采用发光二极管(LED)精确调制不同光谱能量分布,以荧光灯光照为对照,研究光质对番茄和莴苣幼苗生长及叶绿体超微结构的影响.结果表明:红光下番茄、莴苣幼苗的可溶性糖、淀粉和碳水化合物含量均显著高于对照,叶片叶绿体中淀粉粒膨大显著;蓝光极显著抑制了番茄下胚轴伸长,显著提高了莴苣和番茄幼苗叶片叶绿素a和类胡萝卜素含量;红蓝光下莴苣幼苗叶片的可溶性糖、淀粉、碳水化合物、蔗糖含量和C/N均达到最大值且显著高于红光处理,番茄和莴苣幼苗的主根显著伸长,幼苗叶片中叶绿体形态正常,基粒增多,基质片层清晰,淀粉粒体积明显小于红光处理.光质对植物幼苗的光形态建成、生长、碳氮代谢及叶绿体发育有显著影响;红光下光合产物积累显著但运输受阻严重,在红光中添加适量蓝光更有利于莴苣幼苗的碳水化合物积累,并可促进幼苗根系生长,有利于同化产物输出.
By using light emitting diode (LED) to accurately modulate spectral energy distribution, and with fluorescent light as the control, this paper studied the effects of light quality on the growth and chloroplast ultrastructure of tomato and lettuce seedlings. Under red LED, the soluble sugar, starch, and carbohydrate contents of tomato and lettuce seedlings were significantly higher than those under fluorescent light, and the starch grains in chloroplast swelled obviously. Under blue LED, the hypocotyl length of tomato seedlings were restrained remarkably, but the leaf chlorophyll a and carotenoid contents of tomato and lettuce seedlings were increased significantly. Under red + blue LED, the soluble sugar, starch, carbohydrate, and sucrose contents and C/N ratio of lettuce seedlings reached the maximal and were significantly higher than those under red LED, the main root length of the seedlings increased significantly, their leaf chloroplast morphology was normal, granum number increased, stroma lamellae was clear, but the starch grain size was smaller than that under red LED. The results suggested that light quality had remarkable effects on the photomorphogenesis, growth, carbon and nitrogen metabolism, and chloroplast development of plant seedlings. Red LED promoted the accumulation of photosynthates but hindered their transport, while adding appropriate amount of blue LED to red LED could more benefit the accumulation of photosynthates in lettuce seedlings, and promote the seedlings root growth and the export of assimilation products.
全 文 :光质对番茄和莴苣幼苗生长及叶绿体
超微结构的影响*
张摇 欢1 摇 徐志刚2 摇 崔摇 瑾1**摇 谷艾素1 摇 郭银生1
( 1 南京农业大学生命科学学院, 南京 210095; 2 南京农业大学农学院, 南京 210095)
摘摇 要摇 采用发光二极管(LED)精确调制不同光谱能量分布,以荧光灯光照为对照,研究光
质对番茄和莴苣幼苗生长及叶绿体超微结构的影响.结果表明:红光下番茄、莴苣幼苗的可溶
性糖、淀粉和碳水化合物含量均显著高于对照,叶片叶绿体中淀粉粒膨大显著;蓝光极显著抑
制了番茄下胚轴伸长,显著提高了莴苣和番茄幼苗叶片叶绿素 a 和类胡萝卜素含量;红蓝光
下莴苣幼苗叶片的可溶性糖、淀粉、碳水化合物、蔗糖含量和 C / N均达到最大值且显著高于红
光处理,番茄和莴苣幼苗的主根显著伸长,幼苗叶片中叶绿体形态正常,基粒增多,基质片层
清晰,淀粉粒体积明显小于红光处理.光质对植物幼苗的光形态建成、生长、碳氮代谢及叶绿
体发育有显著影响;红光下光合产物积累显著但运输受阻严重,在红光中添加适量蓝光更有
利于莴苣幼苗的碳水化合物积累,并可促进幼苗根系生长,有利于同化产物输出.
关键词摇 光质摇 番茄摇 莴苣摇 生长摇 叶绿体超微结构
文章编号摇 1001-9332(2010)04-0959-07摇 中图分类号摇 Q945摇 文献标识码摇 A
Effects of light quality on the growth and chloroplast ultrastructure of tomato and lettuce seed鄄
lings. ZHANG Huan1, XU Zhi鄄gang2, CUI Jin1, GU Ai鄄su1, GUO Yin鄄sheng1 (1College of Life Sci鄄
ences, Nanjing Agricultural University, Nanjing 210095, China; 2College of Agronomy, Nanjing Agri鄄
cultural University, Nanjing 210095, China) . 鄄Chin. J. Appl. Ecol. ,2010,21(4): 959-965.
Abstract: By using light emitting diode (LED) to accurately modulate spectral energy distribution,
and with fluorescent light as the control, this paper studied the effects of light quality on the growth
and chloroplast ultrastructure of tomato and lettuce seedlings. Under red LED, the soluble sugar,
starch, and carbohydrate contents of tomato and lettuce seedlings were significantly higher than
those under fluorescent light, and the starch grains in chloroplast swelled obviously. Under blue
LED, the hypocotyl length of tomato seedlings were restrained remarkably, but the leaf chlorophyll
a and carotenoid contents of tomato and lettuce seedlings were increased significantly. Under red +
blue LED, the soluble sugar, starch, carbohydrate, and sucrose contents and C / N ratio of lettuce
seedlings reached the maximal and were significantly higher than those under red LED, the main
root length of the seedlings increased significantly, their leaf chloroplast morphology was normal,
granum number increased, stroma lamellae was clear, but the starch grain size was smaller than that
under red LED. The results suggested that light quality had remarkable effects on the photomorpho鄄
genesis, growth, carbon and nitrogen metabolism, and chloroplast development of plant seedlings.
Red LED promoted the accumulation of photosynthates but hindered their transport, while adding
appropriate amount of blue LED to red LED could more benefit the accumulation of photosynthates
in lettuce seedlings, and promote the seedlings root growth and the export of assimilation products.
Key words: light quality; tomato; lettuce; growth; chloroplast ultrastructure.
*国家自然科学基金项目(30800764)、中国农业大学鄄南京农业大学
青年教师开放科研基金项目(Y200880)资助.
**通讯作者. E鄄mail: cuijin@ njau. edu. cn
2009鄄06鄄19 收稿,2010鄄01鄄28 接受.
摇 摇 植物幼苗个体发育对环境因素的变化十分敏 感[1] .光不仅是植物生长基本的能量来源,也是植
物从黄化到非黄化状态转变的重要信号,其激发植
物的生长发育并影响植物生命周期内与细胞组分和
基因表达相关的生物合成[2-3] . 在照光中幼苗发育
应 用 生 态 学 报摇 2010 年 4 月摇 第 21 卷摇 第 4 期摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇
Chinese Journal of Applied Ecology, Apr. 2010,21(4): 959-965
经历光形态建成过程,最显著特点是形成了进行光
合作用的叶绿体[4] .
不同光质的生物学效应存在显著差异[5-6] . 已
有研究表明,光质对黄瓜[7-8]、番茄[7,9]、甜椒[10]、油
菜[11]、水稻[12]、燕麦[13]、拟南芥[14]、生姜[15]等幼苗
的生长具有特殊效应,但由于试验大多采用彩色荧
光灯、滤光片或有色膜获得光质,无法定量精确地调
制光谱能量分布,影响了结论的可靠性和可比性.因
此,本文采用具有光谱能量调制便捷、发热低、节能
环保等重要特点的发光二极管(light emitting diode,
LED)调制光谱能量分布,深入研究光质对植物幼苗
光形态建成、生长发育及叶绿体结构的影响,以期探
讨光信号对植物幼苗生长发育的调控机制,为发展
设施栽培光环境调控技术提供理论和技术支持.
1摇 材料与方法
1郾 1摇 试验材料与试验设计
供试材料为番茄(Lycopersicon esculentum)和莴
苣(Lactuca sativa)幼苗,种子购买于江苏省农业科
学院,品种分别为“江蔬 14 号冶和“抗寒青皮王冶.人
工剔除虫蛀、残破、畸形、霉变的种子及杂质.采用营
养钵(8 cm伊8 cm)育苗,育苗基质为蛭石 颐 草炭 =
1 颐 1.待幼苗长至一叶一心时随机分成 6 组,每组
10 个营养钵,约 100 株,分别置于 5 种光谱能量分
布的 LED光源区和 1 个荧光灯对照区下培养,3 次
重复.培养条件:温度白天 23 益 ~28 益,夜间 15 益
~17 益,光照 12 h,培养周期为 10 d.
1郾 2摇 光谱能量分布
光源均为南京农业大学农学院自主研制的
LED植物生长灯,光谱能量分布如表 1 所示,以市售
直管形荧光灯 T8 作为白光对照.各处理间设置反光
膜加以隔离. 调节电流、占空比及光源与植株的距
离,使光量均为 50 滋mol·m-2·s-1 .
表 1摇 不同 LED光谱能量分布的主要技术参数
Tab. 1摇 Major technique parameters of light spectral ener鄄
gy distribution under LED
处 理
Treat鄄
ment
光谱能量分布
Light spectral energy
distribution
峰值波长
姿p
(nm)
波长半宽
驻姿
(nm)
功率
Power
(W)
CK 荧光灯 Fluorescent 380 ~ 750 5 80郾 0
R 100%红 100% red 658 5 10郾 3
Y 100%黄 100% yellow 585 5 12郾 4
B 100%蓝 100% blue 460 5 17郾 3
R+B 红 /蓝(8 颐 1)
Red / blue (8 颐 1)
658+460 5 11郾 0
Fr 100%远红 100%
far鄄red
715 5 11郾 8
1郾 3摇 测定项目与方法
1郾 3郾 1 幼苗形态及生理指标测定摇 在各光质下培养
10 d后,用直尺测定幼苗下胚轴长、根长, 游标卡尺
测定下胚轴直径,测定时均采用随机取样.用硫酸纸
剪纸称量法测定子叶面积[16] . 叶绿素、类胡萝卜素
含量用无水乙醇 颐 丙酮 = 1 颐 1 提取法测定;可溶性
糖及淀粉含量采用蒽酮法测定;游离氨基酸含量采
用水合茚三酮法测定;蔗糖含量采用间苯二酚法测
定;可溶性蛋白含量采用考马斯亮蓝法测定;SOD
采用氮蓝四唑法测定,POD 采用愈创木酚法测定;
CAT采用滴定法测定[17] . 形态指标测定均重复 6
次,生理生化指标重复 3 次.
1郾 3郾 2 叶片叶绿体超微结构的观测摇 取第 3 叶位功
能叶,在叶片中部主脉两侧切取 1 ~ 2 cm2 叶片组织
小块,用 3%戊二醛前固定 12 h,0郾 1 mol·L-1磷酸
缓冲液(pH 7郾 2)冲洗,1%锇酸后固定 2 h,乙醇梯
度脱水,丙酮置换浸透,Epon鄄812 环氧树脂包埋聚
合,修块切片,醋酸铀和柠檬酸铅双染色,HITACHI
透射电镜观察,每处理共观察 30 个视野并照相.
1郾 4摇 数据处理
采用 Excel 2003 软件处理数据,SPSS 16郾 0 软件
进行方差分析,Duncan法进行多重比较.
2摇 结果与分析
2郾 1摇 不同光质对番茄和莴苣幼苗形态的影响
由表 2 可知,番茄幼苗在 Fr 处理下,下胚轴长
显著高于其他处理,而下胚轴直径显著低于其他处
理,说明 Fr 处理导致幼苗徒长严重;B 处理的下胚
轴长显著小于其他处理和对照,主根长和下胚轴直
径均极显著高于对照;R 处理的子叶面积和鲜质量
在各处理中最大,且显著高于对照.
在 Fr处理下,莴苣幼苗下胚轴长也显著高于对
照,而下胚轴直径显著低于对照,说明 Fr 处理也导
致幼苗徒长严重;R+B 处理的主根长和子叶面积在
各处理中最大,且显著高于对照;R处理的下胚轴直
径显著高于对照和其他处理,下胚轴长和鲜质量为
各处理中最大.
2郾 2摇 不同光质对番茄和莴苣幼苗叶片色素含量的
影响
由表 3 可知,在 R+B 处理下,番茄幼苗叶绿素
a、b、a+b及类胡萝卜素含量均为最大值,且极显著
高于对照;B 和 R 处理的叶绿素 a、a+b 及类胡萝卜
素含量均显著高于对照.
069 应摇 用摇 生摇 态摇 学摇 报摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 21 卷
表 2摇 不同光质对番茄和莴苣幼苗形态的影响
Tab. 2摇 Effects of light quality on the morphology of tomato and lettuce seedlings
植 物
Plant
处 理
Treatment
下胚轴长
Length of
hypocotyl (cm)
下胚轴直径
Diameter of
hypocotyl (cm)
主根长
Length of
main root (cm)
子叶面积
Cotyledon area
(cm2)
鲜质量
Fresh mass
(g)
干质量
Dry mass
(g)
番茄 CK 4郾 42dD 0郾 072bBC 2郾 43eD 1郾 08bAB 0郾 062bB 0郾 024abA
Tomato R 5郾 44cC 0郾 078aAB 2郾 68deCD 1郾 29aA 0郾 082aA 0郾 041abA
Y 7郾 14bB 0郾 080aA 3郾 06cdBC 0郾 40cC 0郾 076aAB 0郾 029abA
B 2郾 76eE 0郾 080aA 4郾 42aA 0郾 97bB 0郾 062bB 0郾 034abA
R+B 4郾 12dD 0郾 081aA 3郾 62bB 0郾 99bB 0郾 066bB 0郾 045aA
Fr 8郾 98aA 0郾 069bC 3郾 36bcB 0郾 24cC 0郾 062bB 0郾 020bA
莴苣 CK 4郾 52cC 0郾 047bB 2郾 80bB 0郾 84cBC 0郾 035abA 0郾 013aA
Lettuce R 6郾 44aA 0郾 052aA 2郾 80bB 0郾 99bB 0郾 040aA 0郾 015aA
Y 6郾 68aA 0郾 041cC 2郾 94bB 0郾 67dC 0郾 034abA 0郾 010aA
B 4郾 12cC 0郾 049bB 3郾 04bB 1郾 18aA 0郾 036abA 0郾 016aA
R+B 5郾 12bB 0郾 043cC 4郾 04aA 1郾 18aA 0郾 036abA 0郾 018aA
Fr 6郾 64aA 0郾 041cC 2郾 88bB 0郾 22eD 0郾 023bA 0郾 007aA
同列不同大、小写字母分别表示差异极显著(P臆0郾 01)和显著(P臆0郾 05) Different capital and small letters in the same column meant significant
difference at 0郾 01 and 0郾 05 levels, respectively. 下同 The same below.
表 3摇 不同光质对番茄和莴苣幼苗叶片色素含量的影响
Tab. 3摇 Effects of light quality on chlorophyll and carotenoid contents of tomato and lettuce seedlings
植物
Plant
处 理
Treatment
叶绿素 Chlorophyll (mg·g-1 FM)
Chl a Chl b Chl(a +b) Chl(a / b)
类胡萝卜素
Carotenoid
(mg·g-1 FM)
番茄 CK 0郾 90bcBC 0郾 32bcBC 1郾 22bcBC 2郾 85abA 0郾 31bcBC
Tomato R 1郾 34aAB 0郾 45abAB 1郾 79aAB 2郾 96abA 0郾 42aAB
Y 1郾 28abAB 0郾 45abAB 1郾 73abAB 2郾 84abA 0郾 39abAB
B 1郾 41aA 0郾 44abAB 1郾 85aAB 3郾 21aA 0郾 44aA
R+B 1郾 49aA 0郾 55aA 2郾 04aA 2郾 69bA 0郾 47aA
Fr 0郾 68cC 0郾 22cC 0郾 89cC 3郾 05abA 0郾 22cC
莴苣 CK 0郾 97bAB 0郾 35abA 1郾 31abAB 2郾 77cC 0郾 32bAB
Lettuce R 0郾 82cB 0郾 26cB 1郾 08cC 3郾 17aA 0郾 28bB
Y 0郾 93bcB 0郾 31abAB 1郾 24bcBC 2郾 97bB 0郾 31bB
B 1郾 12aA 0郾 36aA 1郾 48aA 3郾 11aA 0郾 36aA
R+B 0郾 91bcB 0郾 31bAB 1郾 22bcBC 2郾 96bB 0郾 31bB
Fr 0郾 40dC 0郾 16dC 0郾 56dD 2郾 57dD 0郾 18cC
摇 摇 莴苣幼苗在 B 处理下,叶绿素 a、a / b 及类胡萝
卜素含量均为最大值,且显著高于对照;R处理的叶
绿素和类胡萝卜素含量显著低于 B 处理;Fr 处理的
叶绿素 a、b、a+b及类胡萝卜素含量均显著低于对照
和其他光处理.
2郾 3摇 不同光质对番茄和莴苣幼苗碳、氮代谢的影响
在 R和 R+B处理下,番茄幼苗可溶性糖、淀粉
和碳水化合物含量均显著高于对照,但 R与 R+B处
理间无显著差异;R 处理下的 C / N 最大,且显著高
于对照,其次为 B和 R+B处理,Y和 Fr 处理的 C / N
显著低于对照;Fr处理下的游离氨基酸含量在各处
理中最大,且显著高于对照,其余光处理与对照间无
显著差异或显著低于对照(表 4).
除 Fr处理外,其余光处理显著提高了莴苣幼苗
的可溶性糖、淀粉、碳水化合物含量和 C / N;其中可
溶性糖含量由高到低依次为 R+B>R>B>Y,淀粉含
量由高到低依次为 R+B>Y>B>R,碳水化合物含量
由高到低依次为 R+B>R>B>Y,C / N 由高到低依次
为 R+B>R>B>Y. R+B 处理的可溶性糖、淀粉、碳水
化合物含量和 C / N均为各处理中最大,且极显著高
于对照.但在 Fr处理下的莴苣幼苗可溶性蛋白含量
极显著高于对照,B 处理下的可溶性蛋白含量显著
高于对照(表 4).
1694 期摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 张摇 欢等: 光质对番茄和莴苣幼苗生长及叶绿体超微结构的影响摇 摇 摇 摇 摇 摇
表 4摇 不同光质对番茄和莴苣幼苗碳氮代谢的影响
Tab. 4摇 Effects of light quality on metabolism of carbon and nitrogen of tomato and lettuce seedlings
植物
Plant
处 理
Treatment
可溶性糖
Soluble sugar
(% )
淀粉
Starch
(% )
碳水化合物
Carbohydrate
(mg·g-1)
蔗 糖
Sucrose
(mg·g-1)
可溶性蛋白
Soluble protein
(mg·g-1)
游离氨基酸
Amino acid
(mg·g-1)
C / N
番茄 CK 3郾 60bB 9郾 34bB 129郾 42bB 33郾 37aA 10郾 42aA 483郾 04bB 0郾 268cC
Tomato R 5郾 70aA 21郾 53aA 272郾 31aA 18郾 00cCD 11郾 41aA 233郾 66cC 1郾 166aA
Y 2郾 03dC 3郾 28cC 53郾 06cC 22郾 46bB 9郾 61aA 493郾 95bB 0郾 107dD
B 2郾 33bcCD 11郾 98bB 143郾 18bB 14郾 09dD 11郾 27aA 217郾 32cC 0郾 663bB
R+B 5郾 23aA 20郾 99aA 262郾 18aA 19郾 08cBC 10郾 72aA 436郾 64bB 0郾 602bB
Fr 3郾 16bcBC 2郾 55cC 57郾 11cC 36郾 44aA 12郾 51aA 669郾 96aA 0郾 086dD
莴苣 CK 11郾 56eCD 8郾 18dD 197郾 42eD 27郾 75bcBC 5郾 79cBC 400郾 71bB 0郾 493dD
Lettuce R 41郾 42bAB 11郾 25cC 526郾 70bB 21郾 38cdCD 4郾 96cC 55郾 73cdC 0郾 494bB
Y 19郾 62dC 13郾 82bB 334郾 32dC 8郾 59eD 7郾 07bcBC 74郾 09cdC 4郾 520cC
B 33郾 51cB 11郾 84bcBC 453郾 51cB 15郾 36deCD 8郾 44bB 167郾 86cC 2郾 700cCD
R+B 49郾 62aA 20郾 13aA 697郾 50aA 37郾 09abAB 6郾 84bcBC 41郾 52dC 16郾 874aA
Fr 3郾 45fD 4郾 74eE 81郾 93fE 41郾 91aA 15郾 59aA 1208郾 20aA 0郾 068dD
2郾 4摇 不同光质对番茄和莴苣幼苗叶片叶绿体超微
结构的影响
由图 1 所示,在 R 处理下,番茄幼苗叶片叶绿
体基粒片层整齐,基粒类囊体垛叠多,淀粉粒体积膨
大,占据叶绿体主要结构空间;R+B 处理下,叶绿体
形态呈长椭圆形,结构良好,基粒、基质片层清晰,基
粒类囊体垛叠多且排列致密整齐,淀粉粒体积缩小;
B处理下,叶绿体基粒垛叠片层多且整齐,基质片层
清晰,淀粉粒体积膨大;Y 处理下,叶绿体基粒排列
疏松散乱,基粒片层模糊,淀粉粒含量少或无;Fr 处
理下,叶绿体基粒数少,基粒类囊体结构不明显,片
层疏松散乱,淀粉粒少或无;CK 处理下,基粒数较
少,基质片层排列疏松,淀粉粒体积较小.
莴苣幼苗在 R处理下,叶片叶绿体基粒片层排
列紧密,淀粉粒体积膨大;R+B 处理下,叶绿体饱
满,基粒类囊体垛叠多,排列紧凑整齐,基质片层清
晰,淀粉粒体积明显小于 R 处理;B 处理下,叶绿体
基粒片层增厚,排列整齐,基质片层清晰,淀粉粒体
积小;Y处理下,叶绿体基粒数减少,片层排列疏松,
内部出现缝隙,嗜锇颗粒变大,淀粉粒变大;Fr 处理
下,叶绿体形态较小,基粒、基质片层模糊,无淀粉
粒;CK处理下,基粒类囊体垛叠少,基质片层排列疏
松,淀粉粒体积小或无.
3摇 讨摇 摇 论
3郾 1摇 不同光质对番茄和莴苣幼苗生长的影响
本研究中,蓝光极显著抑制了番茄幼苗下胚轴
伸长,这与 Moe 等[7]、蒲高斌等[9]、邓江明等[12]的
研究结论相一致,可能是蓝光提高了吲哚乙酸氧化
酶的活性,降低了生长素(IAA)的水平,进而抑制了
植物的伸长生长[18] . 远红光下,番茄和莴苣幼苗的
下胚轴伸长显著,C / N 显著降低,说明远红光下幼
苗出现严重徒长.已有研究报道,增加远红光可明显
促进马铃薯[19]、薯蓣[20]和向日葵[21]茎的伸长;远红
光能提高植物体内的赤霉素含量,从而增加节间长
度和植株高度[22] .
已有研究表明,光质对整株植物的碳水化合物
和蛋白质代谢有重要调节作用[23], 红光可促进碳
水化合物的积累[24],而蓝光可促进新合成有机物中
蛋白质的积累.在本试验中,红光下番茄幼苗的营养
生长旺盛,子叶面积、鲜质量、可溶性糖、淀粉、碳水
化合物和 C / N均显著高于对照,说明红光有利于植
物光合产物的积累,这与蒲高斌等[9]、储钟稀等[8]
在番茄、黄瓜上的结论相似.而莴苣幼苗在红蓝光下
子叶面积、可溶性糖、淀粉、碳水化合物、蔗糖和 C / N
均为最大且显著高于红光,说明在红光中添加适量
蓝光更有利于莴苣幼苗的碳水化合物积累,这可能
与红光和蓝光在植物光形态建成中的作用有关[25] .
莴苣幼苗在蓝光下可溶性蛋白含量显著提高,与前
人结论相同[26],有报道认为,蓝光可显著促进线粒
体的暗呼吸,因而呼吸过程中的有机酸为氨基酸的
合成提供了碳架,进一步促进了蛋白质的合成[23] .
但远红光下莴苣幼苗可溶性蛋白极显著提高的具体
生理机制还需要进一步研究. Rey 等[27]认为,红光
可有效地促进根形态建成,刘亚丽等[28]报道红光有
促进菊花插枝生根和碳水化合物积累的作用,石岭
等[29]发现,红光和红蓝混合光对河套蜜瓜根系的生
长发育有明显的促进作用.本研究发现,红蓝光显著
促进了番茄和莴苣幼苗的主根生长,这可能与红蓝
光显著提高其碳水化合物积累有关.
269 应摇 用摇 生摇 态摇 学摇 报摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 21 卷
图 1摇 不同光谱能量分布下番茄(玉)和莴苣(域)幼苗叶片的叶绿体超微结构
Fig. 1摇 Ultrastructure of leaf chloroplast of tomato (玉) and lettuce (域) seedlings under different light spectral energy distributions.
M: 线粒体 Mitochondria; S: 淀粉粒 Starch grain; GL: 基粒片层 Grana lamella; SL: 基质片层 Stroma lamella; P: 嗜锇颗粒 Plastoglobulus.
3694 期摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 张摇 欢等: 光质对番茄和莴苣幼苗生长及叶绿体超微结构的影响摇 摇 摇 摇 摇 摇
摇 摇 光是影响叶绿素合成的重要条件,不同波长的
光与植物体内相应的光受体作用调控色素合成[30] .
本研究发现,蓝光显著提高了莴苣和番茄幼苗叶片
叶绿素 a 和类胡萝卜素含量,这与徐凯等[31]、储钟
稀等[8] 在草莓、黄瓜上的研究结论相反. 但 Wu
等[32]报道蓝光下豌豆幼苗叶绿素含量明显增加;张
瑞华等[15]研究发现姜幼苗叶片叶绿素含量以蓝膜
处理较高;Saebo 等[33]研究发现蓝光下桦树叶组织
中的叶绿素含量最高,几乎是红光下的两倍.这说明
光质对植物细胞色素积累的影响因物种不同而存在
差异.
3郾 2摇 不同光质对番茄和莴苣幼苗叶片叶绿体超微
结构的影响
叶绿体的发育依赖光源,不同波长的光影响植
物叶绿体结构和内部化学物质的变化[34] .本研究电
镜观察结果表明,不同光质对幼苗叶片中叶绿体形
态结构产生显著影响. 红蓝光未对番茄和莴苣叶绿
体结构产生不良影响;黄光及远红光不利于叶绿体
发育;蓝光有利于基质片层的形成,不利于类囊体垛
叠,这与张汝民[4]的研究结论一致. 在红光、红蓝光
和蓝光下,番茄和莴苣叶片中的淀粉粒积累比较明
显,尤其是在红光下,淀粉粒膨大,占据叶绿体主要
空间.植物的光合产物主要以蔗糖的形式通过韧皮
部向外运输,同时有一部分同化产物以淀粉的形式
在叶绿体内积累. 韩善华等[35]发现,沙冬青叶肉细
胞中的淀粉粒在幼龄叶绿体中体积较小,随着叶绿
体结构的日趋完善,体积逐渐变大. Saebo 等[33]发
现,与红光相比,蓝光下淀粉粒积累较少,这主要是
由于红光抑制了光合产物从叶片中的输出,增加了
叶片的淀粉积累,而淀粉粒的过量积累不利于植物
叶片光合作用的进行[36] .红光下生长的番茄和莴苣
幼苗碳水化合物含量较高,光质对同化产物的运输
产生影响,导致淀粉粒积累明显. 但与红光相比,红
蓝光下淀粉粒体积明显缩小,说明红光中增加适量
蓝光有利于同化产物的输出.
参考文献
[1]摇 Clouse SD. Integration of light and brassinosteroid sig鄄
nals in etiolated seedling growth. Trends in Plant Sci鄄
ence, 2001, 6: 443-445
[2]摇 Erdei N, Barta C, Hideg E, et al. Light鄄induced wilting
and its molecular mechanism in epicotyls of dark鄄germi鄄
nated pea ( Pisum sativum L. ) seedlings. Plant and
Cell Physiology, 2005, 46: 185-191
[3]摇 Ward JM, Cufr CA, Denzel MA, et al. The dof tran鄄
scription factor OBP3 modulates phytochrome and cryp鄄
tochrome signaling in arabidopsis. Plant Cell, 2005,
17: 475-485
[4]摇 Zhang R鄄M (张汝民). Study on Physiological and Bio鄄
chemical Mechanism of Plastids during Early Stage of
Seedling De鄄etiolation of Phaseolus radiatus L. PhD
Thesis. Beijing: Beijing Forestry University, 2005 ( in
Chinese)
[5]摇 Leong TY, Goodchild DJ, Anderson JM. Effect of light
quality on the composition, function, and structure of
photosynthetic thylakoid membranes of Asplenium aus鄄
tralasicum (Sm . ) Hook. Plant Physiology, 1985, 78:
561-567
[6]摇 Carmona R, Vergara JJ, Lahaye M, et al. Light quality
affects morphology and polysaccharide yield and compo鄄
sition of Gelidium sesquipedale (Rhodophyceae). Jour鄄
nal of Applied Phycology, 1998, 10: 323-331
[7] 摇 Moe R, Morgan L, Grindal G. Growth and plant mor鄄
phology of Cucumis sativus and fuchsia伊hybrid are influ鄄
enced by light quality during the photoperiod and by
temperature alternations. Acta Horticulturae, 2002,
580: 229-234
[8]摇 Chu Z鄄X (储钟稀), Tong Z (童摇 哲), Feng L鄄J (冯
丽洁), et al. Effect of different light quality on photo鄄
synthetic characteristics of cucumber leaves. Acta Botan鄄
ica Sinica (植物学报), 1999, 41(8): 867-870 ( in
Chinese)
[9]摇 Pu G鄄B (蒲高斌), Liu S鄄Q (刘世琦), Liu L (刘摇
磊), et al. Effects of different light qualities on growth
and physiological characteristics of tomato seedlings. Ac鄄
ta Horticulturae Sinica (园艺学报), 2005, 32 (3):
420-425 (in Chinese)
[10]摇 Du H鄄T (杜洪涛), Liu S鄄Q (刘世琦), Zhang Z (张
珍). Effects of light qualities on growth and activity of
enzymes in leaves of color pimientos seedling. Acta Agri鄄
culturae Boreali鄄Sinica (华北农学报), 2005, 20(2):
45-48 (in Chinese)
[11]摇 Du J鄄F (杜健芳), Liao X鄄R (廖祥儒), Ye B鄄Q (叶
步青), et al. Effect of light quality on the growth and
antioxidant enzyme activities of rape seedlings. Chinese
Bulletin of Botany (植物学通报), 2002, 19(6): 743-
745 (in Chinese)
[12] 摇 Deng J鄄M (邓江明), Bin J鄄H (宾金华), Pan R鄄C
(潘瑞炽). Effects of light quality on the primary nitro鄄
gen assimination of rice (Oryza sativa L. ) seedlings.
Acta Botanica Sinica (植物学报), 2000, 42(3): 234-
238 (in Chinese)
[13] Corbineau F, Rudnicki RM, Goszczyska DM, et al. The
effect of light quality on ethylene production in leaves of
oat seedlings (Avena sativa L. ). Environmental and Ex鄄
469 应摇 用摇 生摇 态摇 学摇 报摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 21 卷
perimental Botany, 1995, 35: 227-233
[14]摇 Folta KM. Green light stimulates early stem elongation,
antagonizing light鄄mediated growth inhibition. Plant
Physiology, 2004, 135: 1407-1416
[15]摇 Zhang R鄄H (张瑞华), Zhan K鄄Y (战琨友), Xu K
(徐摇 坤). Efects of covering with colored plastic films
on the pigment content and photosynthesis in ginger leav鄄
es. Acta Horticulturae Sinica (园艺学报), 2007, 34
(6): 1465-1470 (in Chinese)
[16]摇 Feng D鄄X (冯冬霞), Shi S鄄J (施生锦). Research on
night measurement methods of leaf area. Chinese Agri鄄
cultural Science Bulletin (中国农学通报), 2005, 21
(6): 150-154 (in Chinese)
[17]摇 Zhao S鄄J (赵世杰). Guide of Plant Physiological Ex鄄
periment. Beijing: China Agriculture Press, 2002 ( in
Chinese)
[18] Li S鄄S (李韶山), Pan R鄄C (潘瑞炽). Blue light
effects in plants. Plant Physiology Communications (植
物生理学通讯), 1993, 29 (4): 248 -252 ( in Chi鄄
nese)
[19]摇 Miyashita Y, Kitaya Y, Kozai T, et al. Effects of red
and far鄄red light on the growth and morphology of potato
plantlets in vitro: Using light emitting diode as a light
source for microprogation. Acta Horticulturae, 1995,
393: 189-194
[20] 摇 John JL, Courtney WH, Decoteau DR. Photocontrol of
Dioscorea alata plantlet growth. Scientia Horticulturae,
1993, 54: 255-265
[21]摇 Kurepin LV, Walton LJ, Reid DM. Interaction of red to
far red light ratio and ethylene in regulating stem elonga鄄
tion of Helianthus annuus. Plant Growth Regulation,
2007, 51: 53-61
[22]摇 Li S鄄M (李书民). The applications of light quality con鄄
trol film in facility horticulture. China Vegetables (中国
蔬菜), 2000(suppl. ): 54-57 (in Chinese)
[23] Kowallik W. Blue light effects on respiration. Annual
Review of Plant Physiology, 1982, 33: 51-72
[24]摇 Zheng J (郑摇 洁), Hu M鄄J (胡美君), Guo Y鄄P (郭
延平). Regulation of photosynthesis by light quality and
its mechanism in plants. Chinese Journal of Applied
Ecology (应用生态学报), 2008, 19(7): 1619-1624
(in Chinese)
[25]摇 Voskresenskaya NP. Responses and activity of the pho鄄
tosynthetic apparatus under photoregulation. Soviet Plant
Physiology, 1987, 34: 669-684
[26]摇 Li S鄄S (李韶山), Pan R鄄C (潘瑞炽). Effect of blue
light on metabolism of carbohydrate and protein in rice
(Oryza sativa L. )seedlings. Acta Phytophysiologica Sin鄄
ica (植物生理学报), 1995, 21(1): 22-28 ( in Chi鄄
nese)
[27] Rey M, Diaz S, Rodriguez R. Exogenous polyamines
improve rooting of hazel microshoots. Plant Cell, Tissue
and Organ Culture, 1994, 36: 303-308
[28]摇 Liu Y鄄L (刘亚丽), Li M鄄J (李明军), Li J (李 摇
洁), et al. Rooting and physiological and biochemical
changes of chrysanthemum cuttings under red light.
Plant Physiology Communications (植物生理学通讯),
2003, 39(4): 337 (in Chinese)
[29]摇 Shi L (石摇 岭), Huo X鄄W (霍秀文), Hao C鄄G (郝
春光). Effects of different light quality on organ culture
of Cucumis melo L. var. cantalupensis Naut. Journal of
Inner Mongolia Agricultural University ( Natural Sci鄄
ence) (内蒙古农业大学学报·自然科学版), 1999
(2): 76-79 (in Chinese)
[30]摇 Stuefer JF, Huber H. Differential effects of light quanti鄄
ty and spectral light quality on growth, morphology and
development of two stoloniferous Potentilla species. Oeco鄄
logia, 1998, 117: 1-8
[31]摇 Xu K (徐摇 凯), Guo Y鄄P (郭延平), Zhang S鄄L (张
上隆). Effect of light quality on photosynthesis and
chlorophyll fluorescence in strawberry leaves. Scientia
Agricultura Sinica (中国农业科学), 2005, 38 (2):
369-375 (in Chinese)
[32]摇 Wu MC, Hou CY, Jiang CM, et al. A novel approach
of LED light radiation improves the antioxidant activity of
pea seedlings. Food Chemistry, 2007, 101: 1-6
[33]摇 Saebo A, Krekling T, Appelgren M. Light quality af鄄
fects photosynthesis and leaf anatomy of birch plantlets
in vitro. Plant Cell, Tissue and Organ Culture, 1995,
41: 177-185
[34] Deng L鄄N (邓丽娜). The Changing of Chloroplast
Growth Regulated by Light. PhD Thesis. Beijing: Bei鄄
jing Forestry University, 2007 (in Chinese)
[35]摇 Han S鄄H (韩善华), Zhang H (张摇 红), Gu S鄄F (顾
素芳), et al. Starch granules related to the development
of chloroplasts in Ammopiptanthus mongolicus. Acta Bo鄄
tanica Boreali鄄occidentalia Sinica (西北植物学报),
2001, 21(1): 107-111 (in Chinese)
[36] 摇 Bondada BR, Syvertsen JP. Concurrent changes in net
CO2 assimilation and chloroplast ultrastructure in nitro鄄
gen deficient citrus leaves. Environmental and Experi鄄
mental Botany, 2005, 54: 41-48
作者简介摇 张摇 欢,女,1986 年生,硕士.主要从事植物生物
技术及发育生物学研究. E鄄mail: 2007116026@ njau. edu. cn
责任编辑摇 张凤丽
5694 期摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 张摇 欢等: 光质对番茄和莴苣幼苗生长及叶绿体超微结构的影响摇 摇 摇 摇 摇 摇