Abstract:PnET-Ⅱ (photosynthesis and evapotranspiration) model is an ecosystem process model, which requires extensive input parameters, including vegetation parameters, soil parameters and climate parameters, to simulate net primary productivity (NPP). This study estimated the total and wood (stem and branch) NPPs of Korean pine and broadleaf species in Fenglin Natural Reserve, and examined the responses of the NPPs to the variations of the input parameters in PnET-II model. The simulation results indicated that among the vegetation parameters in PnET-Ⅱ model, the variation of canopy parameters had greater effects on the simulated NPPs of Korean pine and broadleaf species, and the response of Korean pine’s total NPP to vegetation parameters was larger than that of broadleaf species’. The variation of soil water holding capacity (WHC) had smaller effects on the NPPs of Korean pine and broadleaf species, and the response of Korean pine’s NPP to the WHC was somewhat smaller than that of broadleaf trees’. In climate scenarios, the variation of air temperature had the greatest effects on the simulated NPP of Korean pine and broadleaf trees, followed by precipitation and radiation. Different climate scenarios had different effects on the predicted results. The total and wood NPPs of Korean pine and broadleaf trees had different responses to the input parameters.