizu K. Restoration and De⁃
velopment of the Degraded Loess Plateau, China. Ber⁃
lin: Springer, 2014
[20]  Li A (李   昂). Mechanism and progression of amen⁃
ding salt affected soil using biological measures. Journal
of Gansu Normal Colleges (甘肃高师学报), 2013, 18
(2): 56-59 (in Chinese)
[21]  Kohler J, Hernández JA, Caravaca F, et al. Induction
of antioxidant enzymes is involved in the greater effec⁃
tiveness of a PGPR versus AM fungi with respect to in⁃
creasing the tolerance of lettuce to severe salt stress. En⁃
vironmental and Experimental Botany, 2009, 65:
245-252
[22]  Zhuang J⁃Y (庄剑云). Species diversity of fungi. Biodi⁃
versity Science (生物多样性), 1994, 2(2): 108-112
(in Chinese)
[23]  Shi Z⁃Y (石兆勇), Chen Y⁃L (陈应龙), Liu R⁃J (刘
润进), et al. Mycorrhizal diversity and its significance
in plant growth and development. Chinese Journal of
Applied Ecology (应用生态学报), 2003, 14 ( 9):
1565-1568 (in Chinese)
[24]  Wang T⁃T (王婷婷), Wang R⁃G (王仁刚), Li Y⁃M
(李咏梅). A primary study on diversity of arbuscular
mycorrhizal fungi associated with tobacco roots from
Guizhou Province. Mycosystema (菌物学报), 2014, 33
(1): 143-151 (in Chinese)
[25]   He X⁃L (贺学礼), Geng X⁃J (耿晓进), Zhao L⁃L
(赵丽莉), et al. Seasonal variation of AM fungal diver⁃
sity in the rhizosphere of Lonicera japonica. Ecology and
Environmental Sciences (生态环境学报), 2013, 22
(1): 90-94 (in Chinese)
[26]  Krishnamoorthy R, Kim K, Kim C, et al. Changes of
arbuscular mycorrhizal traits and community structure
with respect to soil salinity in a coastal reclamation land.
Soil Biology and Biochemistry, 2014, 72: 1-10
[27]  Guo X, Gong J. Differential effects of abiotic factors and
host plant traits on diversity and community composition
of root⁃colonizing arbuscular mycorrhizal fungi in a salt⁃
stressed ecosystem. Mycorrhiza, 2014, 24: 79-94
[28]  Wang F⁃Y (王发园), Liu R⁃J (刘润进). A prelimina⁃
ry survey of arbuscular mycorrhizal fungi in saline⁃
alkaline soils of the Yellow River Delta. Biodiversity Sci⁃
ence (生物多样性), 2001, 9(4): 389-392 ( in Chi⁃
nese)
[29]  Estrada B, Barea JM, Aroca R, et al. A native Glomus
intraradices strain from a Mediterranean saline area ex⁃
hibits salt tolerance and enhanced symbiotic efficiency
with maize plants under salt stress conditions. Plant and
Soil, 2013, 366: 333-349
[30]  Evelin H, Giri B, Kapoor R. Contribution of Glomus in⁃
traradices inoculation to nutrient acquisition and mitiga⁃
tion of ionic imbalance in NaCl⁃stressed Trigonella foe⁃
num⁃graecum. Mycorrhiza, 2012, 22: 203-217
[31]  Wang F⁃Y (王发园), Liu R⁃J (刘润进). Arbuscular
mycorrhizal fungi in saline⁃alkaline soils of Yellow River
Delta. Mycosystema (菌物学报), 2002, 21(2): 196-
202 (in Chinese)
7131期                        杨海霞等: 盐碱地生境中丛枝菌根真菌多样性与功能变化特征           
[32]  Sheng M (盛   敏), Tang M (唐   明), Zhang F⁃F
(张峰峰), et al. Effect of soil factors on arbuscular my⁃
corrhizal fungi in saline alkaline soils of Gansu, Inner
Mongolia and Ningxia. Biodiversity Science (生物多样
性), 2011, 19(1): 85-92 (in Chinese)
[33]  Estrada B, Beltran⁃Hermoso M, Palenzuela J, et al. Di⁃
versity of arbuscular mycorrhizal fungi in the rhizosphere
of Asteriscus maritimus ( L.) Less., a representative
plant species in arid and saline Mediterranean ecosys⁃
tems. Journal of Arid Environments, 2013, 97: 170 -
175
[34]  Hammer EC, Nasr H, Pallon J, et al. Elemental compo⁃
sition of arbuscular mycorrhizal fungi at high salinity.
Mycorrhiza, 2011, 21: 117-129
[35]  Oliveira RS, Vosatka M, Dodd JC, et al. Studies on the
diversity of arbuscular mycorrhizal fungi and the efficacy
of two native isolates in a highly alkaline anthropogenic
sediment. Mycorrhiza, 2005, 16: 23-31
[36]  Higo M, Isobe K, Kang DJ, et al. Molecular diversity
and spore density of indigenous arbuscular mycorrhizal
fungi in acid sulfate soil in Thailand. Annals of Micro⁃
biology, 2011, 61: 383-389
[37]  Gareia IV, Mendoza RE. Arbuscular mycorrhizal fungi
and plant symbiosis in a saline⁃sodic soil. Mycorrhiza,
2007, 17: 167-174
[38]   Rozema J, Arp W, Van Diggelen J, et al. Occurrence
and ecological significance of vesicular⁃arbuscular my⁃
corrhiza in the salt marsh environment. Acta Botanica
Neerlandica, 1986, 35: 457-467
[39]  Katembe WJ, Ungar IA, Mitchell JP. Effect of salinity
on germination seedling growth of two Atriplex species
(Chenpodiaceae). Annals of Botany, 1998, 82: 167-
175
[40]  Wang FY, Liu RJ, Lin XG, et al. Arbuscular mycorrhi⁃
zal status of wild plants in saline⁃alkaline soils of the
Yellow River Delta. Mycorrhiza, 2004, 14: 133-137
[41]  Yamato M, Ikeda S, Iwase K, et al. Community of ar⁃
buscular mycorrhizal fungi in a coastal vegetation on
Okinawa Island and effect of the isolated fungi on growth
of sorghum under salt⁃treated conditions. Mycorrhiza,
2008, 18: 241-249
[42]  Hildebrandt U, Janetta K, Ouziad F, et al. Arbuscular
mycorrhizal colonization of halophytes in Central Europe⁃
an salt marshes. Mycorrhiza, 2001, 10: 175-183
[43]  Carvalho LM, Caçador I, Martins⁃Louçäo MA. Temporal
and spatial variation of arbuscular mycorrhizas in salt
marsh plants of the Tagus estuary (Portugal) . Mycorrhi⁃
za, 2001, 11: 303-309
[44]   Tang M (唐  明), Huang Y⁃H (黄艳辉), Sheng M
(盛  敏), et al. Diversity and distribution of arbuscu⁃
lar mycorrhizal fungi in saline alkaline soil, Inner Mon⁃
golia. Acta Pedologica Sinica (土壤学报), 2007, 44
(6): 1104-1110 (in Chinese)
[45]  Quintero⁃Ramos M, Espinoza⁃Victoria D, Ferrera⁃Cerrato
R, et al. Fitting plants to soil through mycorrhizal fungi:
Mycorrhiza effects on plant growth and soil organic mat⁃
ter. Biology and Fertility of Soils, 1993, 15: 103-106
[46]  Zhao M, Li M, Liu RJ. Effects of arbuscular mycorrhi⁃
zae on microbial population and enzyme activity in re⁃
plant soil used for watermelon production. International
Journal of Engineering, Science and Technology, 2010,
2: 17-22
[47]  Römheld V, Marschner H. Plant⁃induced pH changes in
the rhizosphere of “ Fe⁃efficient” and “ Fe⁃inefficient”
soybean and corn cultivars. Journal of Plant Nutrition,
1984, 7: 623-630
[48]  Jastrow JD, Amonette JE, Bailey VL. Mechanisms con⁃
trolling soil carbon turnover and their potential applica⁃
tion for enhancing carbon sequestration. Climatic
Change, 2007, 80: 5-23
[49]  Singh PK, Singh M, Tripathi BN. Glomalin: An arbus⁃
cular mycorrhizal fungal soil protein. Protoplasma,
2013, 250: 663-669
[50]  Dai J, Hu J, Lin X, et al. Arbuscular mycorrhizal fun⁃
gal diversity, external mycelium length, and glomalin⁃
related soil protein content in response to long⁃term fer⁃
tilizer management. Journal of Soils and Sediments,
2013, 13: 1-11
[51]  Yang H⁃Y (杨宏宇), Zhao L⁃L (赵丽莉), He X⁃L
(贺学礼), et al. Function of arbuscular mycorrhiza in
the restoration and reconstruction of degraded ecosys⁃
tems. Arid Land Geography (干旱区地理), 2005, 28
(6): 836-842 (in Chinese)
[52]  Bedini S, Pellegrino E, Avio L, et al. Changes in soil
aggregation and glomalin⁃related soil protein content as
affected by the arbuscular mycorrhizal fungal species
Glomus mosseae and Glomus intraradices. Soil Biology
and Biochemistry, 2009, 41: 1491-1496
[53]  Miller RM, Jastrow JD. The role of mycorrhizal fungi in
soil conservation / / Bethlenfalvay GJ, Linderman RG,
eds. Mycorrhizae in Sustainable Agriculture. Madison:
Special Pubication, 1992: 29-44
[54]  Hua J⁃F (华建峰), Lin X⁃G (林先贵), Jiang Q (蒋
倩), et al. Effects of arbuscular mycorrhizal inoculation
on arsenic uptake and rhizosphere pH of Nicotiana taba⁃
cum L. Ecology and Environmental Sciences (生态环境
学报), 2009, 18(5): 1746-1752 (in Chinese)
[55]  Van Der Heijden MGA, Verkade S, Bruin D, et al. My⁃
corrhizal fungi reduce the negative effects of nitrogen en⁃
richment on plant community structure in dune grass⁃
land. Global Change Biology, 2008, 14: 2626-2635
[56]  Estrada B, Aroca R, Maathuis FJM, et al. Arbuscular
mycorrhizal fungi native from a Mediterranean saline
area enhance maize tolerance to salinity through im⁃
proved ion homeostasis. Plant, Cell & Environment,
2013, 36: 1771-1782
813 应  用  生  态  学  报                                      26卷
[57]  Babu AG, Reddy MS. Diversity of arbuscular mycorrhi⁃
zal fungi associated with plants growing in fly ash pond
and their potential role in ecological restoration. Current
Microbiology, 2011, 63: 273-280
[58]  Pennisi E. The secret life of fungi. Science, 2004, 304:
1620-1622
[59]  Fang Y⁃L (房玉林), Zhang J⁃H (张稼涵), Song S⁃R
(宋士任), et al. Promotion effects of native AM fungi
on Cabernet Sauvignon grapevines in vineyards of Weibei
Tableland. Plant Nutrition and Fertilizer Science (植物
营养与肥料学报), 2010, 16(3): 701-707 ( in Chi⁃
nese)
[60]  Olsson PA, Thingstrup I, Jakobsen I, et al. Estimation
of the biomass of arbuscular mycorrhizal fungi in a lin⁃
seed field. Soil Biology and Biochemistry, 1999, 31:
1879-1887
[61]  Staddon PL, Thompson K, Jakobsen I, et al. Mycorrhi⁃
zal fungal abundance is affected by long⁃term climatic
manipulations in the field. Global Change Biology,
2003, 9: 186-194
[62]  Zhang Y⁃T (张玉亭), Zhu M (朱  敏), Xian Y (线
岩相洼), et al. Influence of mycorrhizal inoculation on
competition between plant species and inorganic phos⁃
phate forms. Acta Ecologica Sinica (生态学报), 2012,
32(22): 7091-7101 (in Chinese)
[63]  Gadd GM. Metals, minerals and microbes: Geomicro⁃
biology and bioremediation. Microbiology, 2010, 156:
609-643
[64]  Hodge A, Fitter AH. Substantial nitrogen acquisition by
arbuscular mycorrhizal fungi from organic material has
implications for N cycling. Proceedings of the National
Academy of Sciences of the United States of America,
2010, 107: 13754-13759
[65]  Yu WQ, Zhou W, Wan FH, et al. Current understand⁃
ing of the role of arbuscular mycorrhizal fungi in exotic
plant invasions. Journal of Biosafety, 2012, 21: 1-8
[66]  Sala OE, Chapin FS, Armesto JJ, et al. Global biodi⁃
versity scenarios for the year 2100. Science, 2000, 287:
1770-1774
[67]  Turrini A, Giovannetti M. Arbuscular mycorrhizal fungi
in national parks, nature reserves and protected areas
worldwide: A strategic perspective for their in situ con⁃
servation. Mycorrhiza, 2012, 22: 81-97
[68]  Brundrett MC, Ashwath N. Glomeromycotan mycorrhizal
fungi from tropical Australia. III. Measuring diversity in
natural and disturbed habitats. Plant and Soil, 2013,
370: 419-433
[69]  Su YY, Guo LD. Arbuscular mycorrhizal fungi in non⁃
grazed, restored and over⁃grazed grassland in the Inner
Mongolia steppe. Mycorrhiza, 2007, 17: 689-693
[70]  Gu Y⁃F (辜运富), Li F (李  芳), Zhang X⁃P (张小
平), et al. Effects of long⁃term fertilization on arbuscu⁃
lar mycorrhizal fungi community in calcareous purple
paddy soil. Mycosystema (菌物学报), 2012, 31(5):
690-700 (in Chinese)
[71]  Lin XG, Feng YZ, Zhang HY, et al. Long⁃term
balanced fertilization decreases arbuscular mycorrhizal
fungal diversity in an arable soil in north China revealed
by 454 pyrosequencing. Environmental Science & Tech⁃
nology, 2012, 46: 5764-5771
[72]  Wang Y⁃T (王宇涛). Diversity of AMF Communities in
Mangrove Near by Pearl River Estuary and Their Re⁃
sponses to Environmental Factors. PhD Thesis. Guang⁃
zhou: Sun Yat⁃sen University, 2011 (in Chinese)
[73]  Helgason T, Daniell TJ, Husband R, et al. Ploughing
up the wood⁃wide web? Nature, 1998, 394: 431
[74]  Öpik M, Moora M, Zobel M, et al. High diversity of ar⁃
buscular mycorrhizal fungi in a boreal herb⁃rich conifer⁃
ous forest. New Phytologist, 2008, 179: 867-876
[75]  Juniper S, Abbott LK. Soil salinity delays germination
and limits growth of hyphae from propagules of arbuscu⁃
lar mycorrhizal fungi. Mycorrhiza, 2006, 16: 371-379
[76]  Jahromi F, Aroca1 R, Porcel R, et al. Influence of sa⁃
linity on the in vitro development of Glomus intraradices
and on the in vivo physiological and molecular responses
of mycorrhizal lettuce plants. Microbial Ecology, 2008,
55: 45-53
[77]  Juniper S. The Effect of Sodium Chloride on Some Vesi⁃
cular⁃Arbuscular Mycorrhizal Fungi. PhD Thesis. Perth:
The University of Western Australia, 1996
[78]  Landwehr M, Hildebrandt U, Wilde P, et al. The ar⁃
buscular mycorrhizal fungus Glomus geosporum in Euro⁃
pean saline, sodic and gypsum soils. Mycorrhiza, 2002,
12: 199-211
[79]  Kilironomos JN, Moutoglis P, Kendrick B, et al. A
comparison of spatial heterogeneity of vesicular⁃arbuscu⁃
lar mycorrhizal fungi in two maple forest soils. Canadian
Journal of Botany, 1993, 71: 1472-1480
[80]  Aliasgharzadeh N, Rastin SN, Towfighi H, et al. Occur⁃
rence of arbuscular mycorrhizal fungi in salinity soils of
the Tabriz Plain of Iran in relation to some physical and
chemical properties of soil. Mycorrhiza, 2001, 11: 119-
122
[81]  Juniper S, Abbott L. Vesicular⁃arbuscular mycorrhizas
and soil salinity. Mycorrhiza, 1993, 4: 45-57
[82]  Asghari HR. Vesicular⁃arbuscular ( VA) mycorrhizae
improve salinity tolerance in pre⁃inoculation subterrane⁃
an clover (Trifolium subterraneum) seedlings. Interna⁃
tional Journal of Plant Production, 2012, 2: 243-256
[83]  Hirrel MC. The effect of sodium and chloride salts on the
germination of Gigaspora margarita. Mycologia, 1981,
73: 610-617
[84]  Lyu CQ, Tian HQ, Huang Y. Ecological effects of in⁃
creased nitrogen deposition in terrestrial ecosystems.
Journal of Plant Ecology, 2007, 31: 205-218
[85]  Frey SD, Knorr M, Parrent JL, et al. Chronic nitrogen
9131期                        杨海霞等: 盐碱地生境中丛枝菌根真菌多样性与功能变化特征           
enrichment affects the structure and function of the soil
microbial community in temperate hardwood and pine
forests. Forest Ecology and Management, 2004, 196:
159-171
[86]  Johnson NC, Rowland DL, Corkidi L, et al. Nitrogen
enrichment alters mycorrhizal allocation at five mesic to
semiarid grasslands. Ecology, 2003, 84: 1895-1908
[87]  Rockström J, Steffen W, Noone K, et al. A safe operat⁃
ing space for humanity. Nature, 2009, 461: 472-475
[88]  Shen J⁃P (沈菊培), He J⁃Z (贺纪正). Responses of
microbes⁃mediated carbon and nitrogen cycles to global
climate change. Acta Ecologica Sinica (生态学报),
2011, 31(11): 2957-2967 (in Chinese)
[89]  Antoninka A, Reich PB, Johnson NC. Seven years of
carbon dioxide enrichment, nitrogen fertilization and
plant diversity influence arbuscular mycorrhizal fungi in
a grassland ecosystem. New Phytologist, 2011, 192:
200-214
[90]  Van Diepen LTA, Lilleskov EA, Pregitzer KS. Simula⁃
ted nitrogen deposition affects community structure of ar⁃
buscular mycorrhizal fungi in northern hardwood forests.
Molecular Ecology, 2011, 20: 799-811
[91]  Chung C, Zak R, Reich PB, et al. Plant species rich⁃
ness, elevated CO2 and atmospheric nitrogen deposition
alter soil microbial community composition and function.
Global Change Biology, 2007, 13: 980-989
[92]  Liang Q⁃Q (梁倩倩), Li M (李  敏), Liu R⁃J (刘润
进), et al. Function and functioning mechanisms of my⁃
corrhizal fungi under global changes[EB / OL]. (2006⁃
02⁃08) [ 2014⁃08⁃13 ]. http: / / www. cnki. net / kcms /
doi / 10.5846 / stxb201301300191.html (in Chinese)
[93]  Nasim G, Bajwa R, Hakeem A. Response of arbuscular
mycorrhizal mung bean plants to ambient air pollution.
International Journal of Environmental Science & Tech⁃
nology, 2007, 4: 295-310
[94]  Weitzman ML. A review of the stern review on the eco⁃
nomics of climate change. Journal of Economic Litera⁃
ture, 2007, 45: 703-724
[95]  Sun X⁃W (孙向伟), Wang X⁃J (王晓娟), Chen M
(陈  牧), et al. Effects of eco⁃environmental factors
on the production and distribution of arbuscular mycor⁃
rhizal fungal spores. Acta Prataculturae Sinica (草业学
报), 2011, 20(1): 214-221 (in Chinese)
[96]  Gamper H, Hartwig UA, Leuchtmann A. Mycorrhizas
improve nitrogen nutrition of Trifolium repens after 8 yr
of selection under elevated atmospheric CO2 partial
pressure. New Phytologist, 2005, 167: 531-542
[97]  Hawkes CV, Hartley IP, Ineson P, et al. Soil tempera⁃
ture affects carbon allocation within arbuscular mycor⁃
rhizal networks and carbon transport from plant to fun⁃
gal. Global Change Biology, 2008, 14: 1181-1190
[98]  Staddon PL, Gregersen R, Jakobsen I. The response of
two Glomus mycorrhizal fungi and a fine endophyte to
elevated atmospheric CO2, soil warming and drought.
Global Change Biology, 2004, 10: 1909-1921
[99]  Klironomos JN, Allen MF, Rillig MC, et al. Abrupt
rise in atmospheric CO2 overestimates community re⁃
sponse in a model plant⁃soil system. Nature, 2005,
433: 621-624
[100]  Dumbrell AJ, Ashton PD, Aziz N, et al. Distinct sea⁃
sonal assemblages of arbuscular mycorrhizal fungi re⁃
vealed by massively parallel pyrosequencing. New Phy⁃
tologist, 2011, 190: 794-804
作者简介  杨海霞,女,1987 年生,硕士研究生.主要从事园
林植物栽培生理与菌根研究. E⁃mail: yhx198716@ 163.com
责任编辑  张凤丽
023 应  用  生  态  学  报                                      26卷