免费文献传递   相关文献

鸡血藤的化学成分(英文)



全 文 : 32 Chin J Nat Med Jan. 2012 Vol. 10 No. 1 2012 年 1 月 第 10 卷 第 1 期

Chinese Journal of Natural Medicines 2012, 10(1): 0032−0035
doi: 10.3724/SP.J.1009.2012.00032
Chinese
Journal of
Natural
Medicines







Chemical constituents of Spatholobus suberectus
TANG Ren-Neng1, 2, QU Xiao-Bo1*, GUAN Shu-Hong2*, XU Ping-Ping2,
SHI Yang-Yang2, GUO De-An2
1 Changchun University of Chinese Medicine, Changchun 130117, China;
2 Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM
Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
Available online 20 Jan. 2012
[ABSTRACT] AIM: To investigate chemical constituents of Spatholobus suberectus Dunn. METHODS: Isolation and purification
were carried out by column chromatographic methods. Compounds were characterized based on their physical characteristics and
spectra data. RESULTS: Seventeen compounds were isolated from ethanol extract of S. suberectus. The structures were elucidated as
prestegane B (1), (2R, 3R)-buteaspermanol (2), (+)-medioresinol (3), (2R, 3R)-3,7-dihydroxyflavanone (4), benzeneethanol (5), 4, 7,
2′-trihydroxy-4′-methoxyisoflavanol (6), naringenin (7), blumenol A (8), protocatechuic acid ethyl ester (9), liquiritigenin (10), 7,
4-dihydroxy-8-methoxy-isoflavone (11), 3, 5, 7, 3, 5-pentahydroxyflavanone (12), protocatechuic acid (13), glycyroside (14),
8-methylretusin-7-O-β-D-glucopyranoside (15), 3, 3, 4, 5, 6, 7, 8-heptahydroxyflavan (16), and dulcisflavan (17). CONCLUSION:
All compounds are firstly isolated from the title plant and compounds 1, 3 were isolated from the Spatholobus genus for the first time.
[KEY WORDS] Spatholobus suberectus; Flavonoids; Chemical constituents
[CLC Number] R284.1 [Document code] A [Article ID] 1672-3651(2012)01-0032-04

1 Introduction
The family Leguminosae comprises more than 750 gen-
era (in 40 tribes) and 18 000 species distributed around the
world[1]. The phytochemical studies of the family Legumino-
sae are considerably extensive. Several types of compounds
including alkaloids, non-protein amino acids, amines, flavon-
oids, isoflavonoids, coumarins, phenylpropanoids, an-
thraquinones, di-, sesqui- and triterpenes, cyanogenic gly-
cosides and lectins have been described in this family[1].
Spatholobus suberectus Dunn (Leguminosae), as a traditional
Chinese herbal medicine, is mainly distributed in Fujian

[Received on] 05-Jan.-2011
[Research funding] This project was supported by the grants from
National Science & Technology Major Project “Key New Drug
Creation and Manufacturing Program”, China (Nos.
2009ZX09308-005, 2009ZX09311-001, 2009ZX09502-020,
2009ZX09304-002), and Major Projects of Knowledge Innovation
Program of the Chinese Academy of Sciences (No.
KSCX2-YW-R-166).
[*Corresponding author] QU Xiao-Bo: Prof., Tel.:
86-431-86172508; GUAN Shu-Hong: Prof., Fax: 86-21-50272223.
E-mail: quxiaobo0504@hotmail.com; shuhong_ guan@163.com
These authors have no any conflict of interest to declare.
Province and Guangxi Zhuang Autonomous Region of
China[2]. It has been extensively used to promote blood cir-
culation and treat rheumatism, anemia, menoxenia, arthralgia
and other disorders clinically[3]. This paper reports the isola-
tion and structure elucidation of 17 compounds, all of which
were isolated for the first time from the title plant.
2 Apparatus and Reagents
1H NMR and 13C NMR spectra were recorded on a Var-
ian Mercury-plus 400-NMR spectrometer at 400 MHz and
100 MHz. ESI-MS spectra were recorded on the Bruker es-
quire/HCT Series Ion Trap. Semi-preparative HPLC was also
employed. Column chromatography was performed on silica
gel (48−75 μm, Qingdao Marine Chemical, Qingdao, China)
and Sephadex LH-20 (Amersham Pharmacia Biotech., Hong
Kong, China). Silica gel GF254 plates (Qingdao Marine
Chemical Co., Ltd.) were used for TLC.
3 Plant Material
The vine stems of S. suberectus were collected from
Guangxi Province, China, in March 2009, and identified by
Prof. GUO De-An. A voucher specimen (No. 20090302) is
deposited in Shanghai Research Center for Modernization of
Traditional Chinese Medicine, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, China.
TANG Ren-Neng, et al. /Chinese Journal of Natural Medicines 2012, 10(1): 32−35
2012 年 1 月 第 10 卷 第 1 期 Chin J Nat Med Jan. 2012 Vol. 10 No. 1 33

4 Extraction and Isolation
The dried stems of S. suberectus (4.5 kg) were succes-
sively refluxed with 95% and 70% ethanol three times at
boiling temperature for 2 h. All the above extracts were com-
bined and concentrated in vacuum to obtain the total extracts
(600 g). The extracts (600 g) were subsequently suspended in
water and partitioned successively with petroleum ether,
chloroform, ethyl acetate, and n-butanol respectively. The
chloroform fraction (26 g) was fractionated by CC (silica gel,
petroleum ether/Me2CO, 20 : 1 to 0 : 1) to give fractions 1-3.
Fr. 1 (1.8 g) was subjected to CC (silica gel, petroleum eth-
er/Me2CO, 10 : 1 to 0 : 1) and purified by CC (Sephadex
LH-20, petroleum ether/CHCl3/MeOH, 2 : 1 : 1) to provide
compounds 1 (13.0 mg) and 2 (10.6 mg). Fr. 2 (3.4 g) was
separated by CC (silica gel, petroleum ether/Me2CO, 20 : 1 to
0 : 1), and CC (Sephadex LH-20, petroleum ether/
CHCl3/MeOH, 2 : 1 : 1) giving compounds 3 (5.5 mg), 4 (4.4
mg) and 5 (4 mg). Fr. 3 (5 g) was subjected to CC (silica gel,
petroleum ether/Me2CO, 10 : 1 to 0 : 1), then purified by CC
(Sephadex LH-20, petroleum ether/CHCl3 /MeOH, 2 : 1 : 1)
and semi-preparative HPLC (Agilent Eclipse XDB-C18, 5
mm, 9.4 mm × 250 mm, 1.5 mL·min–1, UV detection at 250
nm), to afford compounds 6 (35.5 mg), 7 (5.5 mg) and 8
(34.6 mg).
The ethyl acetate fraction (55 g) and n-BuOH-soluble
fraction (250 g) were isolated by similar procedures as de-
scribed above obtaining compounds 9-17 (9: 12.8 mg, 10: 3.0
mg, 11: 8.0 mg, 12: 7.0 mg, 13: 73.8 mg, 14: 6.1 mg, 15: 3.2
mg, 16: 10.0 mg, and 17: 12.8 mg) respectively.
5 Identification
Compound 1 White crystal (CHCl3). 13C NMR (100
MHz, CDCl3) δ: 178.7 (C-9), 148.9 (C-3), 147.7 (C-3),
146.6 (C-4), 144.4 (C-4), 130.3 (C-1), 129.4 (C-1), 122.0
(C-6), 120.5 (C-6), 114.0 (C-2), 111.6 (C-2), 111.4 (C-5),
111.1 (C-5), 71.2 (C-9), 55.8 (OCH3-4), 55.7 (OCH3-4), 46.5
(C-8), 40.8 (C-8), 38.1 (C-7), 34.6 (C-7). Compound 1 was
characterized as prestegane B by comparison of 13C NMR
data with the literature[4].
Compound 2 Greenish crystal (CHCl3). 1H NMR (400
MHz, DMSO-d6) δ: 7.55 (2H, m, H-2, 6), 7.48-7.41 (3H, m,
H-3, 4, 5), 7.19 (1H, s, H-5), 6.43 (1H, s, H-8), 5.68 (1H, br
d, J = 3.7 Hz, OH-3), 5.14 (1H, d, J = 11.6 Hz, H-2), 4.53
(1H, dd, J = 11.6, 3.7 Hz, H-3), 3.80 (3H, s, CH3). 13C NMR
(100 MHz, DMSO-d6) δ: 192.5 (C-4), 157.5 (C-9), 155.3
(C-7), 144.3 (C-1), 137.9 (C-6), 128.8 (C-2), 128.5 (C-3,
C-5, C-6), 128.3 (C-4), 111.0 (C-10), 107.6 (C-5), 103.6
(C-8), 84.0 (C-3), 72.9 (C-2), 56.3 (OCH3). Compound 2 was
characterized as (2R, 3R)-buteaspermanol by comparison of
1H NMR and 13C NMR data with the literature[5].
Compound 3 White powder. 1H NMR (400 MHz,
CDCl3) δ: 6.58 (4H, s, H-2, H-2, H-6, H-6), 5.54 (2H, s,
4-OH, 4-OH), 4.73 (2H, d, J = 3.8 Hz, H-2, H-6), 4.28 (2H,
dd, J = 8.8, 6.6 Hz, H-4a, H-8a), 3.92 (2H, d, J = 3.1 Hz,
H-4b, H-8b), 3.89 (9H, s, -OCH3 × 3), 3.10 (2H, m, H-1,
H-5). 13C NMR (100 MHz, CDCl3) δ: 147.1 (C-3, C-5),
146.7 (C-3), 145.3 (C-4), 134.8 (C-4), 132.2 (C-1), 131.4
(C-1), 118.5 (C-6), 115.1 (C-5), 110.8 (C-2), 103.6 (C-2,
C-6), 85.2 (C-2), 85.1 (C-6), 71.0 (C-4), 70.8 (C-8), 56.3
(-OCH3×2), 56.0 (-OCH3), 54.4 (C-1), 54.1 (C-5). Compound
3 was characterized as (+)-medioresinol by comparison of 1H
NMR and 13C NMR data with the literature[6].
Compound 4 White solid. ESI-MS m/z 255 [M − H]−.
1H NMR (400 MHz, DMSO-d6) δ: 7.85 (1H, d, J = 8.4 Hz,
H-5), 7.49 (2H, m, J = 7.6 Hz, H-2, 6), 7.58 (2H, m, J = 8.4
Hz, H-3, 4, 5), 6.60 (1H, d, J = 8.4 Hz, H-8), 6.44 (1H, s,
H-6), 5.11 (1H, d, J = 12 Hz, H-2), 4.58 (1H, d, J = 12 Hz.
H-3). 13C NMR (100 MHz, DMSO-d6) δ: 192.5 (C-4), 163.7
(C-9), 163.7 (C-7), 136.5 (C-1), 129.6 (C-5), 129.3 (C-4),
128.7 (C-3, C-5), 127.5 (C-2, C-6), 112.3 (C-10), 111.2
(C-6), 103.5 (C-8), 83.9 (C-2), 73.2 (C-3). 1H and 13C NMR
spectra suggested that 4 was a dihydroflavanol type of com-
pound as H-2 and H-3 was observed at δ 5.11 (1H, d, J = 12
Hz; δC 83.9) and δ 4.58 (1H, dd, J = 12 Hz; δC 73.2), respec-
tively. The substituent group of 7-OH was determined by
comparison of 1H NMR and 13C NMR data with the literature
[7]. The absolute configurations of C-2R and C-3R were elu-
cidated by comparing the coupling constants (J = 12 Hz)
between the protons of H-2 and H-3, and the CD spectrum
with the literature data[8] (Fig. 1). Thus, 4 was was character-
ized as (2R,3R)-3,7-dihydroxyflavanone.
Compound 5 Colorless needle (CHCl3), mp 180−181
°C, 1H NMR (400 MHz, CDCl3) δ: 6.89 (1H, d , J = 8.0 Hz,
H-6), 6.7 (1H, br s, H-3), 6.6 (1H, br d, J = 8.0 Hz, H-5), 3.73
(3H, s, OCH3), 3.56 (2H, m, H-2), 2.79 (2H, m, H-1). 13C
NMR (100 MHz, CDCl3) δ: 146.5 (C-2), 144. 2 (C-1), 130.2
(C-4), 121.5 (C-5), 114.4 (C-6), 111.5 (C-3), 63.7 (C-2), 55.8
(-OCH3), 38.7 (C-1). Compound 5 was characterized as
benzeneethanol by elucidation of its 1D (1H and 13C) and 2D
(HMBC) NMR spectra (Fig. 2).
Compound 6 Colorless needle (MeOH), mp 195−197
°C, 1H NMR (400 MHz, acetone-d6) δ: 7.32 (1H, d, J = 8.4
Hz, H-5), 7.22 (1H, d, J = 8.4 Hz, H-6′), 6.57 (1H, dd, J = 2.4,
8.4 Hz, H-6), 6.45 (1H, dd, J = 2.4, 8.4 Hz, H-5′), 6.38 (1H, d,
J = 2.4 Hz, H-3′), 6.37 (1H, d, J = 2.4 Hz, H-8), 5.50 (1H, d,
J = 6.0 Hz, H-4), 4.26 (1H, dd, J = 9.6, 16.0 Hz, H-2b), 3.74
(3H, s, OCH3-4′), 3.59 (1H, m, H-3), 3.58 (1H, m, H-2a). 13C
NMR (100 MHz, acetone-d6) δ: 161.6 (C-4′), 161.4 (C-2′),
159.3 (C-7), 157.3 (C-9), 132.7 (C-5), 125.5 (C-6′), 120.0
(C-1′), 112.3 (C-10), 110.1 (C-6), 106.5 (C-5′), 103.5 (C-8),
96.8 (C-3′), 79.0 (C-4), 66.7 (C-2), 55.3 (OCH3-4′), 39.9
(C-3). Compound 6 was characterized as 4, 7,
2′-trihydroxy-4′-methoxyisoflavanol by comparison of 1H
NMR and 13C NMR data with the literature[9].
Compound 7 Pale yellow powder (MeOH), ESI-MS
m/z 271 [M − H]−. 1H NMR (400 MHz, DMSO-d6) δ: 7.29
(2H, d, J = 8.4 Hz, H-2, 6), 6.78 (2H, d, J = 8.4 Hz, H-3, 5),
TANG Ren-Neng, et al. /Chinese Journal of Natural Medicines 2012, 10(1): 32−35
34 Chin J Nat Med Jan. 2012 Vol. 10 No. 1 2012 年 1 月 第 10 卷 第 1 期

5.87 (2H, br s, H-6, 8), 5.42 (1H, dd, J = 2.8, 12.8 Hz, H-2),
3.22 (1H, dd, J = 16.8, 12.8 Hz, H-3a), 2.65 (1H, dd, J = 17.2,
2.0 Hz, H-3b). Compound 7 was characterized as naringenin
by comparison of 1H NMR data with the literature[10] and
confirmed by ESI-MS data.
Compound 8 White powder. ESI-MS m/z 223 [M −
H]−. 1H NMR (400 MHz, CDCl3) δ: 5.88 (1H, s, H-4), 5.81
(1H, d, J = 15.0 Hz, H-8), 5.79 (1H, d, J = 15.0 Hz, H-7),
4.39 (1H, m, H-9), 2.42 (2H, J = 17.2 Hz, H-2b), 2.21 (2H, J
= 17.2 Hz, H-2a), 1.28 (3H, d, J = 1.5 Hz, H-13), 1.26 (3H, d,
J = 6.6 Hz, H-10), 1.05 (3H, s, H-11) , 0.97(3H, s, H-12). 13C
NMR (100 MHz, CDCl3) δ: 198.5 (C-3), 163.5 (C-5), 135.6
(C-8), 128.9 (C-7), 126.7 (C-4), 78.9 (C-6), 67.9 (C-9), 49.6
(C-2), 41.1 (C-1), 23.9 (C-10), 23.6 (C-12), 22.9 (C-11),
19.0 (C-13). Compound 8 was characterized as blumenol A
by comparison of 1H NMR and 13C NMR data with the
literature[11].
Compound 9 White sand crystal (MeOH). mp 124−126
°C. 1H NMR (400 MHz, CD3OD) δ: 7.35 (1H, d, J = 3.0 Hz,
H-2), 7.31 (1H, dd, J = 9.0, 3.0 Hz, H-6), 6.80 (1H, d, J = 9.0
Hz, H-5), 4.24 (2H, q, J = 7.1 Hz, OCH2), 1.28 (3H, t, J = 7.1
Hz, CH3). 13C NMR (100 MHz, CD3OD) δ: 165.7 (COOH),
150.2 (C-4), 144.9 (C-3), 121.8 (C-6), 120.8 (C-1), 116.2
(C-2), 115.3 (C-5), 60.1 (-CH3), 14.3 (-OCH2-). Compound 9
was characterized as protocatechuic acid ethyl ester by com-
parison of 1H NMR and 13C NMR data with the literature[12].
Compound 10 Pale yellow powder. mp 198−199 °C.
ESI-MS m/z 255 [M − H]−. 1H NMR (400 MHz, CD3OD) δ:
7.67 (1H, d, J = 8.8 Hz, H-5), 7.27 (2H, dd, J = 6.8, 2.0 Hz,
H-2, 6), 6.76 (2H, dd, J = 8.4 , 2.0 Hz, H-3, 5), 6.44 (1H, dd,
J = 8.4, 2.0 Hz, H-6), 6.30 (1H, d, J = 1.8 Hz, H-8), 5.72 (1H,
dd, J = 12.8, 2.7 Hz, H-2), 3.00 (1H, dd, J = 16.8, 12.8 Hz,
H-3a), 2.64 (1H, dd, J = 16.8, 3.2 Hz, H-3b). 13C NMR (100
MHz, CD3OD) δ: 190.1 (C-4), 164.6 (C-7), 163.2 (C-9),
157.6 (C-4), 130.3 (C-1), 129.3 (C-5), 128.4 (C-2, C-6),
115.1 (C-3, C-5), 113.5 (C-10), 110.5 (C-6), 102.6 (C-8),
78.9 (C-2), 43.2 (C-3). Compound 10 was characterized as
liquiritigenin by comparison of 1H NMR and 13C NMR data
with the literature[10].
Compound 11 Pale yellow powder. ESI-MS m/z 283
[M − H]−. 1H NMR (400 MHz, DMSO-d6) δ: 8.34 (1H, s,
H-2), 7.74 (1H, d, J = 8.8 Hz, H-5), 7.40 (2H, d, J = 8.8 Hz,
H-2, 6), 7.04 (1H, d, J = 9.2 Hz, H-6), 6.83 (2H, d, J = 8.0
Hz, H-3, 5), 3.88 (3H, s, OCH3), 13C NMR (100 MHz,
DMSO-d6) δ: 174.8 (C-4), 157.2 (C-7), 157.2 (C-4), 152.8
(C-2), 150.8 (C-9), 134.8 (C-8), 130.1 (C-2, C-6), 123.0
(C-3), 122.4 (C-1), 120.6 (C-10), 120.6 (C-5), 116.4 (C-6),
114.9 (C-3, C-5), 60.8 (-OCH3). Compound 11 was charac-
terized as 7, 4-dihydroxy-8-methoxy-isoflavone by com-
parison of 1H NMR and 13C NMR data with the literature[13].
Compound 12 Colorless powder. ESI-MS m/z 303 [M
– H]−. 1H NMR (400 MHz, DMSO-d6) δ: 11.90 (1H, s,
OH-5), 10.81 (1H, s, OH-7), 8.93 (1H, s, OH-3), 8.92 (1H, s,
OH-5), 6.87 (1H, d, J = 1.7 Hz, H-4), 6.74 (2H, d, J = 1.7
Hz, H-2, 6), 5.91 (1H, d, J = 2.1 Hz, H-6), 5.86 (1H, d, J =
2.1 Hz, H-8), 5.74 (1H, d, J = 6.4 Hz, OH-3), 4.98 (1H, d, J =
11.2 Hz, H-2), 4.50 (1H, dd, J = 11.6, 5.2 Hz, H-3). 13C NMR
(100 MHz, DMSO-d6) δ: 197.8 (C-4), 166.9 (C-7), 163.5
(C-5), 162.7 (C-9), 145.9 (C-3), 145.1 (C-5), 128.2 (C-1),
119.6 (C-6), 115.5 (C-2), 115.3 (C-4), 100.6 (C-10), 96.1
(C-6), 95.1 (C-8), 83.2 (C-2), 71.7 (C-3). Compound 12 was
characterized as 3, 5, 7, 3, 5-pentahydroxyflavanone by
comparison of 1H NMR and 13C NMR data with the litera-
ture[14].
Compound 13 White needle (MeOH). mp 198−199 °C.
1H NMR (400 MHz, CD3OD) δ: 7.54 (1H, d, J = 2.4−Hz,
H-2), 7.52 (1H, dd, J = 8.1, 2.4 Hz, H-6), 6.88 (1H, d, J = 8.5
Hz, H-5). 13C NMR (100 MHz, CD3OD) δ: 170.7 (COOH),
152.0 (C-4), 146.5 (C-3), 124.4 (C-6), 123.6 (C-1), 118.2
(C-2), 116.2 (C-5). Compound 13 was characterized as pro-
tocatechuic acid by comparison of 1H NMR and 13C NMR
data with the literature[15].
Compound 14 Pale yellow powder. 1H NMR (400
MHz, DMSO-d6) δ: 8.30 (1H, s, H-2), 8.02 (1H, d, J = 8.8 Hz,
H-5), 7.48 (2H, d, J = 8.8 Hz, H-2, 6), 7.21 (1H, d, J = 2.1
Hz, H-8), 7.17 (1H, dd, J = 1.6 Hz, H-6), 6.97 (2H, d, J = 8.4
Hz, H-3, 5), 5.34 (1H, d, J = 1.2 Hz, H-1), 5.05 (1H, d, J =
8.2 Hz, H-1), 4.05 (1H, d, J = 12.6 Hz, Hb-4), 3.93 (1H, d,
J = 2.1 Hz, H-2), 3.91 (1H, dd, J = 12.2, 1.4 Hz, Hb-6),
3.78 (3H, s, OCH3), 3.75 (1H, d, J = 8.2 Hz, H-2), 3.75 (1H,
d, J = 12.6 Hz, Ha-4), 3.65 (1H, dd, J = 12.2, 6.1 Hz, Ha-6),
3.53 (1H, s, H-5), 3.43 (1H, d, J = 8.2 Hz, H-5), 3.38 (1H,
d, J = 8.2 Hz, H-3), 3.34 (1H, d, J = 8.2 Hz, H-4). 13 C
NMR (100 MHz, DMSO-d6) δ: 178.4 (C-4), 163.8 (C-7),
161.7 (C-4), 159.7 (C-9), 155.7 (C-2), 131.8 (C-2, C-6),
128.8 (C-5), 126.4 (C-1), 125.8 (C-3), 120.6 (C-10), 117.5
(C-6), 115.3 (C-3, C-5), 111.4 (C-1), 105.3 (C-1), 100.9
(C-8), 81.2 (C-3), 79.1 (C-2), 78.9 (C-5), 78.8 (C-2),
78.60 (C-3), 75.9 (C-4), 71.7 (C-4), 66.3 (C-5), 62.9
(C-6), 56.2 (OCH3). Compound 14 was characterized as
glycyroside by comparison of 1H NMR and 13C NMR data
with the literature[16-17].
Compound 15 White prism. 1H NMR (400 MHz,
DMSO-d6) δ: 8.49 (1H, s, H-2), 7.81 (1H, d, J = 8.8 Hz, H-5),
7.54 (2H, d, J = 9.2 Hz, H-2, 6), 7.34 (1H, d, J = 9.2 Hz,
H-6), 7.02 (2H, d, J = 9.2 Hz, H-3, 5), 5.12 (1H, d, J = 7.2
Hz, H-1), 3.94 (3H, s, 4-OCH3), 3.81 (3H, s, 8-OCH3),
3.16~3.79 (2H, m, H-2, 5). 13C NMR (100 MHz, DMSO-d6)
δ: 174.8 (C-4), 159.1 (C-4), 154.9 (C-7), 153.7 (C-2), 150.1
(C-9), 136.9 (C-8), 130.8 (C-2, C-6), 123.9 (C-1), 123.4
(C-3), 120.4 (C-5), 119.4 (C-10), 114.3 (C-6), 113.7 (C-3,
C-5), 100.5 (C-1), 77.2 (C-2, C-5), 73.2 (C-3), 69.4
(C-4), 61.3 (8-OCH3), 60.5 (C-6), 55.1 (4-OCH3).
Compound 15 was characterized as
8-methylretusin-7-O-β-D- glucopyranoside by comparison of
1H NMR and 13C NMR data with the literature[18].
Compound 16 Yellow granule. 1H NMR (400 MHz,
CD3OD) δ: 6.83 (1H, d, J = 1.6 Hz, H-2), 6.76 (1H, d, J =
TANG Ren-Neng, et al. /Chinese Journal of Natural Medicines 2012, 10(1): 32−35
2012 年 1 月 第 10 卷 第 1 期 Chin J Nat Med Jan. 2012 Vol. 10 No. 1 35

8.4 Hz H-5), 6.72 (1H, dd, J = 2.0, 8.2 Hz, H-6), 4.56 (1H, d,
J = 7.1 Hz, H-2), 3.97 (1H, m, J = 4.7, 7.8 Hz H-3), 2.82 (1H,
dd, J = 5.5, 16.1 Hz, H-4b), 2.53 (1H, dd, J = 8.4, 16.1 Hz,
H-4a). 13C NMR (100 MHz, CD3OD) δ: 151.2 (C-7), 148.6
(C-5), 147.3 (C-9), 146.7 (C-4), 146.4 (C-3), 138.6 (C-6),
132.7 (C-8), 132.2 (C-1), 120.5 (C-6), 116.5 (C-2), 115.7
(C-5), 101.2 (C-10), 83.3 (C-2), 69.3 (C-3), 29.0 (C-4).
Compound 16 was characterized as 3, 3, 4, 5, 6, 7,
8-heptahydroxyflavan by comparison of 1H NMR and 13C
NMR data with the literature[19].
Compound 17 Pale brown solid. mp 240−242 °C. 1H
NMR (400 MHz, CDCl3 + one dorp CD3OD) δ: 6.97 (1H, s,
H-2), 6.78 (2H, br s, H-5, H-6), 4.80 (1H, s, H-2), 4.17 (1H,
br s, H-3), 2.85 (1H, dd, J = 15.0, 4.5 Hz, H-4a), 2.82 (1H, dd,
J = 15.0, 3.0 Hz, H-4b). 13C NMR (100 MHz, CDCl3 + one
dorp CD3OD) δ: 156.4 (C-8), 156.1 (C-5), 155.8 (C-7), 144.4
(C-8a, C-4), 144.3 (C-3), 130.8 (C-6, C-1), 118.2 (C-6),
114.8 (C-5), 113.9 (C-2), 98.8 (C-4a), 78.5 (C-2), 66.2 (C-3),
28.0 (C-4). Compound 17 was characterized as dulcisflavan
by comparison of 1H NMR and 13C NMR data with the
literature[20].
References
[1] Wink M, Mohamed G. Evolution of chemical defense traits in
the Leguminosae: mapping of distribution patterns of secon-
dary metabolites on a molecular phylogeny inferred from nu-
cleotide sequences of the rbcL gene [J]. Biochem Syst Ecol,
2003, 31(8): 897-917.
[2] Nanjing University of Chinese Medicine. Zhong Yao Da Ci
Dian [M]. (second edn.) Shanghai: Science and Technology
Press, 2006: 1688-1690.
[3] Lee MH, Lin YP, Hsu FL, et al. Bioactive constituents of
Spatholobus suberectus in regulating tyrosinase-related pro-
teins and mRNA in HEMn cells [J]. Phytochemistry, 2006,
67(12): 1262-1270.
[4] Meragelman KM, McKee TC, Boyd MR. 10-Demethoxyste-
gane, a new lignan from Steganotaenia araliacea [J]. J Nat
Prod, 2001, 64(11): 1480-1482.
[5] Maurya R, Yadav DK, Singh G, et al. Osteogenic activity of
constituents from Butea monosperma [J]. Bioorg Med Chem
Lett, 2009, 19(3): 610-613.
[6] Yuan XH, Xu CX, Zhou M, et al. Chemical constituents of
Daphne tangutica [J]. Nat Prod Res Dev, 2007, 19(1): 55-58.
[7] Park YH, Moon BH, Lee EJ, et al. 1H and 13C NMR data of
hydroxyflavone derivatives [J]. Magn Reson Chem, 2007, 45(8):
674-679.
[8] Comar JM, Phale OJK, Abegaz BM, et al. Phloroglucinol
derivatives and flavones from Helichrysum paronychioides [J].
Bull Chem Soc Ethiop, 2006, 20(1): 61-68.
[9] Gomotsang B, Cornelius CWW, Runner RTM, et al. Two new
isoflavanoids from Bolusanthus speciosus [J]. Bull Chem Soc
Ethiopia, 2001, 15(2): 131-136.
[10] Dong CX, Wu KS, Shi SP, et al. Flavanoids from Clematis
hexapetala [J]. J Chin Pharm Sci, 2006, 15(1): 15-20.
[11] Xie GB, Zhao MB, Wang XJ, et al. Chemical constituents of
Ilex pernyi [J]. Chin Tradit Herb Drugs, 2008, 39(8):
1132-1135.
[12] Zhao YY, Cui CB, Cai B, et al. Chemical constituents from
Bauhinia variegata L. [J]. Chin J Med Chem, 2005, 15(5):
302-304.
[13] Shi HM, Huang ZQ, Wen J, et al. A new isoflavone from Ab-
rus mollis [J]. Chin J Nat Med, 2006, 4(1): 30-31.
[14] Yi JH, Zhang GL, Li BG. Studies on the chemical constituents
of Pseudotsuga sinensis [J]. Acta Pharm Sin, 2002, 37(5):
352-354.
[15] Wang XS, Che QM, Li YM, et al. A study on chemical con-
stituents in seeds of Crataegus pinnatifida Bge. var major
N.E.Br. [J]. China J Chin Mater Med, 1999, 24(12): 739-740.
[16] Liu Q, Liu YL. Chemical constituents of Glycyrrhiza eury-
carpa P.C.Li [J]. Acta Pharm Sin, 1989, 24(7): 525-531.
[17] Ma WG, Fukushi Y, Ducrey B, et al. Phenolic glycosides from
Eriosema tuberosum [J]. Phytochemistry, 1999, 51(8):
1087-1093.
[18] Lu WJ, Chen JY, Wei H, et al. Isoflavones from Abrus mollis
[J]. Chin Tradit Herb Drugs, 2004, 35(12): 1331-1333.
[19] Moyo F, Gashe BA, Majinda RRT. A new flavan from
Elephantorrhiza goetzei [J]. Fitoterapia, 1999, 70(4): 412-416.
[20] Deachathai S, Mahabusarakam W, Phongpaichit S, et al. Phe-
nolic compounds from the fruit of Garcinia dulcis [J]. Phyto-
chemistry, 2005, 66(19): 2368-2375.
鸡血藤的化学成分
唐任能 1, 2,曲晓波 1*,关树宏 2*,徐萍萍 2,史洋洋 2,果德安 2
1 长春中医药大学,长春 130117;2中国科学院上海药物研究所 上海中药现代化研究中心国家工程实验室,上海 201203
【摘 要】 目的:研究鸡血藤的化学成分。方法:利用各种层析方法分离和纯化,并利用光谱学和理化性质来鉴定化合物
结构。结果:从中分离得到 17 个化合物,分别鉴定为 prestegane B (1), (2R, 3R)-buteaspermanol (2), (+)-medioresinol (3), (2R, 3R)-3,
7-dihydroxyflavanone (4), benzeneethanol (5), 4, 7, 2′-trihydroxy-4′-methoxyisoflavanol (6), naringenin (7), blumenol A (8), protocate-
chuic acid ethyl ester (9), liquiritigenin (10), 7, 4-dihydroxy-8-methoxy-isoflavone (11), 3, 5, 7, 3, 5-pentahydroxyflavanone (12), pro-
tocatechuic acid (13), glycyroside (14), 8-methylretusin-7-O-β-D-glucopyranoside (15), 3, 3, 4, 5, 6, 7, 8-heptahydroxyflavan (16), dul-
cisflavan (17)。结论:所有的化合物均为首次从该植物中分离得到,其中 1, 3 为首次从该属植物中分离得到。
【关键词】 鸡血藤;黄酮;化学成分

【基金项目】 十一五国家新药创制重大专项(Nos. 2009ZX09308-005, 2009ZX09311-001, 2009ZX09502-020, 2009ZX09304-002)和中国
科学院知识创新工程 (No. KSCX2-YW-R-166)资助项目