免费文献传递   相关文献

芜萍的化学成分



全 文 :http://www.cibj.com/
应用与环境生物学报 Chin J Appl Environ Biol 2014,20 ( 6 ) : 1016-1019
2014-12-25 DOI: 10.3724/SP.J.1145.2014.03048
芜萍(Wolffia globosa)又名无根萍、瓢沙等,属于浮萍
科(Lemnaceae),为水生漂浮或悬浮的 细小草本. 芜萍生长
快,适应性强,分布极广,除北极和沙漠地区外,广布全球各
地的湖湾、水塘、池沼或其它静水水域中. 在我国南北各省
均有分布[1-2]. 芜萍生长繁殖快,在理想的生长条件下,16 h-24
d内即可完成一次生物量的扩增[3],且栽培成本低廉,在泰国
已经有芜萍的商业化种植 [4]. 芜萍的蛋白含量很高,约为干重
的6.8%-45% [5],在缅甸、老挝、泰国等东南亚国家,人们将
芜萍作为蔬菜食用已有较悠久的历史 [6],研究还表明芜萍蛋
白可以部分替代动物饲料中的豆类蛋白 [4, 7-8]. 因此,芜萍可
望成为人类食品和动物饲料新的廉价蛋白来源. 同时,芜萍
在污水处理领域显示出了巨大的潜力,它能去除养殖废水中
的氮、磷等营养物质,还可以改善水体理化性质,抑制藻类
生长 [9-11]. Kotowska等采用高效毛细管气相色谱-质谱(GC-
MS)联用技术对芜萍化学成分进行了分析,发现它含有脂类、
固醇类、氨基酸、碱基、核苷、甘油酯类等物质[12]. 目前,关于
芜萍黄酮类成分尚未见系统研究,为促进浮萍资源的科学开
发利用,我们对芜萍的化学成分进行了研究,利用柱层析、高
效液相色谱等技术手段分离得到8个 黄酮苷化合物,经质谱、
核磁共振等波谱方法将其鉴定为芹菜素-7-O-β-D-吡喃葡糖
苷(1)、牡荆苷(2)、异牡荆苷(3)、荭草苷(4)、异荭草苷
(5)、木犀草素-7-O-β-D-吡喃葡糖苷(6)、异荭草苷-6´´-O-
β-D-吡喃葡糖苷(7)和芹菜素-6,8-di-C-β-D-吡喃葡糖苷(8).
1 仪器与材料
Perkin-Elmer Spectrum One FT-IR光谱仪;Perkin-Elmer
S2 Lambda 35 UV/VIS分光光度计;Bruker BioTOF-Q高分辨
质谱仪;Avance Bruker 600核磁共振仪(TMS作为内标,化
学位移值δ用10-6表示);薄层层析用硅胶(GF254)和柱层析
收稿日期 Received: 2014-03-28 接受日期 Accepted: 2014-05-12
*中国科学院知识创新工程重点方向项目和国家科技支撑计划项目
资助 Supported by the Major Projects of Knowledge Innovation
Program of Chinese Academy of Sciences and the Science and
Technology Pillar Program of China
**通讯作者 Cor responding authors (E-mai l: l igy@cib.ac.cn;
zhaohai@cib.ac.cn)
芜萍的化学成分*
王妮妮1, 2 方 扬1 杨 涛1 李国友1** 赵 海1**
1中国科学院成都生物研究所 成都 610041
2中国科学院大学 北京 100049
摘 要 浮萍科芜萍属(Wolffi a Hork. ex Schleid.)是世界上最小的开花植物,可作为蔬菜、饲料使用. 为促进科学地开
发利用芜萍资源,采用MCI、硅胶柱层析、凝胶色谱以及高效液相色谱等方法对芜萍(Wolffia globosa)的化学成分进
行研究. 从乙醇提取物中分离得到8个化合物,利用质谱、核磁共振等波谱技术分别鉴定为芹菜素-7-O-β-D-吡喃葡糖
苷(1)、牡荆苷(2)、异牡荆苷(3)、荭草苷(4)、异荭草苷(5)、木犀草素-7-O-β-D-吡喃葡糖苷(6)、异荭草苷-6´´-
O-β-D-吡喃葡糖苷(7)和芹菜素-6,8-di-C-β-D-吡喃葡糖苷(8). 本研究表 明,芜萍(W. globosa)的主要化学成分为芹
菜素和木犀草素的碳苷和氧苷化合物,其生物活性广泛,因此芜萍是一种黄酮类天然产物的新来源. 图1 参24
关键词 芜萍;黄酮;荭草苷;异荭草苷;牡荆苷;异牡荆苷
CLC Q949.71+7.306
Chemical constituents of Wolffi a globosa*
WANG Nini1, 2, FANG Yang1, YANG Tao1, LI Guoyou1** & ZHAO Hai1**
1Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
2University of Chinese Academy of Sciences, Beijing, 100049, China
Abstract The Wolffia genus of the family Lemnaceae is the smallest flowering plant, which could be used as fodder and
vegetable. This study was carried out for a comprehensive understanding of the chemical constituents of Wolffi a globosa using
MCI, silic gel, Sephadex LH-20 column chromatography and HPLC methods. As a result, eight compounds were isolated and
identifi ed from the EtOH extract of W. globosa. On the basis of MS and NMR spectral data, their structures were identifi ed
to be apigenin-7- O-β-D-glucoside (1), vitexin (2), i sovitexin (3), orientin (4), isoorientin (5), luteolin-7-O-β-D-glucoside
(6), is oorientin-6´´-O-β-D-glucoside (7), and apigenin-6,8-di-C-β-D-glucoside (8). The result demonstrated that glycosidic
derivatives of apigenin and luteolin with a broad range of bioactivities are the main components in W. globosa, and that W.
globosa is a new source for bioactive fl avones. Fig 1, Ref 24
Keywords Wolffi a globosa; fl avones; orientin; isoorientin; vitexin; isovitexin
101720卷 王妮妮等
http://www.cibj.com/ Chin J Appl Environ Biol 应用与环境生物学报
用硅胶(200-300目)为青岛海洋化工厂生产,葡聚糖凝胶
Sephadex LH-20美国GE公司生产,MCI材料是日本三菱化学
公司生产;高效液相色谱仪为上海伍丰科学仪器有限公司产
品,制备柱为C-18柱(10 × 250 mm,5 μm,kromasil).
芜萍于2012年2月采自云南昆明,由著名瑞士生态学家
Elias Landolt鉴定,保存于中国科学院成都生物研究所应用
与环境微生物中心.
2 提取与分离
取干燥芜萍粉末150 g,用95%乙醇(2 L/次,共3次)热提
取,浸提液经滤纸过滤除掉不溶物,减压浓缩得浸膏(16.5
g). 浸膏用热水分散,然后依次用石油醚、乙酸乙酯、正丁醇
萃取,得到正丁醇萃取物(3.5 g).
正丁醇部分通过MCI柱色谱,以乙醇-水(0:100,20:80,
40:60,60:40,100:0,V/V)为洗脱剂梯度洗脱,经TLC分析,
合并得到A、B、C、D四个组分. B部分经过正相硅胶柱层析,
用氯仿-甲醇(8:1,6:1,4:1)溶液梯度洗脱得到化合物4(28
mg)和7、8的混合物,化合物7和8的混合物经半制备HPLC
(C18柱,254 nm,30%甲醇-水,2.5 mL/min)纯化得到7(8
mg)和8(7 mg). C组分经凝胶柱Sephadex LH-20分离后,再
用半制备HPLC(C18柱,254 nm,38%甲醇-水,2.0 mL/min)
纯化,得到化合物2(25 mg)和5(30 mg). D组分经正相硅胶
柱色谱,以氯仿-甲醇溶液为洗脱剂,梯度 洗脱得到化合物
1、3和6的混合物,该混合物再经凝胶柱(Sephadex LH-20)层
析,分离得到1(6 mg)和3、6的混合物. 化合物3和6的混合物
进一步通过HPLC(C18柱,254 nm,42%甲醇-水,2.0 mL/min)
制备,纯化得到3(35 mg)和6(5 mg). 化合物的结构见图1.
3 结构鉴定
化合物1:C21H20O10,黄色粉末;UV(MeOH)λmax (log ε)
268(4.42),333(4.45)nm;IR(KBr)νmax 3 400,1 670,1 610,
1 498,1 080 cm-1;HR-ESI-MS:m/z 431 [M - H]-. 1H-NMR(600
MHz,DMSO-d6)δ:12.97(1H,s,5-OH),7.96(2H,d,J =
8.46 Hz,H-2´,6´),6.93(2H,d,J = 8.52 Hz,H-3´,5´),6.85
(1H,s,H-3),6.83(1H,s,H-8),6.45(1H,s,H-6),5.06
(1H,d,J = 6.66 Hz,H-1´´). 以上数据与文献报道的芹菜
素-7-O-β-D-葡糖苷的数据 [13]基本一致,确定此化合物为芹菜
素-7-O-β-D-葡糖苷.
化合物2:C21H20O10,黄色粉末;UV(MeOH)λmax(log
ε)269(4.40),330(4.38)nm;IR(KBr)νmax 3 385,1 653,1
623,1 070 cm-1;HR-ESI-MS:m/z 431 [M - H]-. 1H-NMR(600
MHz,DMSO-d6)δ:13.14(1H,s,5-OH),8.00(2H,d,J =
8.04 Hz,H-2´,6´),6.89(2H,d,J = 7.74 Hz,H-3´,5´),6.74
(1H,s,H-3),6.23(1H,s,H-6),4.72(1H,d,J = 9.18 Hz,
H-1´´),3.17-3.80(5H,m,糖上质子);13C-NMR(150 MHz,
DMSO-d6)δ:163.6(C-2),102.2(C-3),181.7(C-4),160.3(C-
5),98.4(C-6),163.3(C-7),104.5(C-8),155.9(C-9),103.4
(C-10),121.5(C-1´),128.5(C-2´,6)´,115.7(C-3´,5)´,161.1
(C-4´),73.3(C-1´´),70.8(C-2´´),78.6(C-3´´),70.4(C-
4´)´,81.6(C-5´)´,61.2(C-6´)´. 以上数据与文献报道的牡荆
苷的数据 [14]基本一致,故将该化合物鉴定为牡荆苷.
化合物3:C21H20O10,黄色粉末;UV(MeOH)λmax(log
ε)273(4.05),335(4.30)nm;IR(KBr)νmax 3 434,1 655,1
600,1 075 cm-1;HR-ESI-MS:m/z 431 [M - H]-. 1H-NMR(600
MHz,DMSO-d6)δ:13.20(1H,s,5-OH),7.92(2H,d,J =
8.52 Hz,H-2´,6´),6.94(2H,d,J = 8.58 Hz,H-3´,5´),6.75
(1H,s,H-3),6.53(1H,s,H-8),4.59(1H,d,J = 9.84 Hz,
H-1´´),3.10-4.03(5H,m,糖上质子);13C-NMR(150 MHz,
DMSO-d6)δ:163.7(C-2),102.9(C-3),182.1(C-4),160.8
(C-5),109.0(C-6),163.4(C-7),93.8(C-8),156.4(C-9),
103.5(C-10),121.2(C-1 ´),128.6(C-2´,6)´,116.2(C-3´,5)´,
161.3(C-4)´,73.2(C-1´ )´,70.7(C-2´´),79.1(C-3´´),70.4(C-
4´´),81.6(C-5´´),61.6(C-6´´). 以上数据和文献中的数据 [15]
基本一致,确定该化合物是异牡荆苷.
化合物4:C21H20O11,黄色粉末;UV(MeOH)λmax(log ε)
257(3.86),269(4.50),350(4.05)nm;IR(KBr)νmax 3 410,
O
O
OH
OH
R2O
R1
R3
O
O
OH
OH
R2O
R1
R3
OH
R1 R2 R3
1 H glc H
2 glc H H
3 H H glc
8 glc H glc
R1 R2 R3
4 glc H H
5 H H glc
6 H glc H
7 H H (6-O-glucosyl)glc
图1 化合物1-8的化学结构.
Fig. 1 Chemical structures of compounds 1-8.
1018
应用与环境生物学报 Chin J Appl Environ Biol http://www.cibj.com/
芜萍的化学成分 6期
1 655,1 613,1 069 cm-1;ESI-MS:m/z 447 [M - H]-. 1H-NMR
(600 MHz,DMSO-d6)δ:13.17(1H,s,5-OH),7.49(2H,
overlapped,H-2´,6´),6.88(1H,d,J = 8.20 Hz,H-5´),6.65
(1H,s,H-6),6.28(1H,s,H-3),4.69(1H,d,J = 9.84 Hz,
H-1´´),3.15-3.85(5H,m,糖上质子);13C-NMR(150 MHz,
DMSO-d6)δ:164.2(C-2),102.5(C-3),182.1(C-4),160.4
(C-5),98.2(C-6),162.7(C-7),104.6(C-8),156.1(C-9),
104.1(C-10),122.0(C-1´),114.1(C-2´),145.9(C-3´),149.7
(C-4´),115.7(C-5´),119.4(C-6´),73.4(C-1´´),70.8(C-
2´´),78.8(C-3´´),70.7(C-4´´),82.1(C-5´´),61.7(C-6´´). 以
上数据与文献中报道的荭草苷数据 [16]基本一致,确定该化合
物是荭草苷.
化合物 5:C 21H 2 0O11,黄色粉末;U V(M e O H)λ m a x
(log ε)272(3.96),340(4.15)nm;IR(KBr)νmax 3 420,
1 652,1 450,1 079 cm-1;ESI-MS:m/z 447 [M - H]-. 1H -NMR
(600 MHz,DMSO-d6)δ:13.57(1H,s,5-OH),7.41(2H,
overlapped,H-2´,6´),6.90(1H,d,J = 8.08 Hz,H-5´),6.68
(1H,s,H-3),6.50(1H,s,H-8),4.59(1H,d,J = 9.80 Hz,
H-1´´),3.10-4.05(5H,m,糖上质子);13C-NMR(150 MHz,
DMSO-d6)δ:163.7(C-2),102.8(C-3),181.9(C-4),160.7(C-
5),108.9(C-6),163.3(C-7),93.5(C-8),156.2(C-9),103.4
(C-10),121.4(C-1´),113.3(C-2´),145.8(C-3´),149.8(C-
4)´,116.1(C-5)´,119.0(C-6)´,73.1(C-1´ )´,70.7(C-2´´),79.0
(C-3´´),70.2(C-4´´),81.6(C-5´´),61.5(C-6´´). 以上数据与
文献报道的异荭草苷数据 [17]基本一致,故将其鉴定为异荭草
苷.
化合物6:C21H20O11,黄色粉末;UV(MeOH)λmax(log ε)
256(4.30),267(4.25),358(4.43)nm;IR(KBr)νmax 3 390,
1 650,1 595,1 043 cm-1;ESI-MS:m/z 447 [M - H]-. 1H-NMR
(600 MHz,DMSO-d6)δ:12.97(1H,s,5-OH),7.44(2H,
overlapped,H-2´,6´),6.90(1H,brs,H-5´),6.78(1H,s,
H-8),6.73(1H,s,H-3),6.43(1H,s,H-6),5.07(1H,d,
J = 7.44 Hz,H-1´)´;13C-NMR(150 MHz,DMSO-d6)δ:164.5
(C-2),103.1(C-3),181.8(C-4),161.1(C-5),99.5(C-6),
163.0(C-7),94.7(C-8),156.9(C-9),105.3(C-10),121.3(C-
1´),113.5(C-2´),145.8(C-3´),150.0(C-4´),115.9(C-5´),
119.2(C-6)´,99.9(C-1´ )´,73.1(C-2´´),76.4(C-3´´),69.5(C-
4´´),77.1(C-5´´),60.6(C-6´´). 以上与文献中的数据 [18]基本
一致,故将该化合物鉴定为木犀草素-7-O-β-D-葡糖苷.
化合物7:C27H30O16,黄色粉末;UV(MeOH)λmax(log ε)
255(4.46),260(3.86),345(4.55)nm;IR(KBr)νmax 3 405,
1 597,1 450,1 100 cm-1;ESI-MS:m/z 609 [M - H]-. 1H-NMR
(600 MHz,DMSO-d6)δ:13.57(1H,s,5-OH),7.39(2H,
overlapped,H-2´,6´),6.88(1H,d,J = 8.16 Hz,H-5´),6.84
(1H,s,H-3),6.47(1H,s,H-8),4.58(1H,d,J = 9.42 Hz,
H-1´ )´,4.14(1H,d,J = 7.80 Hz,H-1´ ´´),2.95-4.09(10H,m,
糖上质子);13C-NMR(150 MHz,DMSO-d6)δ:163.7(C-2),
102.7(C-3),181.8(C-4),160.6(C-5),108.8(C-6),163.3(C-
7),93.7(C-8),156.3(C-9),103.2(C-10),121.5(C-1´),113.2
(C-2´),145.8(C-3´),150.1(C-4´),116.1(C-5´), 119.0(C-
6)´,73.1(C-1´ )´,70.5(C-2´´),76.9(C-3´´),70.1(C-4´´),79.8
(C-5´´),70.1(C-6´´),102.7(C-1´´´),73.3(C-2´´´),76.8(C-
3´´´),69.3(C-4´´´),78.9(C-5´´´),61.0(C-6´´´). 以上数据
与文献报道的数据 [19]基本一致,故确定此化合物是异荭草
苷-6´´ -O-β-D-葡糖苷.
化合物8:C27H30O15,黄色粉末;UV(MeOH)λmax(log ε)
271(3.98),333(4.53)nm;IR(KBr)νmax 3 395,1 605,1 450,
1 045 cm-1;ESI-MS:m/z 593 [M - H]-. 1H-NMR(600 MHz,
DMSO-d6)δ:13.70(1H,s,5-OH),8.00(2H,d,J = 8.20 Hz,
H-2´,6)´,6.94(2H,d,J = 8.40 Hz,H-3´,5)´,6.80(1H,s,
H-3),4.80(1H,d,J = 9.66 Hz,H-1´)´,4.75(1H,d,J = 9.78
Hz,H-1´´´),3.20- 3.89(10H,m,糖上质子);13C-NMR(150
MHz,DMSO-d6)δ:164.2(C-2),102.6(C-3),182.4(C-4),
158.2(C-5),107.5(C-6),160.8(C-7),105.3(C-8),155.1(C-
9),104.0(C-10),121.5(C-1´),129.1(C-2´,6)´,115.9(C-3´,
5´),161.3(C-4´),73.4(C-1´´),72.0(C-2´´),78.9(C-3´´),
70.6(C-4´´),82.0(C-5´´),61 .3(C-6´´),74.1(C-1´´´),71.0
(C-2´´´),77.8(C-3´´´),69.1(C-4´´´),81.0(C-5´´´),60.0(C-
6´´´). 以上数据与文献中的数据 [20]基本一致,确定该化合物
是芹菜素-6,8-di-C-β-D-葡糖苷.
4 结 论
芜萍为水生漂浮或悬浮植物,生长在营养贫瘠、污染、
紫外线照射等胁迫环境中. 大量的研究表明,为了适应各种
胁迫环境,植物往往会合成大量的黄酮成分以对抗环境的
胁迫 [21-22 ]. 本文的研究表明,芜萍的主要化学成分为木犀草
素和芹菜素的碳苷和氧苷类化合物,这可能是为了适应其生
长环境的胁迫压力长期进化的结果. 同时,黄酮类化合物具
有强的抗氧化及清除人体自由基的能力,对人类健康的功效
及安全性已经得到公认,并被普遍应用到食品添加剂及保
健品中. 芜萍中主要化学成分荭草苷、异荭草苷、牡荆苷等黄酮
化合物,具有消炎抑菌、抗氧化、抗病毒、抗癌等活性[23-24],对
人或动物的健康具有一定的益处. 本文研究结果表明,芜萍
作为动物饲料和人类蔬菜使用具有较高的安全性和一定的
科学性,同时芜萍有望成为活性黄酮类成分的新来源.
参考文献 [References]
1 印万芬. 我国主要浮萍科植物的开发利用[J]. 资源节约和综合利用,
1998 (2): 46-48 [Yin WF. Comprehensive exploitation and utilization of
the duckweed in China [J]. Resour Econ Compr Util, 1998 (2): 46-48]
2 陈兰钗 , 方扬, 靳艳玲, 陈谦 , 赵永贵, 肖瑶, 赵海. 浮萍干粉(Lemna
aequinoctialis)对Pb2+的吸收[J]. 应用与环境生物学报, 2013, 19 (6):
1046-1052 [Chen LC, Fang Y, Jin YL, Chen Q, Zhao YG, Xiao Y, Zhao H.
Biosorption of Pb2+ by dried powder of duckweed (Lemna aequinoctialis)
[J]. Chin J Appl Environ Biol, 2013, 19 (6): 1046-1052]
3 Reid Jr WS. Exploring duckweed (Lemna gibba) as a protein supplement
for ruminants using the boer goat (Caprahircus) as a model [D]. North
Carolina: North Carolina State University, 2004: 32
4 Chantiratikul A, Chantiratikul P, Sangdee A, Maneechote U, Bunchasak
C, Chinrasri O. Performance and carcass characteristics of Japanese
101920卷 王妮妮等
http://www.cibj.com/ Chin J Appl Environ Biol 应用与环境生物学报
quails fed diets containing Wolffia meal [Wolffia globosa (L). Wimm.]
as a protein replacement for soybean meal [J]. Int J Poul Sci, 2010, 9 (6):
562-566
5 Fasakin EA. Nutrient quality of leaf protein concentrates produced from
water fern (Azolla africana Desv) and duckweed (Spirodela polyrrhiza L.
Schleiden) [J]. Bioresour Technol, 1999, 69 (2): 185-187
6 Bhanthumnavin K, Mcgarry MG. Wolffi a arrhiza as a possible source of
inexpensive protein [J]. Nature, 1971, 232: 495
7 Suppadit T, Jaturasitha S, Sunthorn N, Poungsuk P. Dietary Wolffia
arrhiza meal as a substitute for soybean meal: its effects on the
productive performance and egg quality of laying Japanese quails [J].
Trop Anim Health Prod, 2012, 44 (7): 1479-1486
8 Chantiratikul A, Pooponpan P, Santhaweesuk S, Chantiratikul P,
Sangdee A, Maneechote U, Bunchasak C, Chinrasri O. Effect of Wolffi a
meal [Wolffi a globosa (L). Wimm.] as a dietary protein replacement on
performance and carcass characteristics in broilers [J]. Int J Poul Sci,
2010, 9 (7): 664-668
9 Fujita M, Mori K, Kodera T. Nutrient removal and starch production
through cultivation of Wolffi a arrhiza [J]. J Biosci Bioeng, 1999, 87 (2):
194-198
10 Suppadit T. Nutrient removal of eff luent from quail farm through
cultivation of Wolffia arrhiza [J]. Bioresour Technol, 2011, 102 (16):
7388-7392
11 鲍姝 , 方扬, 靳艳玲, 赵永贵, 赵海. 污水氮磷浓度对云南本地浮萍
生长及氮磷去除的影响[J]. 应用与环境生物学报, 2014, 20 (1): 56-
62 [Bao S, Fang Y, Jin YL, Zhao YG, Zhao H. Infl uence of ammonium
and phosphate concentration of sewage on the growth, nitrogen and
phosphorus removal of duckweed in Yunan [J]. Chin J Appl Environ
Biol, 2014, 20 (1): 56-62]
12 Kotowska U, Piotrowska A, Isidorova AG, Bajguz A, Isidorov VA. Gas
chromatographic-mass spectrometric investigation of the chemical
composition of the aquatic plant Wolffia arrhiza (Lemnaceae) [J].
Oceanol Hydrobiol St, 2013, 42 (2): 181-187.
13 Lee YH, Lee IR, Won WS, Park CH. Flavonoids of Elscholtzia cristata
[J]. Arch Pharm Res, 1988, 11 (3): 247-249
14 何文妮 , 叶敏 , 王宝荣 , 高慧媛 , 果德安, 吴立军 . 浮萍中黄酮类化
学成分的分离与鉴定[J]. 沈阳药科大学学报, 2010, 27 (11): 871-874
[He WN, Ye M, Wang BR, Gao HY, Guo DA, Wu LJ. Isolation and
identifi cation of fl avonoids in duckweed [J]. J Shenyang Pharm Univ,
2010, 27 (11): 871-874]
15 李微 , 陈发奎, 尹相武 , 刘晓秋 . 大青叶的化学成分 [J]. 沈阳药科
大学学报, 2005, 22 (1): 15-16, 44 [Li W, Chen FK, Yin XW, Liu XQ.
Chemical constituents of Folium isatidis [J]. J Shenyang Pharm Univ,
2005, 22 (1): 15-16, 44]
16 任正博, 张振学, 周伟利, 王金辉, 李铣. 金莲花化学成分研究[J]. 中
国现代中药, 2006, 8 (2): 14-15 [Ren ZB, Zhang ZX, Zhou WL, Wang
JH, Li X. Study on the chemical ingredients of Trollius chinensis [J].
Mod Chin Med, 2006, 8 (2): 14-15 ]
17 蒋才武, 高淑景, 黄健军. 壮药风车子叶化学成分研究[J]. 时珍国医
国药, 2011, 22 (5): 1146-1147 [Jiang CW, Gao SJ, Huang JJ. Chemical
constituents of Zhuang medicine Combretum alfrdii hance leaves [J].
Lishizhen Med Mater Med Res, 2011, 22 (5): 1146-1147]
18 杨彦松, 潘浪胜. 洋甘菊中黄酮类成分的分离与结构确定[J]. 应用
化工, 2008, 37 (6): 697-698 [Yang YS, Pan LS. Isolation and structural
determination of f lavones from Matricaria chamomilla L. [J]. Appl
Chem Ind, 2008, 37 (6): 697-698]
19 Kuo SH, Yen MH, Chung MI, Lin CN. A fl avone C-glycoside and an
aromatic glucoside from Gentiana species [J]. Phytochemistry, 1996, 41
(1): 309-312
20 Lu Y, Yeap Foo L. Flavonoid and phenolic glycosides from Salvia
offi cinalis [J]. Phytochemistry, 2000, 55 (3): 263-26 7
21 Akhtar TA, Lees HA, Lampi MA, Enstone D, Brain RA, Greenberg
BM. Photosynthetic redox imbalance infl uences fl avonoid biosynthesis
in Lemna gibba [J]. Plant Cell Environ, 2010, 33 (7): 1205-1219
22 Winkel-Shirley B. Biosynthesis of fl avonoids and effects of stress [J].
Curr Opin in Plant Biol, 2002, 5 (3): 218-223
23 Praveena R, Sadasivam K, Deepha V, Sivakumar R. Antioxidant
potential of orientin: a combined experimental and DFT approach [J]. J
M ol Struct, 2014, 1061: 114-123
24 Tripoli E, Guardia ML, Giammanco S, Majo DD, Giammanco M. Citrus
f lavonoids: Molecular structure, biological activity and nutritional
properties: a review [J]. Food Chem, 2007, 104 (2): 466-479