免费文献传递   相关文献

Tobacco cadmium health risk assessment and reduction techniques: A review.

烟草镉的健康风险评价及消减技术研究进展


烟草是耐镉富镉植物,降低烟叶镉含量对环境质量和人体健康具有重要意义.本文系统地从烟草镉的吸收转运分布规律、健康风险评价和消减技术3方面进行综述,系统分析了该领域的研究成果、现状和存在问题.阐述了烟草耐镉机制,分析了烟草吸收镉的影响因素,并总结了烟草镉分布的一般规律.从健康风险评估角度分析了制定烟草镉限量标准的重要性,根据大气镉呼吸限量和肠胃镉吸收限量,结合烟草镉限量建议计算公式,推导出了烟草镉限量建议值.最后,总结出一些简单有效的烟草镉消减技术,为低镉烟叶生产提供技术指导.

Tobacco is one of the cadmium accumulation and tolerance plants. Decreasing cadmium content of tobacco contributes to environmental safety and human health. Three aspects on tobacco cadmium research were reviewed in this paper, i.e. uptake and distribution of cadmium in tobacco, and health risk assessment of cadmium in tobacco and reduction measures. The current situations and existing challenges in the research field were discussed. The cadmium tolerance mechanisms of tobacco were reviewed, the factors on cadmium uptake were analyzed, and the general distribution of cadmium in tobacco was summarized. From the point of health risk assessment, the lack of cadmium limits in tobacco was identified, the recommended formula to calculate cadmium limits of tobacco based on atmosphere cadmium limits and digestion cadmium limits was provided and the cadmium limits of tobacco were estimated using each formula, and suggestions on cadmium limits in tobacco were presented. At last, we put forward several effective reduction measures to lower cadmium level in tobacco leaves.
 


全 文 :烟草镉的健康风险评价及消减技术研究进展∗
曹晨亮1  马义兵1∗∗  李菊梅1  韦东普1  石  屹2
( 1国家土壤肥力与肥料效益监测站网 /中国农业科学院农业资源与农业区划研究所, 北京 100081; 2农业部烟草生物学与加
工重点实验室 /中国农业科学院烟草研究所, 山东青岛 266101)
摘  要  烟草是耐镉富镉植物,降低烟叶镉含量对环境质量和人体健康具有重要意义.本文
系统地从烟草镉的吸收转运分布规律、健康风险评价和消减技术 3 方面进行综述,系统分析
了该领域的研究成果、现状和存在问题.阐述了烟草耐镉机制,分析了烟草吸收镉的影响因
素,并总结了烟草镉分布的一般规律.从健康风险评估角度分析了制定烟草镉限量标准的重
要性,根据大气镉呼吸限量和肠胃镉吸收限量,结合烟草镉限量建议计算公式,推导出了烟草
镉限量建议值.最后,总结出一些简单有效的烟草镉消减技术,为低镉烟叶生产提供技术指导.
关键词  烟草; 镉; 吸收; 分布; 健康评价; 消减措施
文章编号  1001-9332(2015)04-1279-10  中图分类号  S154.1, X131.3  文献标识码  A
Tobacco cadmium health risk assessment and reduction techniques: A review. CAO Chen⁃
liang1, MA Yi⁃bing1, LI Ju⁃mei1, WEI Dong⁃pu1, SHI Yi2 (1National Soil Fertility and Fertilizer
Effects Long⁃term Monitoring Network / Institute of Agricultural Resources and Regional Planning, Chi⁃
nese Academy of Agricultural Sciences, Beijing 100081, China; 2Key Laboratory of Tobacco Bio⁃logy
and Processing, Ministry of Agriculture / Tobacco Research Institute, Chinese Academy of Agricultural
Sciences, Qingdao 266101, Shandong, China) . ⁃Chin. J. Appl. Ecol., 2015, 26(4): 1279-1288.
Abstract: Tobacco is one of the cadmium accumulation and tolerance plants. Decreasing cadmium
content of tobacco contributes to environmental safety and human health. Three aspects on tobacco
cadmium research were reviewed in this paper, i.e. uptake and distribution of cadmium in tobacco,
and health risk assessment of cadmium in tobacco and reduction measures. The current situations
and existing challenges in the research field were discussed. The cadmium tolerance mechanisms of
tobacco were reviewed, the factors on cadmium uptake were analyzed, and the general distribution
of cadmium in tobacco was summarized. From the point of health risk assessment, the lack of cad⁃
mium limits in tobacco was identified, the recommended formula to calculate cadmium limits of to⁃
bacco based on atmosphere cadmium limits and digestion cadmium limits was provided and the cad⁃
mium limits of tobacco were estimated using each formula, and suggestions on cadmium limits in to⁃
bacco were presented. At last, we put forward several effective reduction measures to lower cadmi⁃
um level in tobacco leaves.
Key words: tobacco; cadmium; uptake; distribution; health assessment; reduction measures.
∗国家烟草专卖局特色优质烟叶开发重大科技专项低危害烟叶开发
项目(TS⁃06⁃20110037)资助.
∗∗通讯作者. E⁃mail: ybma@ caas.ac.cn
2014⁃04⁃14收稿,2015⁃01⁃15接受.
    镉是毒性较强的一种重金属元素,为此《食品
中污染物限量标准》 [1]明确规定了各类食品镉限量
值,但其中未涉及烟草产品.烟草是镉高富集植物,
且主要积累于叶片.张艳玲等[2]调查发现,全国各烟
区烟叶镉平均含量为 2. 95 mg·kg-1,最大值达
19􀆰 35 mg·kg-1;张晓静等[3]指出,全国烟叶样本 Cd
含量有 52%超出了无公害烟叶标准.香烟中镉的燃
烧点低于其他危害元素,侧流烟气及主流烟气转移
率最高,分别为 44.1%和 5.3%[4] .Cai 等[5]报道,20
年烟龄吸烟者烟气镉吸收量(61.2 mg)是饮食摄取
的近 40%;Järup 等[6]估算了每天吸 20 支香烟相当
于吸收 1 mg镉,吸烟成为人体摄入镉的一个重要途
径.镉的生物半衰期为 13.6 ~ 23.5 年,长期积累可引
起器官病变甚至癌变[6-8] .因此,制订烟草镉限量标
准和降低烟叶镉含量成为烟草生产和人类健康领域
的研究热点.
应 用 生 态 学 报  2015年 4月  第 26卷  第 4期                                                         
Chinese Journal of Applied Ecology, Apr. 2015, 26(4): 1279-1288
1  烟草镉吸收分布特征
烟草是耐镉富镉植物,有报道发现烟叶能够在
积累 200 mg·kg-1 Cd 的情况下未表现出中毒症
状[9];王科[10] 和 Lugon⁃Moulin 等[11] 分别在 300
mg·kg-1 Cd土培和 100 mmol·L-1CdCl2水培条件
下发现烟草生长受到一定抑制,但性状表现良好.
Hall[12]详细综述了植物细胞内忍耐解毒途径(图
1);推测烟草也存在某些解毒途径.植物螯合肽富含
半胱氨酸,其结构为(γ⁃Glu⁃Cys) n⁃Gly,n = 2 ~ 11,镉
离子提高植物螯合肽合成酶(PCS)活性的能力是其
他重金属离子的 2 ~ 10 倍[13]; PCS 参与 ( γ⁃Glu⁃
Cys) n⁃Gly→(γ⁃Glu⁃Cys) n+1⁃Gly 的合成,n 值越大,
镉亲和力越强[14] . 液泡膜上 ABC 型转运蛋白
(HMT1)可转运 PC⁃Cd 复合物至液泡中,降低镉毒
害[15] .Kim等[16]把烟草植物螯合肽合成酶基因(Nt⁃
PCS1)导入酵母后,植物螯合肽合成增加,耐镉能力
提高.烟叶镉浓度还与腺毛有关[17-18],Choi 等[17]进
一步运用电镜扫描和 X 衍射技术发现,腺毛中存在
150 mm 富含 Cd 结晶体.由此推断液泡区隔化和腺
毛分泌是烟草耐镉的主要机制.
图 1  高等植物细胞忍耐解毒途径
Fig.1   Tolerance and detoxification pathways in higher plant
cell.
M: 金属 Metal;PCs: 植物螯合肽 Phytochelatins;MTs: 金属硫蛋白
Metallothioneins;OAs: 有机酸 Organic acids;HSPs: 热激蛋白 Heat
shock proteins;ATP:三磷酸腺苷 Adenosine triphosphate;PC⁃Cd: 植物
螯合肽镉复合物 Phytochelatin cadmium complexes; PC⁃Cd⁃S:植物螯
合肽硫镉复合物 Phytochelatin cadmium sulfer complexes;Vacuole: 液
泡;Cytosol: 细胞质;Cell wall: 细胞壁.①菌根屏障 Ectomycorrhizal
sheath;②细胞壁及细胞分泌物螯合作用 Binding to cell wall and root
exudates;③跨膜运输屏障 Reduced influx across plasma membrane;④
质外体分泌 Active efflux into apoplast;⑤细胞质螯合作用 Chelation in
cytosol by various ligands;⑥胁迫诱导细胞膜自我修复 Repair and pro⁃
tection of plasma membrance under stress conditions;⑦PC⁃Cd复合物跨
液泡膜运输 Transport of PC⁃Cd complex into the vacuole;⑧液泡金属
积累 Transport and accumulation of metals in vacuole.
    烟草生物膜上镉转运蛋白成员可能与植物类似
(图 2),主要有钙离子通道和锌铁转运蛋白(ZIP)、
阳离子转运载体(CAX)、重金属 ATP 酶(HMA)、天
然抗性相关巨噬蛋白(Nramp) [19-24] .因此,Zn、Ca、
Fe、Mn等离子可竞争烟草转运蛋白结合位点,降低
烟草镉吸收.此外,土壤镉含量直接影响烟草镉吸
收,pH和有机质是影响烟草镉吸收的重要因素(表
1);烟叶镉含量(TCd,mg·kg
-1)与土壤中镉背景值
(BGV,mg·kg-1)、土壤酸碱度(pH)和土壤有机质
(SOM,%)存在极显著的线性关系:
TCd = 6.109+4.985BGV-0.646pH-0.326SOM
R2 = 0.866
气候因素可能也影响烟草镉吸收[25] .镉向地上
部的转运速率随温度升高而加快,且长光合周期、高
光照强度促进光合产物生成,可稀释叶片镉浓
度[26];降雨促进镉向根层运移,提高植物镉吸收[27] .
镉主要固定在植物根细胞壁和液泡内,分布规律为
根>茎>叶[28-30] .烟草镉吸收转运能力强,50% ~
图 2  烟草镉吸收、转运、分布
Fig.2  Cadmium uptake, transport and translocation in tobacco
plant.
实心三角形大小表示镉相对含量 The size of solid triangle represented
the relative cadmium content;箭头表示转运方向,粗细表示相对转运
量 The arrow showed the direction of cadmium transportation, and the
thickness indicated relative amount. Cd⁃PC: 植物螯合肽镉复合物:
Phytochelatin cadmium complexes; CdX: 镉螯合复合物 Cadmium che⁃
late complexes. ①锌铁转运蛋白 Zinc iron⁃regulated transporter protein;
②钙离子通道 Calcium channel; ③第 4 类重金属 ATP 酶 Type 4
heavy metal ATPase; ④镉螯合物转运蛋白 CdX transporters; ⑤重金
属转运蛋白 Heavy metal transporter; ⑥阳离子转运载体 Cation ex⁃
changer; ⑦第 3类重金属 ATP 酶 Type 3 heavy metal ATPase; ⑧天然
抗性相关巨噬蛋白 Natural resistance⁃associated macrophage protein.
0821 应  用  生  态  学  报                                      26卷
表 1  不同产区烟叶镉含量与土壤理化性质的关系
Table 1  Relationship between tobacco cadmium content and soil properties of different regions
产区
Region
镉平均含量
Mean cadmium
content[2]
(mg·kg-1)
土壤性质 Soil property[24]
镉背景值
Cadmium background
value (mg·kg-1)
pH 有机质
Organic matter
(%)
黏粒含量
Clay content
(%)
富集系数
Bioconcentration
factor
河南 Henan 0.45 0.074 7.8 1.53 13.77 6.08
山东 Shandong 1.67 0.084 7.7 1.16 14.20 19.88
湖南 Hunan 3.50 0.126 5.6 2.14 27.56 27.78
湖北 Hubei 2.84 0.172 6.5 3.21 22.80 16.51
福建 Fujian 3.17 0.074 4.8 3.20 16.25 42.84
广东 Guangdong 2.69 0.056 5.2 2.93 28.83 48.04
重庆 Chongqing 4.73 0.364 6.1 2.56 27.30 12.99
四川 Sichuan 2.58 0.079 6.6 3.30 18.61 32.66
贵州 Guizhou 4.93 0.649 6.2 4.26 35.97 7.60
辽宁 Liaoning 1.34 0.108 6.6 2.81 15.74 12.41
黑龙江 Heilongjiang 0.15 0.086 6.6 8.51 19.34 1.74
云南 Yunnan 2.97 0.218 5.7 3.89 27.84 13.62
陕西 Shaanxi 1.86 0.094 8.3 1.85 16.17 19.79
80%镉积累于烟叶中[31-32] .表 1结果表明,烟草镉富
集系数(BCF)大于 1,南方烟区的 BCF 普遍高于北
方烟区,广州最高(48.04).烟草富集镉可能与其根
部镉吸收能力强、向烟叶转移速率快、叶片区隔化和
分泌能力强等生理机制有关[19,21] .不同品种及同一
品种(以 K326 为例)不同器官镉含量存在差异(表
2 ) ,但分布规律一致:叶>茎>根;叶 ∶ 茎 ∶ 根 =
表 2  烟草根、茎、叶镉含量
Table 2  Cadmium content in root, stem and leaf of tobac⁃
co
烟草品种
Tobacco
variety

Root
(mg·kg-1)

Stem
(mg·kg-1)

Leaf
(mg·kg-1)
叶 ∶ 茎 ∶ 根
Leaf ∶ Stem ∶
Root
文献
Reference
78⁃29 0.3 0.3 0.7 1 ∶ 0.43 ∶ 0.43 [9]
79⁃1 0 0.3 0.5 1 ∶ 0.60 ∶ 0.00
79⁃2 0.2 0.2 0.8 1 ∶ 0.25 ∶ 0.25
79⁃7 0.1 0.2 0.6 1 ∶ 0.33 ∶ 0.17
79⁃11 0.3 0.2 0.4 1 ∶ 0.50 ∶ 0.75
79⁃13 0.3 0.3 0.6 1 ∶ 0.50 ∶ 0.50
G⁃5 0.2 0.2 0.8 1 ∶ 0.25 ∶ 0.25
G⁃28 0 0.7 0.5 1 ∶ 1.40 ∶ 0.00
G⁃58 0.2 0.2 0.6 1 ∶ 0.33 ∶ 0.33
G⁃70 0.1 0.2 0.3 1 ∶ 0.67 ∶ 0.33
NC⁃95 0.2 0.5 0.9 1 ∶ 0.56 ∶ 0.22
G⁃140 0.2 0.3 0.8 1 ∶ 0.38 ∶ 0.25
NC⁃232 0.3 0.1 0.9 1 ∶ 0.11 ∶ 0.33
Hicks⁃10 0.2 0.3 0.7 1 ∶ 0.43 ∶ 0.29
Coker⁃48 0.2 0.2 1.1 1 ∶ 0.18 ∶ 0.18
McN⁃944 0.2 0.1 0.8 1 ∶ 0.13 ∶ 0.25
K326 0.34 0.18 0.95 1 ∶ 0.19 ∶ 0.36 [33]
K326 0.6 0.7 1.7 1 ∶ 0.41 ∶ 0.35 [25]
K326 0.72 0.63 1.09 1 ∶ 0.58 ∶ 0.66 [34]
平均
Average
0.25 0.31 0.78 1 ∶ (0.40±0.28) ∶
(0.32±0.18)
1 ∶ (0􀆰 40±0.28) ∶ (0.32±0.18).烟草不同叶位镉
含量也存在差异,一般规律为下部叶大于中、上部叶
(图 3):外源镉浓度小于 0.5 mg·kg-1,不同叶位镉
含量相当,上、中、下 3部位叶比例为(0.67±0.11) ∶
(0􀆰 73±0.07) ∶ 1;浓度大于 0.5 mg·kg-1,下部叶和
中部叶镉含量依次增加,比例分别为 0.44 ∶ 0.43 ∶ 1
(1􀆰 0 mg·kg-1)和 0.41 ∶ 0.64 ∶ 1 (1.5 mg·kg-1).
但烟叶镉含量分布机制国内外尚缺乏系统研究.推
测原因有:1)韧皮部也参与镉向地上部转运,韧皮
部移除后,顶端叶片镉含量显著小于基部叶片[37] ;
图 3  烟草不同叶位镉含量
Fig. 3   Cadmium content of different position leav⁃
es[10,25,33,35-36] .
T1⁃1: 0 mg·kg-1; T1⁃2: 0.5 mg·kg-1; T1⁃3: 1.0 mg·kg-1; T1⁃4:
1.5 mg·kg-1; T2:云烟 85 Yunyan 85; T3⁃1北方烟区平均值 Average
cadmium content of tobacco leaf in northern area; T3⁃2:南方烟区平均
值 Average cadmium content of tobacco leaf in southern area; different
year: T4⁃1: 1981年平均值 Average cadmium content of tobacco leaf in
1981; T4⁃2: 1985年平均值 Average cadmium content of tobacco leaf in
1985.
18214期                              曹晨亮等: 烟草镉的健康风险评价及消减技术研究进展           
表 3  烟叶镉限量推导
Table 3  Tobacco cadmium limits by deduction
推导方法
Deducing method
镉限量范围
Cadmium limit
range (μg·
cap-1·d-1)
镉限量值
Cadmium limit
(μg·cap-1·d-1)
吸烟镉摄入限量
Cadmium limit by
cigarette intake
(μg·cap-1·d-1)
烟叶镉限量范围
Tobacco cadmium
limit range
(mg·g-1)
烟叶镉限量建议值
Recommended tobacco
cadmium limit
(mg·g-1)
空气摄入 Air intake 100~210 100 10 5~10 5
肠胃吸收
Gastrointestinal absorption
260~480 (5%)
140~260 (10%)
200
(7.5%)
4 2~4 2
参数赋值
Parameter assignment
肺部呼吸系数 37.5%(25% ~ 50%) [40-41] ; 吸入空气体积 10 m3·cap-1·d-1[40] ; 肠胃吸收系数 5% ~ 10%[40,42] ;
香烟 Cd主流烟气分配系数 5%~10% [4,43] ; 吸烟量 20 g·cap-1·d-1[6]
Douchiche等[38]发现,亚麻基部茎秆镉积累量占整
株的近 70%,且韧皮部中镉含量是木质部 2 ~ 3 倍;
烟草茎秆基部韧皮部发育完善,镉含量可能较高,增
加了下部叶积累,而中上部韧皮部分化较晚,减少了
镉向上位叶的转运;2)植物生长后期根细胞络合物
合成能力下降,减少了木质部的重金属装载[39];烟
草生长中后期,根系吸收镉能力下降,络合物合成减
少,降低了镉向中上部叶转运;3)烟草叶肉细胞生
物膜上尚未发现镉反向转运蛋白,镉无法在叶位间
转移再分配.
2  烟草镉的健康风险评价
目前烟草镉健康风险评价研究较少,镉呼吸吸
收与消化吸收有差别及较多参数不确定使得烟草镉
健康风险评价更加复杂.国内也因缺乏参考依据,至
今没有制定出烟草重金属镉限量标准.1992 年世界
卫生组织[40]利用单室模型[one compartment model,
镉在肾皮质(kidney cortex)的半衰期为 17或 30 年,
以及肾镉含量是身体内部的 1 / 3 或 1 / 4]估算了使
肾皮质镉浓度达到临界浓度(200 mg·kg-1)时空气
Cd摄入限量和肠胃 Cd 吸收限量.参考这两种途径
镉限量值,结合烟草 Cd 限量建议计算公式,推导出
烟草镉限量建议值(表 3).
吸烟 Cd 摄入限量(μg·cap-1·d-1)= 空气 Cd
摄入限量(μg·cap-1·d-1)×10%
吸烟 Cd 摄入限量(μg·cap-1·d-1)= 肠胃 Cd
吸收限量(μg·cap-1·d-1) ×10%×吸收系数(%) /
呼吸系数(%)
烟叶镉限量 ( mg · g-1 ) = 吸烟摄入限量
(μg·cap-1·d-1) / [主流烟气中镉占烟叶中镉的比
例(%)×吸烟量(μg·cap-1·d-1)]
    由肠胃吸收限量推导的烟叶 Cd 限量建议值与
欧洲无烟香烟组织制订的无烟香烟镉限量值 ( 2
mg·kg-1)一致[44] .方敦煌等[45]指出,我国无公害产
区烟叶镉平均含量为 1. 718 mg·kg-1,且小于 2
mg·kg-1的烟草占近 70%(表 4),但仍有一定比例
的烟叶镉含量偏高,存在潜在健康风险.因此,今后
研究应关注过程参数的确定、烟草镉风险评价体系
的建立、及防控技术措施的探索,进一步降低烟草镉
含量、提高其安全性.
3  烟草镉消减技术
3􀆰 1  源头控制技术
烟田镉的主要来源可能与农田类似,主要有大
气沉降、畜禽粪便、肥料[46] .高镉香烟可能还与施用
城市污泥有关[47] .目前,烟田中大气镉沉降数据缺
乏,据估计大气镉沉降值烟田低于农田,主要因为烟
田多在空气质量较好的丘陵地区,故采用折中均值
(2.0 g·hm-2·a-1).从表 5 可以看出,烟田镉植物
吸收量(输出量)是镉输入量的近 1.8 倍;即使在大
气镉低沉降值情况下,烟田镉输入的重要途径仍然
是大气沉降(70.7%)和施肥(24%).因此,低镉沉降
和低镉肥料是降低植烟土壤和烟叶镉积累的重要
途径.
3􀆰 2  土壤原位钝化技术
原位钝化即向土壤中添加钝化剂降低土壤污染
物生物有效性及植物吸收的技术.钝化剂主要有无
机、有机和纳米化钝化剂 3类.
表 4  烟草镉含量分布频数
Table 4  Frequency of tobacco cadmium content
镉含量
Cadmium content
(mg·kg-1)
分布频数
Frequency
(%)
≤1 15.8
1~2 53.6
2~3 22.5
>3 8.1
平均 Average 1.72
2821 应  用  生  态  学  报                                      26卷
表 5  植烟土壤镉输入输出统计
Table 5  Amount of input and output cadmium in tobacco cultivating soil
项目
Item
途径
Approach
镉含量
Cadmium
content
施用量或产量
Application amount
or yield[48]
镉总量
Total cadmium
(g)
总计
Total
(g)
输入 Input 大气沉降 Atmospheric deposition 2.0 g·hm-2·a-1 - 2.00 2.83
有机肥 Organic fertilizer[49-50] 0.85 mg·kg-1 350 kg·hm-2 0.30
磷肥 Phosphate fertilizer 1.20 mg·kg-1 300 kg·hm-2 0.36
钾肥 Potassium fertilizer 0.05 mg·kg-1 300 kg·hm-2 0.02
灌溉用水 Irrigation water[49-50] 0.08 mg·L-1 1800 m3·hm-2 0.15
输出 Output 根 Root# 0.550 mg·kg-1 510 kg·hm-2∗ 0.28 5.07
茎 Stem# 0.687 mg·kg-1 1020 kg·hm-2 0.70
叶 Leaf 1.718 mg·kg-1 [45] 2380 kg·hm-2 4.09
表在 Luo等[46]基础上修改 Table was modified after Luo, et al[46] ;∗ 70%烟草根系移除 70% root could be removed from soil; # 根和茎镉含量按
1 ∶ 0.40 ∶ 0.32折算 Root and stem cadmium content were calculated based on 1 ∶ 0.40 ∶ 0.32.
3􀆰 2􀆰 1无机钝化剂  天然粘土矿物如海泡石[51-52]、
沸石[52]、凹凸棒石[53]等,其比表面积大,施用后可
降低土壤镉有效态浓度,减少植物吸收积累,但长期
大量施用不利于资源可持续利用.当今采用工业副
产品治理重金属污染土壤成为研究热点[54] .赤泥是
冶铝工业废弃物,富含铁铝氧化物,能吸附镉,促进
土壤交换态镉向铁锰氧化态转化[55],并以 XCdOH
化合物形式固定在氧化物晶格层间[56] .酸化和热解
处理可显著增强赤泥的吸附特性,提高钝化效
果[57] .Coutand 等[58]发现,肉、骨废料燃烧后的灰分
富含磷酸盐,可与镉形成 Ca10-xCdx(PO4) 6(OH) 2稳
定化合物,降低镉生物有效性.
3􀆰 2􀆰 2有机钝化剂   有机修复剂具有特殊官能团,
如有机堆肥的脂肪族、羧基[59],腐熟畜禽粪便的羧
基、酚羟基[60],纤维素、木质素的羟基、羧基[61],均
可与 Cd 形成稳定化合物,降低土壤镉有效性和植
物镉吸收.巯基更易结合镉[13,62],最近有报道施加富
含巯基的油菜或大蒜秸秆较富含纤维素的禾本科秸
秆,可显著降低土壤镉有效性[63-64] .
3􀆰 2􀆰 3纳米化钝化剂  纳米化钝化剂因具有巨大的
比表面积和微界面特征,成为环境污染修复中新热
点.Zhang等[65]研究发现,纳米羟基磷灰石显著降低
了底泥中交换态镉及溶液中镉浓度,Wang 等[66]发
现,纳米材料可显著降低 Cd 植物毒害;两者利用微
观分析技术证实表面沉淀是固定镉的主要机制,其
反应方程[58,67]为:
Ca10(PO4 ) 6 ( OH) 2 + xCd2
+ →Ca10-x Cdx ( PO4 ) 6
(OH) 2+xCa2

纳米化赤泥表面积(77. 4 m2·g-1)是原来的
3􀆰 5倍,镉最大吸附量提高了 35%[56] .但纳米化工艺
复杂、成本较高;另外纳米材料尺度超小、易扩散,可
能会威胁生态环境和人体健康[68] .
3􀆰 3  化学控制技术
3􀆰 3􀆰 1磷  磷酸盐可以促进植物磷吸收,提高镉在
根细胞壁和原生质内固定,降低镉向地上部迁
移[69-70] .磷肥如磷灰石[58,65]和骨粉[58]、钙镁磷肥[71]
可与镉形成难溶性沉淀,降低镉生物有效性;钙镁磷
肥中钙、镁离子,可能竞争转运蛋白结合位点,抑制
植物镉吸收. Karaca 等[72]指出,施用磷肥后土壤有
效态镉浓度呈低⁃高⁃低变化:第一阶段施入磷肥,土
壤颗粒表面阴离子含量提高,增加了 Cd 固定;第二
阶段植物和微生物吸收磷,磷肥固定的 Cd 再次释
放;第三阶段土壤粘土矿物及有机质吸附固定 Cd.
Chen等[73]发现,施用磷酸氢二铵降低了土壤 pH,
增加了酸性土壤上植物的镉吸收,因此存在一定的
修复风险.另外大量采用磷肥修复污染土壤可能引
起水体富营养化、土壤酸化等环境风险问题[74] .
3􀆰 3􀆰 2锌  Qin等[37]利用分根水培技术发现镉锌在
木质部同侧运输,存在竞争关系.镉锌拮抗机制可能
是 Cd和 Zn在根部、木质部薄壁细胞中具有共同吸
收转运蛋白 ZIP 和 HMA4[19,21],外源锌浓度提高抑
制了植物对镉的吸收和转运.锌肥与土壤改良剂配
合使用对降低植物镉吸收的效果更好[63] . Yang
等[75]发现,赤泥与喷施锌肥联合使黄瓜幼苗镉浓度
降低了 48%~66%,是单施赤泥的 2~4倍.
3􀆰 3􀆰 3钙  钙、镉离子半径相近,可能竞争土壤胶体
和植物吸附位点.植物根部供钙能降低植物镉吸收
并减轻镉毒害[76-77] .Craig等[78]发现,植物镉吸收量
与外源钙离子浓度呈负相关,加入钙离子通道阻断
剂可抑制镉吸收.大量报道已证实钙离子通道参与
植物 Cd吸收[19,21] .
3􀆰 3􀆰 4硅  硅酸盐可降低植物镉吸收、转运,提高生
物量[79-80] .无定型硅也可降低土壤有效态 Cd 浓度,
降低小麦 Cd 地上部积累[81] .Gu 等[82]指出,富硅工
38214期                              曹晨亮等: 烟草镉的健康风险评价及消减技术研究进展           
业副产物中硅酸氢氧根与土壤及水稻根、茎共沉淀,
可降低重金属吸收、转运.Liang 等[83]系统综述了硅
降低重金属毒害机制,外部机制:a)离子强度、pH提
高,b)重金属和硅酸盐沉淀;内部机制:a)植物体内
共沉淀,减少向地上部转运,b)液泡和细胞壁区隔
化,c)降低质膜过氧化.
3􀆰 3􀆰 5其他  Su等[84]发现,缺铁水培的花生根和地
上部镉浓度是对照 2 ~ 3 倍.有研究证实,IRT1 可同
时转运 Cd、Fe[21,23,85],另外铁竞争结合木质部薄壁
细胞中络合载体,可降低镉向地上部转运[85] .Hime⁃
no等[86]在小鼠 RBL⁃2H3 细胞株上发现 Mn 可以抑
制细胞 Cd吸收,降低 Cd 毒害,通过干扰 RNA 基因
抑制发现细胞吸收 Mn、Cd与 ZIP8 有关.缺 Mg 水培
水稻,地上部 Cd浓度增加近 20 倍,RT⁃PCR 技术进
一步证实 IRT1、ZIP1、ZIP3参与水稻 Cd转运[87] .
3􀆰 4  生物控制技术
在烟田休闲季节种植绿肥等前茬作物,可增加
土壤镉输出,降低烟草吸收积累[10] .耐镉细菌富含
无机 S和⁃SH集团,易固定镉,降低植物镉吸收[88] .
AM真菌的聚磷化合物,也提高菌体镉固定,降低植
物镉吸收[89] .Janouškov􀅡等[90]指出,AM真菌在不同
烟草品种上降低镉吸收积累效果存在差异,具有选
择性,且高浓度镉 AM菌可降低烟草镉吸收,低浓度
却提高镉吸收.因此利用菌根真菌控制烟草镉吸收,
必须考虑植烟土壤性质、污染程度及烟草品种.
3􀆰 5  镉转运控制技术
3􀆰 5􀆰 1蒸腾抑制剂  蒸腾拉力促进重金属在木质部
导管中转运[11,91] .因此,施用蒸腾抑制剂可能会降低
镉向地上部迁移.Uraguchi等[91]发现,培养液中添加
脱落酸后,水稻幼苗蒸腾速率降低了近 70%,镉含
量减少到原来的 20%.地上部镉含量与叶片蒸腾速
率呈显著正相关关系[92] .脱落酸降低植物镉含量的
可能原因有:调节气孔特性,降低蒸腾作用[93-94];诱
导胼胝质形成阻碍木质部转运[95] .但脱落酸是逆境
激素,使用不当会影响植物生理代谢.此外,其他蒸
腾抑制剂,可能与脱落酸作用机制类似,也可降低植
物镉吸收,至今尚缺乏报道.
3􀆰 5􀆰 2分子生物技术  Grill 等[96]于 1987 年指出植
物螯合肽(PCs)是植物唯一的解毒物质;但限于当
时技术和认知水平,并未发现金属硫蛋白(MTs)也
是植物体内重要的解毒物质.Cobbett等[97]在金属硫
蛋白分类综述中未发现烟草具有第二类 MTs,推测
烟草根细胞可能缺乏 Cd⁃MTs转运蛋白.将金属硫蛋
白基因导入烟草根细胞中,可增强根部镉固定,降低
烟叶镉含量[20,98] .Koren’ kov 等[99-100]将拟南芥和黄
花烟草控制 CAX 合成的基因转移到普通烟草中均
降低了烟叶镉含量. Hayes 等[101]发明了一种降低
HMA家族转运蛋白的表达水平而阻止镉向烟叶转
移的转基因烟草获得方法.
4  展    望
国内外烟草镉研究不断增加,多为烟草镉吸收、
转运、分配规律及常规消减技术应用报道.而吸收、
转运机理,消减新技术及健康风险评价研究较少.因
此,将来烟草镉研究重点如下:
1)运用分子生物学技术,发现烟草镉转运蛋
白,揭示烟草镉吸收转运路径;深入研究镉转运蛋白
表达调控机制,为低镉吸收型和低镉转运型烟草获
得提供理论支持.
2)利用微观分析技术从钝化剂微观结构、作用
基团和作用过程角度全面探索钝化剂固定机理;另
外还需关注钝化的田间效果及时效性.
3)加快制订烟草镉标准体系如烟叶镉限量标
准、烟草镉含量分级及控制基准、植烟土壤镉控制基
准和低镉烟草生产技术标准等,使烟草行业健康有
序发展.
参考文献
[1]   Ministry of Health of the People’ s Republic of China
(中华人民共和国卫生部). Maximum Levels of Pollu⁃
tants in Foods (GB 2762-2005). Beijing: China Stand⁃
ards Press, 2005 (in Chinese)
[2]  Zhang Y⁃L (张艳玲), Yin Q⁃S (尹启生), Zhou H⁃P
(周汉平), et al. Contents and distribution of Pb, Cd,
As in Chinese tobacco leaves. Tobacco Science and Tech⁃
nology (烟草科技), 2006(11): 49-52 (in Chinese)
[3]  Zhang X⁃J (张晓静), Qin C⁃Y (秦存永), Zhu F⁃P
(朱风鹏), et al. Differences between and cluster anal⁃
ysis of heavy metal contents in tobacco leaves from ten
tobacco producing provinces in China. Tobacco Science
and Technology (烟草科技), 2012(10): 51-55 ( in
Chinese)
[4]  Wu D, Landsberger S, Larson SM. Determination of the
elemental distribution in cigarettes components and
smoke by instrumental neutron activation analysis. Jour⁃
nal of Radio Analytical and Nuclear Chemistry, 1997,
217: 77-82
[5]  Cai S, Yue L, Jin T, et al. Renal dysfunction from cad⁃
mium contamination of irrigation water: Dose⁃response
analysis in a Chinese population. Bulletin of the World
Health Organization, 1998, 76: 153-159
[6]   Järup L, Åkesson A. Current status of cadmium as an
environmental health problem. Toxicology and Applied
Pharmacology, 2009, 238: 201-208
4821 应  用  生  态  学  报                                      26卷
[7]  Suwazono Y, Kido T, Nakagawa H, et al. Biological
half⁃life of cadmium in the urine of inhabitants after ces⁃
sation of cadmium exposure. Biomarkers, 2009, 14:
77-81
[8]  Satarug S, Moore MR. Adverse health effects of chronic
exposure to low level cadmium in food stuffs and ciga⁃
rette smoke. Environmental Health Perspectives, 2004,
112: 1099-1103
[9]  Clarke BB, Brennan E. Differential cadmium accumula⁃
tion and phytotoxicity in sixteen tobacco cultivars. Jour⁃
nal of Air and Waste Management Association, 1989,
39: 1319-1322
[10]  Wang K (王  科). Different Pollution Condition of To⁃
bacco Plant of Heavy Metals Distribution Rule and The
Absorption of Previous Crops Influence of Research.
Master Thesis. Changsha: Hunan Agricultural Universi⁃
ty, 2012 (in Chinese)
[11]  Lugon⁃Moulin N, Zhang M, Gadani F, et al. Critical re⁃
view of the science and options for reducing cadmium in
tobacco (Nicotiana Tabacum L.) and other plants. Ad⁃
vances in Agronomy, 2004, 83: 111-180
[12]  Hall JL. Cellular mechanisms for heavy metal detoxifica⁃
tion and tolerance. Journal of Experimental Botany,
2002, 366: 1-11
[13]   Grill E, Löffler S, Winnacker EL, et al. Phytochela⁃
tins, the heavy⁃metal⁃binding peptides of plants, are
synthesized from glutathione by a specific γ⁃glutamyl⁃
cysteine dipeptidyl transpeptidase ( phytochelatin syn⁃
thase). Proceedings of the National Academy of Sciences
of the United States of America, 1989, 86: 6838-6842
[14]  Loeffler S, Hochberger A, Grill E, et al. Termination of
the phytochelatin synthase reaction through sequestration
of heavy metals by the reaction product. FEBS Letters,
1989, 258: 42-46
[15]  Cobbett CS. Phytochelatins and their roles in heavy met⁃
al detoxification. Plant Physiology, 2000, 123: 825 -
832
[16]  Kim YJ, Chang KS, Lee MR, et al. Expression of to⁃
bacco cDNA encoding phytochelatin synthase promotes
tolerance to and accumulation of Cd and As in Saccharo⁃
myces cerevisiae. Journal of Plant Biology, 2005, 48:
440-447
[17]   Choi YE, Harada E, Wada M, et al. Detoxification of
cadmium in tobacco plants: Formation and active excre⁃
tion of crystals containing cadmium and calcium through
trichomes. Planta, 2001, 213: 45-50
[18]   Isaure MP, Sarret G, Harada E, et al. Calcium pro⁃
motes cadmium elimination as vaterite grains by tobacco
trichomes. Geochimica et Cosmochimica Acta, 2010,
74: 5817-5834
[19]   Rascio N, Navari⁃Izzo F. Heavy metal hyperaccumulat⁃
ing plants: How and why do they do it? And what makes
them so interesting? Plant Science, 2011, 180: 169 -
181
[20]  Verbruggen N, Hermans C, Schat H. Mechanisms to
cope with arsenic or cadmium excess in plants. Current
Opinion in Plant Biology, 2009, 12: 364-372
[21]   Maestri E, Marmiroli M, Visioli G, et al. Metal toler⁃
ance and hyperaccumulation: Costs and trade⁃offs be⁃
tween traits and environment. Environmental and Experi⁃
mental Botany, 2010, 68: 1-13
[22]  Irfan M, Hayat S, Ahmad A, et al. Soil cadmium en⁃
richment: Allocation and plant physiological manifesta⁃
tions. Saudi Journal of Biological Sciences, 2013, 20:
1-10
[23]  Jin F (金  枫), Wang C (王  翠), Lin H⁃J (林海
建), et al. Heavy metal⁃transport protein in plants: A
review. Chinese Journal of Applied Ecology (应用生态
学报), 2010, 21(7): 1875-1882 (in Chinese)
[24]  Chinese Environment Monitoring Station (中国环境监
测总站). Background Value of Soil Elements in China.
Beijing: China Environmental Science Press, 1990 ( in
Chinese)
[25]  Pan W⁃J (潘文杰), Jiang C⁃Y (姜超英), Tang Y⁃J
(唐远驹), et al. Pb and Cd in flue⁃cured tobacco and
their relations to environment. Soils (土壤), 2007, 39
(3): 369-374 (in Chinese)
[26]  Ekvall L, Greger M. Effects of environmental biomass⁃
producing factors on Cd uptake in two Swedish ecotypes
of Pinussy lvestris. Environmental Pollution, 2003, 121:
401-411
[27]  Dušek J, Vogel T, Lichner L, et al. Simulate d cadmi⁃
um transport in macroporous soil during heavy rainstorm
using dual⁃permeability approach. Biologia, Bratislava,
2006, 61: 251-254
[28]  Wang X, Liu YG, Zeng GM, et al. Subcellular distribu⁃
tion and chemical forms of cadmium in Bechmeria nivea
(L.) Gaud. Environmental and Experimental Botany,
2008, 62: 389-395
[29]  Wu QT, Xu ZL, Ye H, et al. Chemical composition of
root and stem saps in relation to cadmium resistance and
accumulation in Brassica parachinensis. Pedosphere,
2007, 17: 352-359
[30]  Akhter MF, McGarvey B, Macfie SM. Reduced translo⁃
cation of cadmium from roots is associated with in⁃
creased production of phytochelatins and their precur⁃
sors. Journal of Plant Physiology, 2012, 169: 1821-
1829
[31]  Rosen K, Eriksson J, Vinichuk M. uptake and translo⁃
cation of 109Cd and stable Cd within tobacco plants
(Nicotiana sylvestris). Journal of Environmental Radio⁃
activity, 2012, 113: 16-20
[32]  Mench M, Tancogne J, Gomez A, et al. Cadmium bio⁃
availability to Nicotiana tabacum L., Nicotiana rustica
L., and Zea mays L. grown in soil amended or not
amended with cadmium nitrate. Biology and Fertility of
Soils, 1989, 8: 48-53
[33]  Huang Y (黄  莺). Tobacco Transformation and Its Bi⁃
ological Effects in Tobacco⁃Soil System. Master Thesis.
Chongqing: Southwest University, 2006 (in Chinese)
[34]  Shang Z⁃Q (尚志强), Wang S⁃H (王树会). Cadmium
uptake of flue⁃cured tobacco in different soil types and
its distribution. Proceedings of the Third National Con⁃
ference on Agricultural Environmental Science, Tianjin,
58214期                              曹晨亮等: 烟草镉的健康风险评价及消减技术研究进展           
2009: 279-282 (in Chinese)
[35]  Wu Y⁃P (吴玉萍), Yang H⁃Q (杨虹琦), Xu Z⁃L
(徐照丽), et al. Accumulation and distribution of cad⁃
mium in flue⁃cured tobacco. Chinese Tobacco Science
(中国烟草科学), 2008, 29(5): 37 - 39 ( in Chi⁃
nese)
[36]  Frank R, Braun HE, Suda P, et al. Pesticide residues
and metal contents in flue⁃cured tobacco and tobacco
soils of southern Ontario, Canada 1980-1985. Tobacco
Science, 1987, 21: 40-51
[37]  Qin Q, Li XM, Wu HY, et al. Characterization of cad⁃
mium ( 108 Cd ) distribution and accumulation in
Tageteserecta L. seedlings: Effect of split⁃root and of re⁃
move⁃xylem / phloem. Chemosphere, 2013, 93: 2284 -
2288
[38]  Douchiche O, Chaïbi W, Morvan C. Cadmium tolerance
and accumulation characteristics of mature flax, cv.
Hermes: Contribution of the basal stem compared to the
root. Journal of Hazardous Materials, 2012, 235 / 236:
101-107
[39]  Cataldo DA, Mcfadden KM, Garland TR, et al. Organic
constituent sand complexation of nickel ( II ), iron
(III), cadmium (II), and plutonium (IV) in soybean
xylem exudates. Plant Physiology, 1988, 86: 734-739
[40]  World Health Organization. Cadmium. Environmental
Health Criteria 134. International Program on Chemical
Safety (IPCS), Geneva, the Switzerland, 1992
[41]   Elinder CG, Lind B, Kjellstrom T, et al. Cadmium in
kidney cortex, liver, and pancreas from Swedish autop⁃
sies: Estimation of biological half time in kidney cortex,
considering calorie intake and smoking habits. Archives
of Environmental Health, 1976, 31: 292-302
[42]  Jin TY, Nordberg M, Frech W, et al. Cadmium bio⁃mo⁃
nitoring and renal dysfunction among a population envi⁃
ronmentally exposed to cadmium from smelting in China.
Biometals, 2002, 15: 397-410
[43]  Du Y⁃M (杜咏梅), Zhang H⁃B (张怀宝), Hou X⁃D
(侯小东), et al. Effects of physical and chemical prop⁃
erties of flue⁃cured tobacco leaf and smoking regime on
cadmium transfer to mainstream smoke. Acta Tobaccaria
Sinica (中国烟草学报), 2011, 17(3): 11- 16 ( in
Chinese)
[44]  European Smokeless Tobacco Council. Proposed Regula⁃
tion of Smokeless Tobacco Products within the European
Union, Brussels, Belgium, 2007
[45]  Fang D⁃H (方敦煌), Song C⁃M (宋春满), Wu Y⁃P
(吴玉萍), et al. Assessment of hazardous substances
content in tobacco under free⁃polluted conditions. Yun⁃
nan Tobacco (云南烟草), 2008(3): 26-31 ( in Chi⁃
nese)
[46]  Luo L, Ma YB, Zhang SZ, et al. An inventory of trace
element inputs to agricultural soils in China. Journal of
Environmental Management, 2009, 90: 2524-2530
[47]  Stephens WE, Calder A, Newton J. Source and health
implications of high toxic metal concentrations in illicit
tobacco products. Environmental Science and Technolo⁃
gy, 2005, 39: 479-488
[48]  Liu G⁃S (刘国顺). Tobacco Cultivation. Beijing: China
Agriculture Press, 2003 (in Chinese)
[49]  Wu X⁃J (武小净), Li D⁃C (李德成), Hu F (胡  
锋), et al. Heavy metal contents in soil, irrigation
water and fertilizers of typical tobacco⁃planting region of
Fujian Province. Soils (土壤), 2013, 45(2): 246-
249
[50]  Cheng SP. Heavy metal pollution in China: Origin, pat⁃
tern and control. Environmental Science and Pollution
Research, 2003, 10: 192-198
[51]  Sun YB, Sun GH, Xu YM, et al. Assessment of sepio⁃
lite for immobilization of cadmium⁃contaminated soils.
Geoderma, 2013, 193 / 194: 149-155
[52]   Keller C, Marchetti M, Rossi L, et al. Reduction of
cadmium availability to tobacco (Nicotiana tabacum)
plants using soil amendments in low cadmium⁃contami⁃
nated agricultural soils: A pot experiment. Plant and
Soil, 2005, 276: 69-84
[53]  Hu Z⁃S (胡钟胜), Zhang G⁃Y (章钢娅), Wang G⁃Z
(王广志), et al. Effects of soil amendments on cadmi⁃
um and lead contents in tobacco. Acta Pedologica Sinica
(土壤学报), 2006, 43(2): 233-239 (in Chinese)
[54]  Wang L⁃Q (王立群), Luo L (罗  磊), Ma Y⁃B (马
义兵), et al. In situ immobilization remediation of
heavy metals contaminated soil: A review. Chinese Jour⁃
nal of Applied Ecology (应用生态学报), 2009, 20
(5): 1214-1222 (in Chinese)
[55]  Lombi E, Zhao FJ, Zhang G, et al. In situ fixation of
metals in soils using bauxite residue: Chemical assess⁃
ment. Environmental Pollution, 2002, 118: 435-443
[56]   Luo L, Ma CY, Ma YB, et al. New insights into the
sorption mechanism of cadmium on red mud. Environ⁃
mental Pollution, 2011, 159: 1108-1113
[57]  Liu YJ, Naidu R, Ming H. Red mud as an amendment
for pollutants in solid and liquid phases. Geoderma,
2011, 163: 1-12
[58]  Coutand M, Deydier E, Cyr M, et al. Evaluation of la⁃
boratory and industrial meat and bone meal combustion
residue as cadmium immobilizing material for remedia⁃
tion of polluted aqueous solutions: Chemical and ecotox⁃
icological studies. Journal of Hazardous Materials,
2009, 166: 945-953
[59]  Tapia Y, Cala V, Eymar E, et al. Chemical character⁃
ization and evaluation of composts as organic amend⁃
ments for immobilizing cadmium. Bioresource Technolo⁃
gy, 2010, 101: 5437-5443
[60]  Sato A, Takeda H, Oyanagi W, et al. Reduction of cad⁃
mium uptake in spinach (Spinacia oleracea L.) by soil
amendment with animal waste compost. Journal of Haz⁃
ardous Materials, 2010, 181: 298-304
[61]  Singh A, Prasad SM. Effect of agro⁃industrial waste
amendment on Cd uptake in Amaranthuscaudatus grown
under contaminated soil: An oxidative biomarker re⁃
sponse. Ecotoxicology and Environmental Safety, 2014,
100: 105-113
[62]  Glušiĉ M, Stare J, Grdadolnik J, et al. Binding of cad⁃
mium dication to glutathione facilitates cysteine⁃SH dep⁃
6821 应  用  生  态  学  报                                      26卷
rotonation: A computational DFT study. Journal of Inor⁃
ganic Biochemistry, 2013, 119: 90-94
[63]  Ding Q (丁  琼), Yang J⁃X (杨俊兴), Hua L (华 
珞), et al. Cadmium phytoavailability to cowpea de⁃
creased by rape straw with zinc sulphate in a calcareous
soil. Journal of Agro⁃Environment Science (农业环境科
学学报), 2012, 31(2): 312-317 (in Chinese)
[64]  Wang L⁃Q (王立群), Luo L (罗  磊), Ma Y⁃B (马
义兵), et al. Effects of different amendments and incu⁃
bation times on exchangeable cadmium in contaminated
soils. Journal of Agro⁃Environment Science (农业环境
科学学报), 2009, 28(6): 1098-1105 (in Chinese)
[65]   Zhang ZZ, Li MY, Chen W, et al. Immobilization of
lead and cadmium from aqueous solution and contamina⁃
ted sediment using nano⁃hydroxyapatite. Environmental
Pollution, 2010, 158: 514-519
[66]  Wang M, Chen L, Chen SB, et al. Alleviation of cadmi⁃
um⁃induced root growth inhibition in crop seedlings by
nanoparticles. Ecotoxicology and Environmental Safety,
2012, 79: 48-54
[67]  He M, Shi H, Zhao XY, et al. Immobilization of Pb and
Cd in contaminated soil using nano⁃crystallite
hydroxyapatite. Procedia Environmental Sciences, 2013,
18: 657-665
[68]  Gwinn MR, Vallyathan V. Nanoparticles: Health effects
- pros and cons. Environmental Health Perspectives,
2006, 114: 1818-1825
[69]  Qiu Q, Wang YT, Yang ZY, et al. Effects of phosphor⁃
us supplied in soil on subcellular distribution and chem⁃
ical forms of cadmium in two Chinese flowering cabbage
(Brassica parachinensis L.) cultivars differing in cadmi⁃
um accumulation. Food and Chemical Toxicology,
2011, 49: 2260-2267
[70]  Du JN, Yan CL, Li ZD. Phosphorus and cadmium inter⁃
actions in Kandelia obovata (S.L.) in relation to cadmi⁃
um tolerance. Environmental Science and Pollution Re⁃
search, 2014, 21: 355-365
[71]  Li P, Wang X, Zhang T, et al. Effects of several
amendments on rice growth and uptake of copper and
cadmium from a contaminated soil. Journal of Environ⁃
mental Sciences, 2008, 20: 449-455
[72]   Karaca A, Naseby DC, Lynch JM. Effect of cadmium
contamination with sewage sludge and phosphate fertili⁃
ser amendments on soil enzyme activities, microbial
structure and available cadmium. Biology and Fertility
of Soils, 2002, 35: 428-434
[73]  Chen SB, Xu MG, Ma YB, et al. Evaluation of different
phosphate amendments on availability of metals in con⁃
taminated soil. Ecotoxicology and Environmental Safety,
2007, 67: 278-285
[74]  Zhou S⁃W (周世伟), Xu M⁃G (徐明岗). The progress
in phosphate remediation of heavy metal contaminated
soils. Acta Ecologica Sinica (生态学报), 2007, 27
(7): 3043-3050
[75]  Yang JX, Wang LQ, Ma YB, et al. Foliar spraying and
seed soaking of zinc fertilizers decreased cadmium accu⁃
mulation in cucumber grown in Cd⁃contaminated soils
with and without immobilizing amendment. Soil and Sed⁃
iment Contamination, 2011, 20: 400-410
[76]  Tian S, Lu L, Zhang J, et al. Calcium protects roots of
Sedum alfredii H. against cadmium⁃induced oxidative
stress. Chemosphere, 2011, 84: 63-69
[77]  Choong G, Liu Y, Templeton DM. Interplay of calcium
and cadmium in mediating cadmium toxicity. Chemico⁃
biological Interactions, 2014, 211: 54-65
[78]  Craig A, Hare L, Tessier A. Experimental evidence for
cadmium uptake via calcium channels in the aquatic in⁃
sect Chironomus staegeri. Aquatic Toxicology, 1999,
44: 255-262
[79]  Farooq MA, Ali S, Hameed A, et al. Alleviation of cad⁃
mium toxicity by silicon is related to elevated photosyn⁃
thesis, antioxidant enzymes, suppressed cadmium up⁃
take and oxidative stress in cotton. Ecotoxicology and
Environmental Safety, 2013, 96: 242-249
[80]  Song A, Li Z, Zhang J, et al. Silicon⁃enhanced resist⁃
ance to cadmium toxicity in Brassica chinensisL. is
attributed to Si⁃suppressed cadmium uptake and trans⁃
port and Si⁃enhanced antioxidant defense capacity. Jour⁃
nal of Hazardous Materials, 2009, 172: 74-83
[81]  Rizwan M, Meunier JD, Miche H, et al. Effect of sili⁃
con on reducing cadmium toxicity in durum wheat
(Triticum turgidum L. cv. Claudio W.) grown in a soil
with aged contamination. Journal of Hazardous Materi⁃
als, 2012, 209: 326-334
[82]  Gu HH, Qiu H, Tian T, et al. Mitigation effects of sili⁃
con rich amendments on heavy metal accumulation in
rice (Oryza sativa L.) planted on multi⁃metal contami⁃
nated acidic soil. Chemosphere, 2011, 83: 1234-1240
[83]   Liang Y, Sun W, Zhu YG, et al. Mechanisms of sili⁃
con⁃mediated alleviation of abiotic stresses in higher
plants: A review. Environmental Pollution, 2007, 147:
422-428
[84]  Su Y, Liu JL, Lu ZW, et al. Effects of iron deficiency
on subcellular distribution and chemical forms of cadmi⁃
um in peanut roots in relation to its translocation. Envi⁃
ronmental and Experimental Botany, 2014, 97: 40-48
[85]  Hodoshima H, Enomoto Y, Shoji K, et al. Differential
regulation of cadmium: Inducible expression of iron⁃de⁃
ficiency⁃responsive genes in tobacco and barley. Physio⁃
logia Plantarum, 2007, 129: 622-634
[86]  Himeno S, Doi M, Fujishiro H. Interaction of cadmium
and manganese in cellular uptake and toxicity. Toxicolo⁃
gy Letters, 2010, 196: S305
[87]  Chou TS, Chao YY, Huang WD, et al. Effect of magne⁃
sium deficiency on antioxidant status and cadmium tox⁃
icity in rice seedlings. Journal of Plant Physiology,
2011, 168: 1021-1030
[88]   Siripornadulsil S, Siripornadulsil W. Cadmium⁃tolerant
bacteria reduce the uptake of cadmium in rice: Potential
for microbial bioremediation. Ecotoxicology and Environ⁃
mental Safety, 2013, 94: 94-103
[89]   Yao Q, Yang R, Long L, et al. Phosphate application
enhances the resistance of arbuscular mycorrhizae in
clover plants to cadmium via polyphosphate accumula⁃
tion in fungal hyphae. Environmental and Experimental
Botany, 2014, 108: 63-70
78214期                              曹晨亮等: 烟草镉的健康风险评价及消减技术研究进展           
[90]  Janoušková M, Vosátka M, Rossi L, et al. Effects of
arbuscular mycorrhizal inoculation on cadmium accu⁃
mulation by different tobacco (Nicotiana tabacum L.)
types. Applied Soil Ecology, 2007, 35: 502-510
[91]  Uraguchi S, Mori S, Kuramata M, et al. Root⁃to⁃shoot
Cd translocation via the xylem is the major process de⁃
termining shoot and grain cadmium accumulation in
rice. Journal of Experimental Botany, 2009, 60:
2677-2688
[92]  Qian H⁃S (钱海胜), Chen Y⁃H (陈亚华), Wang G⁃
P (王桂萍), et al. Cadmium accumulation and effect
of exogenous abscisic acid on cadmium accumulation in
cadmium treated Brassica campestris spp. chinensis L.
Journal of Nanjing Agricultural University (南京农业
大学学报), 2008, 31(4): 61-65 (in Chinese)
[93]  Pospíšilová J, Synková H, Catsky J, et al. Acclimation
of tobacco plantlets to ex vitro conditions as affected by
application of abscisic acid. Journal of Experimental
Botany, 1998, 49: 863-869
[94]  Zhang J, Davies WJ. Antitranspirant activity in xylem
sap of maize plants. Journal of Experimental Botany,
1991, 42: 317-321
[95]  Iriti M, Faoro F. Abscisic acid is involved in chitosan⁃
induced resistance to tobacco necrosis virus ( TNV).
Plant Physiology and Biochemistry, 2008, 46: 1106-
1111
[96]  Grill E, Winnacker EL, Zenk MH. Phytochelatins, a
class of heavy⁃metal⁃binding peptides from plants, are
functionally analogous to metallothioneins. Proceedings
of the National Academy of Sciences of the United States
of America, 1987, 84: 439-443
[97]  Cobbett C, Goldsbrough P. Phytochelatins and metallo⁃
thioneins: Roles in heavy metal detoxification and ho⁃
meostasis. Annual Review of Plant Biology, 2002, 53:
159-182
[98]  Elmayan T, Tepfer M. Synthesis of a biofunctional met⁃
allothionein / β⁃glucuronidase fusion protein in transgen⁃
ic tobacco plants as a means of reducing leaf cadmium
levels. The Plant Journal, 1994, 6: 433-440
[99]  Koren’kov V, Park S, Cheng NH, et al. Enhanced
Cd2+ ⁃selective root⁃tonoplast⁃transport in tobaccos ex⁃
pressing Arabidopsis cation exchangers. Planta, 2007,
225: 403-411
[100]  Koren’kov V, King B, Hirschi K, et al. Root⁃selective
expression of AtCAX4 and AtCAX2 results in reduced
lamina cadmium in field⁃grown Nicotiana tabacum L.
Plant Biotechnology Journal, 2009, 7: 219-226
[101]  Hayes AJ, Kudithipudi C, Hoeven RS. Transgenic
plants modified for reduced cadmium transport, deriva⁃
tive products, and related methods. United States of
America, 8383889. 2013⁃02⁃26
作者简介  曹晨亮,男,1988 年生,硕士研究生.主要从事土
壤环境生态与修复研究. E⁃mail: chenliangcao@ sina.com
责任编辑  肖  红
8821 应  用  生  态  学  报                                      26卷