选用不同基因型小麦品种(春性品种扬麦18、弱春性品种郑麦9023、半冬性品种烟农19),研究了分蘖期和拔节期低温对叶片光合和叶绿素荧光特性的影响.结果表明:分蘖期-10 ℃低温处理后,烟农19的净光合速率(Pn)、气孔导度(gs)、PSⅡ最大光化学效率(Fv/Fm)、光化学猝灭系数(qP)、非光化学猝灭系数(NPQ)和PSⅡ非循环光合电子传递速率(ETR)显著高于扬麦18和郑麦9023;郑麦9023的gs、Fv/Fm、qP和NPQ显著高于扬麦18,胞间CO2浓度(Ci)显著高于烟农19;扬麦18的Ci显著高于烟农19,初始荧光(Fo)显著高于郑麦9023和烟农19.拔节期0 ℃低温处理后,烟农19的Pn、gs、Fv/Fm和qP显著高于扬麦18和郑麦9023,NPQ和ETR显著高于扬麦18;郑麦9023的Pn、gs、Fv/Fm和qP显著高于扬麦18,Fo显著高于烟农19;扬麦18的Ci和Fo显著高于郑麦9023和烟农19.分蘖期和拔节期低温胁迫下,半冬性品种烟农19具有较高的光合活性和较强的自我保护机制,弱春性品种郑麦9023次之,春性品种扬麦18最低.
全 文 :低温胁迫对不同基因型小麦品种光合性能的影响*
关雅楠摇 黄正来**摇 张文静摇 石小东摇 张裴裴
(安徽农业大学农学院, 合肥 230036)
摘摇 要摇 选用不同基因型小麦品种(春性品种扬麦 18、弱春性品种郑麦 9023、半冬性品种烟
农 19),研究了分蘖期和拔节期低温对叶片光合和叶绿素荧光特性的影响.结果表明:分蘖期
-10 益低温处理后,烟农 19 的净光合速率(Pn)、气孔导度(gs)、PS域最大光化学效率(Fv /
Fm)、光化学猝灭系数( qP)、非光化学猝灭系数(NPQ)和 PS域非循环光合电子传递速率
(ETR)显著高于扬麦 18 和郑麦 9023;郑麦 9023 的 gs、Fv / Fm、qP和 NPQ 显著高于扬麦 18,胞
间 CO2浓度(C i)显著高于烟农 19;扬麦 18 的 C i显著高于烟农 19,初始荧光(Fo)显著高于郑
麦 9023 和烟农 19.拔节期 0 益低温处理后,烟农 19 的 Pn、gs、Fv / Fm和 qP显著高于扬麦 18 和
郑麦 9023,NPQ和 ETR显著高于扬麦 18;郑麦 9023 的 Pn、gs、Fv / Fm和 qP显著高于扬麦 18,Fo
显著高于烟农 19;扬麦 18 的 C i和 Fo显著高于郑麦 9023 和烟农 19.分蘖期和拔节期低温胁迫
下,半冬性品种烟农 19 具有较高的光合活性和较强的自我保护机制,弱春性品种郑麦 9023
次之,春性品种扬麦 18 最低.
关键词摇 小麦摇 低温胁迫摇 光合性能摇 叶绿素荧光
文章编号摇 1001-9332(2013)07-1895-05摇 中图分类号摇 S512. 1摇 文献标识码摇 A
Effects of low temperature stress on photosynthetic performance of different genotypes wheat
cultivars. GUAN Ya鄄nan, HUANG Zheng鄄lai, ZHANG Wen鄄jing, SHI Xiao鄄dong, ZHANG Pei鄄
pei (College of Agronomy, Anhui Agricultural University, Hefei 230036, China) . 鄄Chin. J. Appl.
Ecol. ,2013,24(7): 1895-1899.
Abstract: Different genotypes wheat cultivars ( spring wheat Yangmai 18, semi鄄spring wheat
Zhengmai 9023, and semi鄄winter wheat Yannong 19) were chosen to study their photosynthetic and
chlorophyll fluorescence characteristics at tillering and stem elongation stages under low temperature
stress. After treated with low temperature ( -10 益 at night) at tillering stage for 2 days, the net
photosynthetic rate (Pn), stomata conductance (gs), maximum quantum yield of PSII (Fv / Fm),
photochemical quenching ( qP ), non鄄photochemical quenching coefficient ( NPQ), and acyclic
photosynthetic electron transfer rate of PSII (ETR) of Yannong 19 were significantly higher than
those of Yangmai 18 and Zhengmai 9023, the gs, Fv / Fm, qP, and NPQ of Zhengmai 9023 were
significantly higher than those of Yangmai 18, while the intercellular CO2 concentration (C i ) of
Yannong 19 was significantly lower than that of Zhengmai 9023 and Yangmai 18. In addition, the
minimal fluorescence (Fo) of Yangmai 18 was significantly higher than that of Zhengmai 9023 and
Yannong 19. Similarly, after treated with low temperature (0 益 at night) at stem elongation stage
for 3 days, the Pn, gs, qP, and Fv / Fm of Yannong 19 were significantly higher than those of Yang鄄
mai 18 and Zhengmai 9023, and the NPQ and ETR of Yannong 19 were significantly higher than
those of Yangmai 18. In addition, the Pn, gs, Fv / Fm, and qP of Zhengmai 9023 were significantly
higher than those of Yangmai 18, the Fo of Zhengmai 9023 was significantly higher than that of
Yannong 19, and the C i and Fo of Yangmai 18 were significantly higher than those of Zhengmai
9023 and Yannong 19. It was suggested that under low temperature stress at tillering and stem elon鄄
gation stages, semi鄄winter wheat Yannong 19 had the highest photosynthetic activity and the best
self鄄protection mechanism, followed by semi鄄spring wheat Zhengmai 9023, and spring wheat Yang鄄
mai 18.
Key words: wheat; low temperature stress; photosynthetic performance; chlorophyll fluorescence.
*国家“十二五冶科技支撑计划项目(2011BAD16B06鄄3, 2012BAD04B09, 2012BAD14B13)资助.
**通讯作者. E鄄mail: xdnyyjs@ 163. com
2012鄄11鄄14 收稿,2013鄄04鄄27 接受.
应 用 生 态 学 报摇 2013 年 7 月摇 第 24 卷摇 第 7 期摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇
Chinese Journal of Applied Ecology, Jul. 2013,24(7): 1895-1899
摇 摇 沿淮麦区是安徽省第二大麦区,常年播种面积在
60万 hm2以上,以稻鄄麦轮作为主.因此稻茬小麦产量
对整个沿淮地区粮食产量和农民收入有很大影响.冬
前苗期冻害及年后返青拔节期冷害是该区小麦生产
遭受的主要低温灾害,严重影响小麦品质和产量.因
此,明确低温胁迫对冬前苗期和年后返青拔节期小麦
光合特性和叶绿素荧光特性的影响,将为合理采取减
灾丰产高效栽培管理措施提供理论依据.
小麦产量形成主要来自于植物的光合作用,而
光合作用是对低温最敏感的过程[1] . 大量试验结果
表明,小麦经过低温胁迫后叶片光合速率、希尔反应
活力明显降低[2-4] .樊怀福等[5]认为,低温下 Pn的降
低易导致同化物积累量下降,使植株生长势减弱和
干物质积累量减少;gs的降低使光合底物传导能力
降低,进而影响光合作用的正常进行. 近年来,叶绿
素荧光动力学技术广泛应用于农业领域,为作物抗
逆研究提供了有效方法[6-11] . Rapacz等[12]通过对离
体小麦叶片冰冻试验得出快速荧光动力学可以用于
小麦遗传育种中耐寒性品种的筛选;王晓楠等[13]指
出,在生产上可以利用叶绿素荧光参数对小麦品种
抗寒性进行鉴定. 现已证明,植物光抑制既是 PS域
伤害的一种表现形式,又是一种光保护过程[14] . 李
伟等[15]指出,弱光下黄瓜叶片的实际光化学效率
(椎PS域)和光化学猝灭(qP)随温度的降低而降低.许
楠等[16]研究表明,3 益冷胁迫处理明显降低了桑树
幼苗叶片 PS域最大光化学效率(Fv / Fm),这与冷胁
迫改变光合机构的结构和功能有关. Suzuki 等[17]研
究指出,水稻秧苗在经过不同时长冷害处理后叶绿
素荧光参数出现显著变化. 胡春梅等[18]研究发现,
低温胁迫下电子传递的有效性和光化学效率的差异
是导致各不结球白菜品系耐冷性差异的主要原因.
目前,针对不同时期低温胁迫对不同基因型小
麦品种光合特性的影响研究较多,但是对稻鄄麦轮作
体系下不同基因型小麦品种的相关研究报道较少.
本试验以沿淮江淮稻茬小麦为研究对象,选用不同
基因型小麦品种(春性、弱春性和半冬性),在越冬
至拔节期间人工模拟低温胁迫,研究各基因型小麦
品种叶片光合特征的变化,揭示越冬至拔节期间低
温寒害对稻茬小麦光合性能的影响机理,为小麦生
产中应对突发气温变化、采取减灾补救措施及选育
高产优质品种提供理论依据.
1摇 材料与方法
1郾 1摇 试验材料
试验于 2011 年 10 月—2012 年 6 月在安徽农业
大学校内试验基地进行,前茬为水稻,供试土壤为黄
棕壤土,0 ~ 20 cm土层土壤 pH为 6. 5,有机质 17. 2
g·kg-1,全氮 1. 5 g·kg-1,速效氮 105. 1 mg·kg-1,
速效磷 23. 0 mg·kg-1,速效钾 161. 6 mg·kg-1 . 供
试的 3 种不同基因型小麦品种(Triticum aestivum)分
别为扬麦 18(春性品种,由江苏省里下河地区农业
科学院选育)、郑麦 9023(弱春性品种,由河南省农
业科学院小麦研究所高产育种研究室选育)和烟农
19(半冬性品种,由山东省烟台市农业科学院选
育).盆栽种植,盆直径 30 cm,高 30 cm,每品种 20
盆,每盆 15 株左右,埋于试验田中,田间管理按高产
栽培要求进行.
1郾 2摇 低温胁迫处理
2011 年 12 月 28 日(分蘖期)取盆栽小麦移入
室内,20:00 移入-10 益冷柜中,于次日 8:00 取出,
移回大田,连续处理 2 d;2012 年 3 月 4 日(拔节期)
取盆栽小麦移入室内,20:00 移入 0 益冷柜中,于次
日 8:00 取出,移回大田,连续处理 3 d.两次处理每
个品种均各取 3 盆,以未处理同一品种小麦为对照.
1郾 3摇 测定内容与方法
1郾 3郾 1 光合参数测定摇 利用美国产 Li鄄6400XT 便携
式光合作用测定系统,于处理结束当天 9:00 测定 1
次: 设 置 内 置 红 蓝 光 源 光 照 强 度 为 800
滋mol·m-2·s-1, 环 境 CO2 浓 度 为 300 ~ 400
滋mol·mol-1,分别测定低温处理和对照小麦主茎倒
二叶的净光合速率(Pn)、气孔导度(gs)和胞间 CO2
浓度(C i),每盆随机测定 3 株.
1郾 3郾 2 叶绿素荧光参数测定 摇 利用美国产 Li鄄
6400XT 便携式荧光测定系统,于处理结束当天
13:00测定 1 次:分别测定经过 20 min 暗适应后低
温处理和对照小麦主茎倒二叶的初始荧光(Fo )、
PS域最大光化学效率 (Fv / Fm );然后打开活化光
(800 滋mol·m-2·s-1)测定光化学猝灭系数( qP)、
非光化学猝灭系数(NPQ)和 PS域非循环光合电子
传递速率(ETR),每盆随机测定 3 株.
1郾 4摇 数据处理
采用 DPS 7. 05 软件对数据进行方差分析和差
异显著性检验(Duncan法,琢=0. 05).
2摇 结果与分析
2郾 1摇 不同时期低温胁迫对不同基因型小麦品种光
合特性的影响
由表 1 可以看出,对照的 3 种基因型小麦品种
间,Pn表现为扬麦18>郑麦9023>烟农19,品种间差
6981 应摇 用摇 生摇 态摇 学摇 报摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 24 卷
表 1摇 不同时期低温胁迫对不同基因型小麦品种光合参数的影响
Table 1摇 Effects of low temperature stress on photosynthetic parameters of different genotypes wheat cultivars at different
growth stages
生育期
Growth stage
处理
Treatment
品种
Variety
Pn
(滋mol·m-2·s-1)
gs
(mol·m-2·s-1)
Ci
(滋mol·mol-1)
分蘖期 对照 扬麦 18 Yangmai 18 18. 27依0. 081a 0. 21依0. 003a 168. 76依1. 121c
Tillering stage Control 郑麦 9023 Zhengmai 9023 17. 15依0. 064b 0. 20依0. 004a 179. 90依0. 691b
烟农 19 Yannong 19 13. 55依0. 074c 0. 17依0. 008b 225. 27依1. 139a
低温胁迫 扬麦 18 Yangmai 18 3. 50依0. 026b 0. 04依0. 000c 193. 22依1. 672a
Low temperature 郑麦 9023 Zhengmai 9023 3. 47依0. 017b 0. 05依0. 001b 192. 37依1. 553a
stress 烟农 19 Yannong 19 4. 37依0. 026a 0. 05依0. 001a 165. 38依1. 705b
拔节期 对照 扬麦 18 Yangmai 18 15. 16依0. 162c 0. 14依0. 002b 190. 98依1. 384a
Elongation stage Control 郑麦 9023 Zhengmai 9023 17. 35依0. 073a 0. 18依0. 002a 163. 17依2. 483c
烟农 19 Yannong 19 16. 02依0. 049b 0. 17依0. 001a 174. 90依1. 201b
低温胁迫 扬麦 18 Yangmai 18 3. 30依0. 131c 0. 06依0. 000c 214. 86依1. 235a
Low temperature 郑麦 9023 Zhengmai 9023 9. 46依0. 070b 0. 08依0. 002b 156. 13依2. 382b
stress 烟农 19 Yannong 19 10. 55依0. 026a 0. 11依0. 005a 150. 31依1. 754b
同列不同小写字母表示处理间差异显著(P<0. 05) Different small letters in the same column meant significant difference among treatments at 0. 05
level. 下同 The same below.
异显著;gs表现为扬麦 18 和郑麦 9023 显著高于烟
农 19,但扬麦 18 与郑麦 9023 间无显著差异;C i表现
为烟农 19>郑麦 9023>扬麦 18,品种间差异显著.分
蘖期低温处理的 3 种基因型小麦品种间,Pn表现为
烟农 19 显著高于扬麦 18 和郑麦 9023,但扬麦 18 与
郑麦 9023 间无显著差异;gs表现为烟农 19 >郑麦
9023>扬麦 18,品种间差异显著;C i表现为扬麦 18
和郑麦 9023 显著高于烟农 19,但扬麦 18 与郑麦
9023 间无显著差异.
拔节期对照的 3 种基因型小麦品种间,Pn表现
为郑麦 9023>烟农 19>扬麦 18,品种间差异显著;gs
表现为郑麦 9023 和烟农 19 显著高于扬麦 18,但郑
麦 9023 与烟农 19 间无显著差异;C i表现为扬麦 18>
烟农 19>郑麦 9023,品种间差异显著.拔节期低温处
理的 3 种基因型小麦品种间,Pn和 gs都表现为烟农
19>郑麦 9023>扬麦 18,品种间差异显著;C i表现为
扬麦 18 显著高于郑麦 9023 和烟农 19,但郑麦 9023
与烟农 19 间无显著差异.
2郾 2摇 不同时期低温胁迫对不同基因型小麦品种叶
绿素荧光特性的影响
由表 2 可以看出,对照的 3 种基因型小麦品种
间,Fv / Fm和 ETR都表现为无显著差异;Fo表现为扬
麦 18 显著高于郑麦 9023 和烟农 19,但郑麦 9023 与
烟农 19 间无显著差异;qP表现为烟农 19 显著高于
扬麦 18 和郑麦 9023,但扬麦 18 与郑麦 9023 间无显
著差异;NPQ表现为扬麦18 >郑麦9023 >烟农19,
表 2摇 不同时期低温胁迫对不同基因型小麦品种叶绿素荧光参数的影响
Table 2摇 Effects of low temperature stress on chlorophyll fluorescence parameters of different genotypes wheat cultivars at
different growth stages
生育期
Growth
stage
处理
Treatment
品种
Variety
Fo Fv / Fm qP NPQ ETR
分蘖期 对照 扬麦 18 Yangmai 18 166. 1依2. 236a 0. 81依0. 001a 0. 27依0. 007b 3. 00依0. 048a 47. 87依0. 500a
Tillering Control 郑麦 9023 Zhengmai 9023 145. 1依1. 034b 0. 82依0. 003a 0. 27依0. 008b 2. 70依0. 017b 48. 48依0. 328a
stage 烟农 19 Yannong 19 143. 7依1. 673b 0. 81依0. 000a 0. 32依0. 011a 2. 30依0. 048c 48. 24依1. 068a
低温胁迫 扬麦 18 Yangmai 18 185. 0依0. 354a 0. 75依0. 001c 0. 20依0. 006c 1. 26依0. 021c 24. 30依0. 625b
Low temperature 郑麦 9023 Zhengmai 9023 157. 5依1. 927b 0. 77依0. 003b 0. 22依0. 003b 1. 90依0. 010b 27. 45依0. 573b
stress 烟农 19 Yannong 19 152. 6依2. 627b 0. 80依0. 004a 0. 27依0. 003a 3. 00依0. 052a 37. 06依0. 658a
拔节期 对照 扬麦 18 Yangmai 18 204. 1依2. 378a 0. 83依0. 001b 0. 46依0. 004a 2. 40依0. 020a 94. 55依1. 516a
Elongation Control 郑麦 9023 Zhengmai 9023 194. 1依0. 853b 0. 84依0. 000a 0. 45依0. 005a 2. 42依0. 021a 96. 10依1. 501a
stage 烟农 19 Yannong 19 152. 0依2. 472c 0. 84依0. 001a 0. 44依0. 003b 2. 46依0. 014a 96. 70依1. 925a
低温胁迫 扬麦 18 Yangmai 18 217. 0依3. 492a 0. 83依0. 000c 0. 35依0. 004c 2. 48依0. 020b 79. 46依0. 417b
Low temperature 郑麦 9023 Zhengmai 9023 200. 9依2. 850b 0. 83依0. 001b 0. 37依0. 005b 2. 55依0. 018ab 82. 36依1. 973ab
stress 烟农 19Yannong 19 157. 2依2. 843c 0. 84依0. 001a 0. 39依0. 003a 2. 59依0. 033a 87. 26依1. 651a
79817 期摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 关雅楠等: 低温胁迫对不同基因型小麦品种光合性能的影响摇 摇 摇 摇
品种间差异显著.分蘖期低温处理的 3 种基因型小
麦品种间,Fo表现为扬麦 18 显著高于郑麦 9023 和
烟农 19,但郑麦 9023 与烟农 19 间无显著差异;Fv /
Fm、qP和 NPQ 都表现为烟农 19 >郑麦 9023 >扬麦
18,品种间差异显著;ETR 表现为烟农 19 显著高于
扬麦 18 和郑麦 9023,但扬麦 18 与郑麦 9023 间无显
著差异.
拔节期对照的 3 种基因型小麦品种间,NPQ 和
ETR都表现为无显著差异;Fo表现为扬麦 18>郑麦
9023>烟农 19,品种间差异显著;Fv / Fm表现为郑麦
9023 和烟农 19 显著高于扬麦 18,但郑麦 9023 与烟
农 19 间无显著差异;qP表现为扬麦 18 和郑麦 9023
显著高于烟农 19,但扬麦 18 与郑麦 9023 间无显著
差异.拔节期低温处理的 3 种基因型小麦品种间,Fo
表现为扬麦 18>郑麦 9023>烟农 19,品种间差异显
著;Fv / Fm和 qP都表现为烟农 19 >郑麦 9023 >扬麦
18,品种间差异显著;NPQ 和 ETR 都表现为烟农 19
显著高于扬麦 18,但烟农 19 与郑麦 9023、郑麦 9023
与扬麦 18 间均无显著差异.
3摇 讨摇 摇 论
3郾 1摇 不同时期低温胁迫下不同基因型小麦品种光
合特性的差异
研究表明,不同冬小麦品种间 Pn差异极显
著[19] .本试验在分蘖期和拔节期,3 种基因型小麦
品种间 Pn差异显著.低温可以通过气孔关闭来抑制
光合作用[20] . 工业菊苣(Cichorium intybus)冷应激
状态影响了参与 CO2固定的酶活性或 CO2的光合利
用率[21] .玉米遭受冷胁迫后首先会影响 CO2固定
率,然后进一步降低类囊体膜上光合电子传递链的
活动[22] .分蘖期和拔节期低温处理后,春性品种扬
麦 18 的 Pn和 gs低,C i高,而半冬性品种烟农 19 的
Pn和 gs高,C i低.因为 Pn下降主要由两个原因引起:
气孔限制因素和非气孔限制因素,前者表现为 gs和
C i下降,后者表现为 gs下降而 C i升高[23] .由此推断,
低温可能破坏了抗寒性弱的小麦品种的光合机构,
导致 CO2同化力下降,CO2大量积累,使 C i升高,Pn
降低;而低温可能仅影响了抗寒性强的小麦品种的
气孔闭合,气孔的部分关闭限制了 CO2向叶绿体的
运输,使 C i下降,Pn降低.
3郾 2摇 不同时期低温胁迫下不同基因型小麦品种叶
绿素荧光特性的差异
非光化学能量耗散易造成 Fo的降低,而光合机
构被破坏又使其升高[24] . 本试验在分蘖期和拔节
期,春性品种扬麦 18 的 Fo最高,低温处理后,春性
品种扬麦 18 的 Fo仍然最高,可能是低温对这 3 种
基因型小麦品种光合机构的破坏程度不同所致,抗
寒性弱的小麦品种更易遭受寒害损伤.
Fv / Fm被作为表征光合性能的敏感指标[25] . 李
光庆等[26]研究指出,Fv / Fm可作为不同基因型花椰
菜耐寒性的鉴定指标. 本试验在分蘖期和拔节期,3
种基因型小麦品种间的 Fv / Fm无显著差异或部分存
在显著差异,低温处理后,抗寒性弱的小麦品种 Fv /
Fm相对较低.
qP反映光合活性高低,NPQ 反映植物光保护能
力强弱[27] . 紫花苜蓿(Medicago sativa)受低温胁迫
很轻时,NPQ升高[28] . 随着温度的下降和低温胁迫
时间的延长,玉米幼苗叶片 NPQ 下降[29] .本试验在
分蘖期和拔节期低温处理后,半冬性品种烟农 19 都
有较高的 qP和 NPQ 值,说明半冬性品种烟农 19 的
光合活性高、自我保护机制强.
李志博等[30]研究表明,低温胁迫后,棉花幼苗
第 4 叶的 ETR下降.本试验在分蘖期和拔节期,3 种
基因型小麦品种间 ETR 均无显著差异,低温处理
后,表现为半冬性品种烟农 19 的 ETR最高,说明抗
寒性强的小麦品种光合活性强.
综上所述,在分蘖期和拔节期低温处理后,3 种
基因型小麦品种间的所有光合参数和叶绿素荧光参
数均差异显著,其中半冬性品种烟农 19 的光合性能
受低温影响程度最小,弱春性品种郑麦 9023 次之,
春性品种扬麦 18 最大.说明分蘖期和拔节期遭受低
温会影响小麦的光合性能,小麦抗寒性不同,其光合
活性受抑制程度不同;低温胁迫后,抗寒性强的小麦
光合机构受损伤程度轻,具有较高的光合活性和较
强的自我保护机制.
参考文献
[1]摇 Tao H鄄Z (陶宏征), Zhao C鄄L (赵昶灵), Li W鄄Q (李
唯奇). Photosynthetic response to low temperature in
plant. Chinese Journal of Biochemistry and Molecular Bi鄄
ology (中国生物化学与分子生物学报), 2012, 28
(6): 501-508 (in Chinese)
[2] 摇 You J鄄H (由继红), Lu J鄄M (陆静梅), Yang W鄄J
(杨文杰). Effects of Ca2+ on photosynthesis and related
physiological indexes of wheat seedlings under low tem鄄
perature stress. Acta Agronomica Sinica (作物学报),
2002, 28(5): 693-696 (in Chinese)
[3]摇 Zhu J (朱摇 佳), Liang Y鄄C (梁永超), Ding Y鄄F (丁
燕芳), et al. Effect of silicon on photosynthesis and its
related physiological parameters in two winter wheat cul鄄
tivars under cold stress. Scientia Agricultura Sinica (中
国农业科学), 2006, 39 (9): 1780 - 1788 ( in Chi鄄
nese)
8981 应摇 用摇 生摇 态摇 学摇 报摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 24 卷
[4]摇 Fan Q鄄H (范琼花), Sun W鄄C (孙万春), Li Z鄄J (李
兆君), et al. Effects of silicon on photosynthesis and its
major relevant activities in wheat leaves under short鄄term
cold stress. Plant Nutrition and Fertilizer Science (植物
营养与肥料学报), 2009, 15(3): 544-550 ( in Chi鄄
nese)
[5]摇 Fan H鄄F (樊怀福), Jiang W鄄J (蒋卫杰), Guo S鄄R
(郭世荣). Effects of low temperature on growth and
photosynthesis of tomato seedling. Jiangsu Agricultural
Sciences (江苏农业科学), 2005(3): 89-91 (in Chi鄄
nese)
[6]摇 Sayed OH. Chlorophyll fluorescence as a tool in cereal
crop research. Photosynthetica, 2003, 41: 321-330
[7]摇 Percival GC. Identification of foliar salt tolerance of
woody perennials using chlorophyll fluorescence. Hort鄄
Science, 2005, 40: 1892-1897
[8]摇 O爷Neill PM, Shanahan JE, Schepers JS. Use of chloro鄄
phyll fluorescence assessments to differentiate corn hy鄄
brid response to variable water conditions. Crop Science,
2006, 46: 681-687
[9]摇 Guo PG, Michael B, Varshney RK, et al. QTLs for
chlorophyll and chlorophyll fluorescence parameters in
barley under post鄄flowering drought. Euphytica, 2008,
163: 203-214
[10]摇 Panda D, Sharma SG, Sarkar RK. Fast chlorophyll fluo鄄
rescence transients as selection tools for submergence
tolerance in rice (Oryza sativa). Indian Journal of Agri鄄
cultural Sciences, 2008, 78: 933-938
[11]摇 Faraloni C, Cutino L, Petruccelli R, et al. Chlorophyll
fluorescence technique as a rapid tool for in vitro screen鄄
ing of olive cultivars (Olea europaea L. ) tolerant to
drought stress. Environmental and Experimental Botany,
2011, 73: 49-56
[12]摇 Rapacz M, Wozniczka A. A selection tool for freezing
tolerance in common wheat using the fast chlorophyll a
fluorescence transient. Plant Breeding, 2009, 128:
227-234
[13]摇 Wang X鄄N (王晓楠), Fu L鄄S (付连双), Li Z鄄F (李
卓夫), et al. Comparison of chlorophyll fluorescence
parameters between two winter wheat cultivars during
cold acclimation and frozen period. Journal of Triticeae
Crops (麦类作物学报), 2009, 29 (1): 83 - 88 ( in
Chinese)
[14] 摇 Chen J鄄M (陈建明), Yu X鄄P (俞晓平), Cheng J鄄A
(程家安). The application of chlorophyll fluorescence
kinetics in the study of physiological responses of plants
to environmental stresses. Acta Agriculturae Zhejiangen鄄
sis (浙江农业学报), 2006, 18(1): 51-55 ( in Chi鄄
nese)
[15]摇 Li W (李摇 伟), Sui X鄄L (眭晓蕾), Zhang Z鄄X (张
振贤). Effects of temperature regime on low鄄light toler鄄
ance of Cucumis sativus seedling leaves in their photo鄄
synthesis. Chinese Journal of Applied Ecology (应用生
态学报), 2008, 19(12): 2643-2650 (in Chinese)
[16]摇 Xu N (许 摇 楠), Sun G鄄Y (孙广玉). Responses of
mulberry seedlings photosynthesis and antioxidant en鄄
zymes to chilling stress after low鄄temperature acclima鄄
tion. Chinese Journal of Applied Ecology (应用生态学
报), 2009, 20(4): 761-766 (in Chinese)
[17] 摇 Suzuki K, Nagasuga K, Okada M. The chilling injury
induced by high root temperature in the leaves of rice
seedlings. Plant and Cell Physiology, 2008, 49: 433-
442
[18]摇 Hu C鄄M (胡春梅), Hou X鄄L (侯喜林), Wang Y (王
旻). Effects of low temperature on photosynthetic and
fluorescent parameters of non鄄heading Chinese cabbage.
Acta Botanica Boreali鄄Occidentalia Sinica (西北植物学
报), 2008, 28(12): 2478-2484 (in Chinese)
[19]摇 Yin Y鄄F (殷毓芬), Zhang C鄄L (张存良), Yao F鄄X
(姚凤霞). Relationship of leaf photosynthetic rate with
stomatal resistance and stomatal conductance to CO2 in
wheat cultivars. Acta Agronomica Sinica (作物学报),
1995, 21(5): 561-567 (in Chinese)
[20]摇 Bertamini M, Zulini L, Muthuchelian K, et al. Low
night temperature effects on photosynthetic performance
on two grapevine genotypes. Biologia Plantarum, 2007,
51: 381-385
[21]摇 Devacht S, Lootens P, Rold觃n鄄ruiz I, et al. Influence of
low temperatures on the growth and photosynthetic activi鄄
ty of industrial chicory, Cichorium intybus L. partim.
Photosynthetica, 2009, 47: 372-380
[22]摇 Hol觃 D, Langrov佗 K, Kocov觃 M, et al. Photosynthetic
parameters of maize (Zea mays L. ) inbred lines and F1
hybrids: Their different response to, and recovery from
rapid or gradual onset of low鄄temperature stress. Photo鄄
synthetica, 2003, 41: 429-442
[23]摇 Sun X鄄C (孙学成), Hu C鄄X (胡承孝), Tan Q鄄L (谭
启玲), et al. Effects of molybdenum on photosynthetic
characteristics in winter wheat under low temperature
stress. Acta Agronomica Sinica (作物学报), 2006, 32
(9): 1418-1422 (in Chinese)
[24]摇 Zhang S鄄R (张守仁). A discussion on chlorophyll fluo鄄
rescence kinetics parameters and their significance. Chi鄄
nese Bulletin of Botany (植物学报), 1999, 16 (4):
444-448 (in Chinese)
[25] 摇 Maxwell K, Johnson GN. Chlorophyll fluorescence: A
practical guide. Journal of Experimental Botany, 2000,
51: 659-668
[26]摇 Li G鄄Q (李光庆), Xie Z鄄J (谢祝捷), Yao X鄄Q (姚
雪琴), et al. Studies on the relationship between chlo鄄
rophyll parameters and cold tolerance of cauliflower. Ac鄄
ta Horticulturae Sinica (园艺学报), 2010, 37(12):
2001-2006 (in Chinese)
[27]摇 Kramer DM, Johnson G, Kiirats O, et al. New fluores鄄
cence parameters for the determination of QA redox state
and excitation energy fluxes. Photosynthesis Research,
2004, 79: 209-218
[28]摇 Chen S鄄R (陈世茹), Yu L鄄Q (于林清), Yi J (易摇
津), et al. Influence of chlorophyll fluorescence charac鄄
teristics on alfalfa seedlings under cryogenic stress. Acta
Agrestia Sinica (草地学报), 2011, 19(4): 596-600
(in Chinese)
[29]摇 Yang M (杨 摇 猛), Wei L (魏 摇 玲), Zhuang W鄄F
(庄文锋), et al. Effects of low鄄temperature stress on
electric conductivity and fluorescence parameters of
maize seedling. Journal of Maize Sciences (玉米科学),
2012, 20(1): 90-94 (in Chinese)
[30]摇 Li Z鄄B (李志博), Wei Y鄄N (魏亦农), Yang M (杨
敏), et al. Primary study on effects of low temperature
on chlorophyll fluorescence characteristics of cotton
seedling. Cotton Science (棉花学报), 2006, 18(4):
255-257 (in Chinese)
作者简介摇 关雅楠,女,1987 年生,硕士研究生.主要从事小
麦栽培生理生态研究. E鄄mail: 936707663@ qq. com
责任编辑摇 张凤丽
99817 期摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 关雅楠等: 低温胁迫对不同基因型小麦品种光合性能的影响摇 摇 摇 摇