免费文献传递   相关文献

大苞藤黄化学成分研究及其互变异构体超高效液相色谱质谱联用分析(英文)



全 文 :天然产物研究与开发 Nat Prod Res Dev 2012,24:1055-1059,1074
文章编号:1001-6880(2012)08-1055-06
Received July 27,2011;Accepted November 15,2011
Foundation Item:The work were supported by National Natural Science
Foundation of China (No. 20702061)and financial support from the
Chinese Academy of Sciences (KSCX2-YW-R-172)
* Corresponding author Tel:86-691-8715910;E-mail:nazhi@ xtbg. org.
cn;huhb@ xtbg. ac. cn
大苞藤黄化学成分研究及其互变异构
体超高效液相色谱质谱联用分析
范青飞1,2,纳 智1* ,胡华斌1* ,许又凯1,唐 霆1
摘 要:从大苞藤黄枝叶的混合粉碎物中分离到 11 个化合物,运用光谱手段分别鉴定为 neobractatin(1) ,bras-
ixanthone B(2) ,5-O-methylxanthone V1(3) ,10-O-methylmacluraxanthone(4) ,isobractatin(5) ,xanthone V1(6) ,xe-
rophenone A(7) ,xerophenone B(8) ,bractatin(9) ,macluraxanthone(10)和 3-O-methylneobractatin (11)。本文首次
应用超高效液相色谱-质谱联用技术分离了异构体 7 和 8 并测定了其精确分子量。其中化合物 6 ~ 8 为首次从
该植物中发现。
关键词:大苞藤黄;化学成分;口山酮;互变异构体;超高效液相色谱分析
中图分类号:R284. 2 文献标识码:A
Chemical Constituents from Garcinia bracteata and Ultra Performance
Liquid Chromatography /Mass Spectrometry Guided Isolation of Tautomers
FAN Qing-fei1,2,NA Zhi1* ,HU Hua-bin1* ,XU You-kai1,TANG Ting1
1Laboratory of Tropical Plant Resource Science,Xishuangbanna Tropical Botanical Garden,Chinese Academy of
Sciences,Mengla 666303,China;2Graduate University of Chinese Academy of Sciences,Beijing 100049,China
Abstract:Eleven compounds have been isolated from the twigs of Garcinia Bracteata. Their structures were identified on
the basis of spectroscopic analysis and chemical evidence:neobractatin (1) ,brasixanthone B (2) ,5-O-methylxanthone
V1 (3) ,10-O-methylmacluraxanthone (4) ,isobractatin (5) ,xanthone V1 (6) ,xerophenone A (7) ,xerophenone B
(8) ,bractatin (9) ,macluraxanthone (10)and 3-O-methylneobractatin (11). Tautomers (7)and (8)were firstly con-
firmed on the basis of Ultra Performance Liquid Chromatography /Mass Spectrometry (UPLC /MS). Among them,com-
pounds 6-8 were isolated from G. bracteata for the first time.
Key words:Garcinia bracteata;chemical constituent;prenylated xanthone;tautomers;UPLC analysis
Introduction
The plant of genus Garcinia(Guttiferae)has been ex-
tensively investigated from phytochemical and biologi-
cal points of view. Xanthones [1],benzophenones[2],
flavonoids[3],biflavonoids[3] and triterpenes[4] have
been isolated from the African and southeast Asian spe-
cies of this genus.
Garcinia bracteata is distributed in the south of Yunnan
and Guangxi Province of P. R. China[5]. Several new
caged prenylxanthones and benzophenones have been
found previously in this plant[6,7]. As a part of our on-
going search for secondary metabolites from tropical
plants,a careful investigation of the twigs of G. bracte-
ata led to the isolation and identification of eleven pre-
nylated xanthone compounds. Compounds 6-8 were iso-
lated from the stem bark of G. bracteata for the first
time.
Experimental
General
Tautomers were analyzed on Waters Acquity UPLC
(Milford,MA,USA)-Synapt G2 Q-TOF (Manchester,
UK). 1D-NMR spectra were obtained on a Bruker-
DOI:10.16333/j.1001-6880.2012.08.010
DRX-500 spectrometer with chemical shifts recorded in
δ(ppm)using tetramethylsilane (TMS)as the internal
standard,while the coupling constants (J)were given
in hertz. ESI-MS were recorded on an API QSTAR Pul-
sar-1 mass spectrometer (Applied Biosystems /MDS
Sciex,Ontario,Canada). Column chromatography was
run on silica gel (200-300 mesh;10-40 mm) (Qingd-
ao Marine Chemical Inc.,P. R. China) ,Lichroprep
RP-18 gel (40-63 mm) (Merck)and Sephadex 1H-20
(Pharmacia). Fractions were monitored by thin layer
chromatography(TLC)and spots were visualised by heat-
ing silica gel plates sprayed with 10% H2SO4 /H2O.
Plant material
The twigs of G. bracteata were collected from Xishuang-
banna,Yunnan Province,P. R. China,in July 2010,and
authenticated by Professor Guo-da Tao,Xishuangbanna
Tropical Botanical Garden. A voucher specimen (No.
20100715)was deposited with the Ethnobotany Re-
search Group of Xishuangbanna Tropical Botanical Gar-
den,Chinese Academy of Sciences.
Fig. 1 Compounds isolated from G. bracteata
Extraction and isolation
The air-dried and powdered twigs of G. bracteata (4. 5
kg)were extracted with 95% aqueous ethanol and fil-
tered at room temperature. The filtrate was concentrated
and extracted with petroleum ether. The petroleum e-
ther extract (200 g)was subjected to silica gel column
chromatography eluted with a petroleum ether-EtOAc
(90 ∶ 10-40 ∶ 60)gradient system to furnish six frac-
tions,G1-G6. All fractions were collected and combined
by monitoring with TLC. Fraction G1 (26 g)was fur-
ther chromatographed over silica gel using Acetone-pe-
troleum ether (1∶ 20)to provide subfractions G1a-G1f.
G1a was purified by RP-18 (MeOH-H2O 60% -100%)
to give compound 1(15 mg) and compound 2(17
mg). G1c was purified by RP-18 (MeOH-H2O 60∶ 40-
100∶ 0)to compound 3(10 mg)and compound 4(30
mg). G1e (3. 5 g)was fractionated by Sephadex 1H-
20 (MeOH) ,to provide 5(10 mg)and 6(12 mg).
Fraction G2 (23 g)was further chromatographed over
silica gel using Acetone-petroleum ether (1 ∶ 20) to
provide three subfractions (A2a-A2c). A2a was puri-
fied by RP-18 (MeOH-H2O 60 ∶ 40-100 ∶ 0)to give a
mixture 7 and 8(24 mg). Tautomers 7 and 8 were first-
ly confirmed on the basis of UPLC Analysis. G3 part
was divided into three subfractions (B2a-B2c) ,B2a
was successively subjected to RP-18 (MeOH-H2O 60
∶ 40-100 ∶ 0)and Sephadex 1H-20 (MeOH)to yield
compound 9 (8 mg). B2c was purified by RP-18
(MeOH-H2O 60∶ 40-100∶ 0)to compounds 10(11 mg)
and 11(20 mg).
UPLC Analysis
UPLC was performed using a Waters ACQUITY UPLC
system. The chromatography was performed on a Waters
ACQUITY BEH C18 column (50 mm × 2. 1 mm,1. 7
6501 Nat Prod Res Dev Vol. 24
μm,Waters Corp.,Milford,MA,USA)The column
and autosampler were maintained at 30 and 10 °C,re-
spectively. The mobile phase consisted of (A)0. 1%
formic acid in water and (B)acetonitrile. The UPLC e-
luting conditions was optimized as follows:isocratic at
80% B (0-3 min). The flow rate was 0. 5 mL /min.
A pair of tautomeric isoprenylated benzophenone deriv-
atives isolated from G. bracteata in our study have been
firstly analyzed using the UPLC /MS equipment. On the
basis of these analytical results,we have given some
useful UPLC and MS information of xerophenones A
(7)and B (8) (see Fig. 2 and Fig. 3).
Identification
Neobractatin (1) C28 H32 O6,ESI-MS m/z:465 [M
+ H]+;yellow amorphous powder. 1H NMR (400
MHz,Acetone-d6)δ:12. 75(1H,s,l-OH) ,7. 22(1H,
d,J = 6. 8 Hz,H-8) ,6. 41(1H,dd,J = 10. 8,17. 6
Hz,H-12) ,6. 02(1H,s,H-2) ,5. 01(1H,t,J = 8. 0
Hz,H-22) ,4. 93(1H,d,J = 17. 6 Hz,H-13a) ,4. 78
(1H,d,J = 10. 8 Hz,H-13b) ,3. 89(1H,dd,J = 4. 4,
6. 8 Hz,H-7) ,2. 52(1H,d,J = 13. 6 Hz,H-16a) ,
2. 41(1H,dd,J = 7. 2,14. 4 Hz,H-21a) ,2. 32(1H,
dd,J = 4. 4,9. 6 Hz,H-17) ,2. 13(1H,dd,J = 8. 0,
14. 4 Hz,H-21b) ,1. 88(1H,dd,J = 10. 0,14. 0 Hz,
H-16b) ,1. 69(3H,s,24-Me) ,1. 63(3H,s,25-Me) ,
1. 34(3H,s,19-Me) ,1. 32(3H,s,20-Me). 13 C NMR
(100 MHz,Acetone-d6)δ:200. 2(C-5) ,179. 3(C-
9) ,167. 2(C-3) ,163. 8(C-1) ,160. 5(C-4a) ,152. 1
(C-12) ,136. 3(C-8) ,135. 8(C-23) ,135. 0(C-8a) ,
118. 7(C-22) ,113. 7(C-4) ,107. 1(C-13) ,102. 1(C-
9a) ,98. 2(C-2) ,84. 8(C-10a) ,84. 4(C-18) ,80. 1
(C-6) ,45. 8(C-7) ,42. 8(C-17) ,41. 7(C-11) ,33. 3
(C-16) ,31. 1(C-21) ,29. 7(C-20) ,29. 7(C-14) ,
28. 9(C-15) ,26. 9(C-19) ,26. 0(C-25) ,18. 1(C-24)
. The MS and NMR spectral data were consistent with
those of reported [8].
Brasixanthone B (2) C23 H22 O5,ESI-MS m/z:379
[M + H]+;yellow needles;mp. 227-229 °C (from ac-
etone). 1H NMR(500 MHz,CDCl3)δ:13. 11(1H,s,
1-OH) ,7. 60(1H,d,J = 3. 0 Hz,H-8) ,7. 41(1H,d,J
= 9. 0 Hz,H-12) ,7. 24(1H,m,H-6) ,6. 78(1H,d,J
= 10. 0 Hz,H-4) ,5. 64(1H,d,J = 10. 0 Hz,H-5) ,
5. 26(1H,t,J = 7. 0 Hz,H-2″) ,3. 51(2H,d,J = 7. 0
Hz,H-1″) ,1. 91(3H,s,4″-Me) ,1. 71(3H,s,5″-Me) ,
1. 51(6H,s,7,8-Me). 13 C NMR(125 MHz,CDCl3)
δ:181. 2(C-9) ,158. 2(C-3) ,155. 0(C-1) ,154. 5(C-
4a) ,153. 4(C-7) ,150. 0(C-10a) ,131. 4(C-3″) ,
127. 4(C-5) ,124. 4(C-6) ,122. 0(C-2″) ,120. 5(C-
8a) ,118. 8(C-5) ,115. 5(C-4) ,108. 1(C-8) ,107. 3
(C-4) ,104. 0(C-2) ,103. 1(C-9a) ,78. 0(C-6) ,
28. 2(C-7 and C-8) ,25. 6(C-5″) ,21. 3(C-1″) ,
17. 8(C-4″). The MS and NMR spectral data were con-
sistent with those of reported [9].
5-O-methylxanthone V1 (3) C24H24O6,ESI-MS m/
z:409[M + H]+;yellow amorphous powder;1H NMR
(400 MHz,CDCl3) δ:13. 24(1H,s,l-OH) ,7. 92
(1H,d,J = 8. 8 Hz,H-8) ,7. 41(1H,d,J = 8. 8 Hz,H-
7) ,6. 74(1H,d,J = 10. 0 Hz,H-4) ,6. 38(1H,s,
HO-6) ,5. 61(1H,d,J = 10. 0 Hz,H-5) ,5. 22(1H,t,
J = 7. 2 Hz,H-2″) ,4. 13(3H,s,5-OMe) ,3. 51(2H,
d,J = 7. 2 Hz,H-1″) ,1. 86(3H,s,4″-Me) ,1. 61(3H,
s,5″-Me) ,1. 48(6H,s,7,8-Me). 13 C NMR(100
MHz,CDCl3)δ:181. 4(C-9) ,158. 1(C-3) ,156. 0(C-
1) ,154. 2 (C-6) ,153. 8 (C-4a) ,149. 5 (C-10a) ,
133. 7(C-5) ,131. 8(C-3″) ,127. 4(C-5) ,122. 1(C-
2″) ,121. 8(C-8) ,115. 7(C-4) ,114. 8(C-8a) ,112. 2
(C-7) ,107. 4(C-4) ,104. 7(C-2) ,102. 8(C-9a) ,
78. 1(C-6) ,61. 7(5-OMe) ,28. 3(C-7 and C-8) ,
25. 8(C-4″),21. 6(C-1″),18. 0(C-5″). The MS and NMR
7501
Vol. 24 FAN Qing-fei,et al:Chemical Constituents from Garcinia Bracteata and Ultra Performance
Liquid Chromatography /Mass Spectrometry Guided Isolation of Tautomers
spectral data were consistent with those of reported [7].
10-O-methylmacluraxanthone (4) C24 H24 O6,ESI-
MS m/z:409[M + H]+;yellow amorphous powder;1H
NMR(400 MHz,CDCl3)δ:13. 69(1H,s,l-OH) ,7. 93
(1H,d,J = 8. 8 Hz,H-8) ,6. 99(1H,d,J = 8. 8 Hz,H-
7) ,6. 75(1H,d,J = 10. 0 Hz,H-4) ,6. 34(1H,dd,J
= 10. 0,17. 2 Hz,H-2″) ,5. 59(1H,s,H-5) ,4. 89
(2H,dd,J = 10. 0,17. 2 Hz,H-3″) ,3. 96(3H,s,5-
OMe) ,1. 73(6H,s,4″,5″-Me) ,1. 48(6H,s,7,8-
Me). 13 C NMR(100 MHz,CDCl3)δ:180. 7(C-9) ,
159. 3(C-3) ,156. 5(C-6) ,155. 0(C-1) ,154. 9(C-
4a) ,150. 6(C-2″) ,149. 7(C-10a) ,134. 1(C-5) ,
127. 3(C-5) ,122. 1(C-8) ,115. 9(C-4) ,114. 6(C-
4) ,113. 4(C-8a) ,112. 7(C-7) ,107. 9(C-3″) ,105. 4
(C-2) ,103. 3(C-9a) ,78. 2(C-6) ,62. 4(5-OMe) ,
41. 1(C-1″) ,30. 01(C-4″,5″) ,27. 8(C-7,8). The
MS and NMR spectral data were consistent with those
of reported [10].
Isobractatin (5) C28H32O6,ESI-MS m/z:465[M +
H]+;yellow amorphous powder;1H NMR(500 MHz,
CDCl3)δ:13. 09(1H,s,1-OH) ,7. 47(1H,d,J = 7. 0
Hz,H-8) ,6. 01(1H,s,H-2) ,4. 37(1H,q,H-12) ,
4. 36(1H,m,H-17) ,3. 49(1H,dd,J = 5. 0,7. 0 Hz,
H-7) ,2. 59(2H,m,H-16) ,2. 33(1H,dd,J = 5. 0,
13. 5 Hz,H-21a) ,1. 74(3H,s,25-Me) ,1. 59(3H,s,
15-Me) ,1. 39(3H,s,19-Me) ,1. 33(1H,m,H-21b) ,
1. 26(3H,s,24-Me) ,1. 17(3H,s,14-Me) ,1. 08(3H,
s,20-Me). 13 C NMR(125 MHz,CDCl3)δ:203. 7(C-
6) ,178. 9(C-9) ,168. 4(C-3) ,166. 2(C-1) ,155. 9
(C-4a) ,135. 3(C-8) ,134. 1(C-8a) ,133. 6(C-18) ,
117. 5(C-17) ,113. 5(C-13) ,110. 7(C-4) ,101. 3(C-
9a) ,92. 6(C-2) ,90. 9(C-12) ,90. 8(C-10a) ,84. 5
(C-5) ,82. 9(C-23) ,49. 3(C-22) ,47. 0(C-7) ,43. 1
(C-11) ,30. 7(C-25) ,29. 0(C-24) ,28. 9(C-16) ,
25. 9(C-21) ,25. 5(C-19) ,23. 8(C-14) ,21. 0(C-
15) ,16. 8(C-20),13. 4(C-13). The MS and NMR spec-
tral data were consistent with those of reported [11].
Xanthone V1 (6) C23 H22 O6,ESI-MS m/z:395 [M
+ H]+;yellow amorphous powder;1H NMR (400
MHz,Acetone-d6)δ:13. 69(1H,s,l-OH) ,7. 62(1H,
d,J = 8. 0 Hz,H-8) ,6. 98(1H,d,J = 8. 0 Hz,H-7) ,
6. 68(1H,d,J = 10. 0 Hz,H-4) ,5. 72(1H,d,J =
10. 0 Hz,H-5) ,5. 29(1H,t,J = 4. 0 Hz,H-2″) ,3. 54
(2H,d,J = 4. 0 Hz,H-1″) ,1. 85(3H,s,4″-Me) ,1. 64
(3H,s,5″-Me) ,1. 48(6H,s,7,8-Me). 13 C NMR
(100 MHz,Acetone-d6)δ:181. 4(C-9) ,158. 1(C-
3) ,156. 0(C-1) ,154. 2(C-6) ,153. 8(C-4a) ,149. 5
(C-10a) ,133. 1(C-5) ,131. 8(C-3″) ,127. 4(C-5) ,
122. 1(C-2) ,121. 8(C-8) ,115. 7(C-4) ,114. 8(C-
8a) ,112. 2(C-7) ,107. 4(C-4) ,104. 7(C-2) ,102. 8
(C-9a) ,78. 1(C-6’) ,28. 3(C-7 and C-8) ,25. 8(C-
4″),21. 6(C-1″),18. 0(C-5″). The MS and NMR spectral
data were consistent with those of reported [12].
Xerophenone A (7) C33 H42 O5,HRESIMS m/z:
519. 3112( [M + H]+;calc. 519. 3110) ,colorless a-
morphous powder. 1H NMR(400 MHz,CDCl3)δ:7. 42
(1H,d,J = 7. 2 Hz,H-31) ,7. 31(2H,d,J = 7. 2 Hz,
H-30,32) ,5. 58(2H,t,J = 7. 6,7. 2 Hz,H-12) ,5. 36
(1H,t,J = 6. 0,6. 4 Hz,H-22) ,4. 62(1H,s,H-19a) ,
4. 54(1H,s,H-19b) ,2. 85(1H,dd,J = 8. 8,14. 8 Hz,
H-11) ,2. 53(1H,dd,J = 6. 4,15. 2 Hz,H-21) ,2. 08
(1H,d,J = 14. 0 Hz,H-5β) ,1. 89(1H,dd,J = 5. 2,
14. 8 Hz,H-2α) ,1. 73(4H,s,H-5α,24) ,1. 70(6H,
s,H-14,15) ,1. 61(3H,s,H-20) ,1. 58(3H,s,H-
25) ,1. 26(3H,s,H-26) ,1. 02(1H,dd,J = 12. 4,
14. 4 Hz,H-2β). 13 C NMR(100 MHz,CDCl3) δ:
203. 7(C-9) ,199. 8(C-7) ,191. 9(C-27) ,144. 9(C-
18) ,136. 7(C-13) ,135. 1(C-23) ,135. 0(C-28) ,
131. 9(C-29) ,128. 3 (C-31) ,127. 9 (C-30. 32) ,
121. 4(C-12) ,119. 9(C-22) ,110. 5(C-19) ,110. 0
(C-8) ,104. 7(C-10) ,82. 4(C-4) ,60. 6(C-6) ,52,5
(C-1) ,40. 4(C-5) ,39. 6(C-3) ,37. 7(C-2) ,34. 9(C-
17) ,34. 6(C-21) ,27. 9(C-16) ,27. 3(C-11) ,26. 2
(C-14,C-24) ,24. 7(C-26) ,22. 2(C-20) ,18. 1(C-
15) ,18. 0(C-25). The MS and NMR spectral data
were consistent with those of reported [13].
Xerophenone B (8) C33 H42 O5,HRESIMS m/z:
519. 3112( [M + H]+;calc. 519. 3110) ,colorless a-
morphous powder. 1H NMR(400 MHz,CDCl3)δ:7. 42
(1H,d,J = 7. 2 Hz,H-31) ,7. 31(2H,d,J = 7. 2 Hz,
H-30,H-32) ,5. 58(2H,t,J = 7. 6,7. 2Hz,H-12) ,
5. 36(1H,t,J = 6. 0,6. 4 Hz,H-22) ,4. 62(1H,s,H-
19a) ,4. 54(1H,s,H-19b) ,2. 85(1H,dd,J = 8. 8,
14. 8 Hz,H-11) ,2. 53(1H,dd,J = 5. 6,14. 8 Hz,H-
21) ,2. 08(1H,d,J = 14. 0 Hz,H-5β) ,1. 89(1H,dd,
8501 Nat Prod Res Dev Vol. 24
J = 5. 2,14. 8 Hz,H-2α) ,1. 73(4H,overlap,H-5α,H-
24) ,1. 70(6H,s,H-14,H-15) ,1. 61(3H,3,H-20) ,
1. 58(3H,s,H-25) ,1. 26(3H,s,H-26) ,1. 02(1H,
dd,J = 12. 4,14. 4 Hz,H-2β). 13 C NMR(100 MHz,
CDCl3)δ:203. 7(C-9) ,199. 8(C-7) ,191. 9(C-27) ,
144. 9(C-18) ,136. 7(C-13) ,135. 1(C-23) ,135. 0
(C-28) ,131. 9(C-29) ,128. 5(C-31) ,127. 7(C-30,
32) ,121. 9(C-11) ,121. 4(C-12) ,120. 5(C-22) ,
110. 5(C-19) ,110. 0(C-8) ,104. 7(C-10) ,82. 4(C-
4) ,60. 6(C-6) ,52,5(C-1) ,41. 8(C-5) ,39. 6(C-3) ,
37. 7(C-2) ,34. 9(C-17) ,34. 6(C-21) ,27. 8(C-16) ,
26. 2(C-14,C-24) ,24. 7(C-26) ,22. 2(C-20) ,18. 1
(C-15) ,18. 0(C-25). The MS and NMR spectral data
were consistent with those of reported [13].
Bractatin (9) C28 H32 O6,ESI-MS m/z:465 [M +
H]+;yellow amorphous powder;1H NMR(500 MHz,
CDCl3)δ:13. 04(1H,s,l-OH) ,7. 51(1H,d,J = 7. 0,
H-8) ,6. 50(1H,dd,J = 10. 5,17. 5 Hz,H-12) ,6. 05
(1H,s,H-2) ,5. 51(1H,d,J = 17. 5 Hz,H-13a) ,
5. 43(1H,d,J = 10. 0 Hz,H-13b) ,4. 41(1H,m,H-
17) ,3. 54(1H,dd,J = 6. 0,7. 0 Hz,H-7) ,2. 64(2H,
m,H-16) ,2. 38(1H,dd,J = 5. 0,13. 5 Hz,H-21a) ,
1. 89(3H,s,14-Me) ,1. 75(3H,s,25-Me) ,1. 60(3H,
s,15-Me) ,1. 38(3H,s,19-Me) ,1. 37(1H,dd,J =
5. 0,13. 5 Hz,H-21b) ,1. 28(3H,s,24-Me) ,1. 15
(3H,s,20-Me). 13C NMR(125 MHz,CDCl3)δ:204. 0
(C-6) ,179. 7(C-9) ,165. 1(C-3) ,163. 4(C-1) ,
160. 1(C-4a) ,149. 8(C-12) ,135. 3(C-18) ,134. 2
(C-8) ,133. 1(C-8a) ,117. 9(C-17) ,113. 7(C-13) ,
110. 7(C-4) ,101. 7(C-9a) ,98. 9(C-2) ,91. 8(C-
10a) ,84. 9(C-5) ,83. 0(C-23) ,49. 8(C-22) ,47. 4
(C-7) ,40. 6(C-11) ,30. 7(C-25) ,29. 3(C-24) ,28. 9
(C-16) ,28. 6(C-14) ,26. 7(C-21) ,25. 6(C-19) ,
24. 3(C-15) ,17. 0(C-20). The MS and NMR spectral
data were consistent with those of reported [11].
Macluraxanthone (10) C23 H22 O6,ESI-MS m/z:
395 [M + H]+;yellow amorphous powder;1H NMR
(400 MHz,CDCl3) δ:13. 53(1H,s,l-OH) ,7. 68
(1H,d,J = 8. 8 Hz,H-8) ,6. 95(1H,d,J = 8. 8 Hz,H-
7) ,6. 76(1H,d,J = 10. 0 Hz,H-4) ,6. 74(1H,dd,J
= 10. 0,17. 2 Hz,H-2″) ,5. 62(1H,d,J = 10. 0 Hz,H-
5) ,5. 13(2H,dd,J = 10. 0,17. 2 Hz,H2-3″) ,1. 64
(6H,s,4″,5″-Me) ,1. 51(6H,s,7,8-Me). 13 C NMR
(100 MHz,CDCl3) δ:180. 7(C-9) ,158. 9(C-3) ,
156. 9(C-19) ,156. 7(C-1) ,154. 0(C-4a) ,148. 9(C-
10a) ,144. 5 (C-6) ,131. 0 (C-5) ,127. 2 (C-5) ,
117. 4(C-8) ,116. 0(C-4) ,114. 6(C-4) ,113. 7(C-
4) ,113. 0(C-8a) ,112. 7(C-7) ,107. 9(C-3″) ,105. 5
(C-2) ,103. 2(C-20) ,103. 0(C-9a) ,78. 2(C-6) ,
41. 4(C-1″) ,28. 1(C-4″,5″) ,28. 0(C-7,8). The MS
and NMR spectral data were consistent with those of re-
ported [14].
3-O-methylneobractatin (11) C29 H34 O6,ESI-MS
m/z:479 [M + H]+;yellow amorphous powder;1H
NMR(400 MHz,CDCl3)δ:12. 78(1H,s,l-OH) ,7. 16
(1H,d,J = 6. 8 Hz,H-8) ,6. 32(1H,dd,J = 10. 4,
17. 2 Hz,H-12) ,6. 08(1H,s,H-2) ,5. 02(1H,t,J =
8. 0 Hz,H-22) ,4. 86(1H,d,J = 17. 2 Hz,H-13a) ,
4. 75(1H,d,J = 10. 4 Hz,H-13b) ,3. 79(3H,s,3-
OMe) ,2. 49(1H,dd,J = 7. 2,14. 4 Hz,H-21a) ,2. 16
(1H,dd,J = 4. 4,9. 6 Hz,H-17a) ,2. 07(1H,dd,J =
8. 4,14. 8 Hz,H-21b) ,1. 79(1H,dd,J = 10. 0,13. 2
Hz,H-16b) ,1. 72(3H,s,24-Me) ,1. 61(3H,s,25-
Me) ,1. 59(3H,s,14-Me) ,1. 57(3H,s,15-Me) ,1. 35
(3H,s,19-Me) ,1. 34(3H,s,20-Me). 13 C NMR(100
MHz,CDCl3)δ:199. 7(C-5) ,178. 9(C-9) ,168. 1(C-
3) ,163. 7(C-1) ,158. 3(C-4a) ,151. 4(C-12) ,136. 2
(C-8) ,134. 8(C-23) ,134. 0(C-8a) ,117. 3(C-22) ,
114. 9(C-4) ,106. 0(C-13) ,102. 0(C-9a) ,93. 9(C-
2) ,83,7(C-10a) ,83. 5(C-18) ,79. 2(C-6) ,55. 4(3-
OMe) ,44. 7(C-7) ,42. 3(C-17) ,41. 2(C-11) ,32. 7
(C-16) ,30. 2(C-21) ,29. 5(C-20) ,29. 3(C-14) ,
28. 8(C-15) ,26. 7(C-19) ,25. 9(C-25) ,18. 1(C-
24). The MS and NMR spectral data were consistent
with those of reported [8].
Acknowledgements
We gratefully acknowledge the financial support for this
work by the National Natural Science Foundation of
China (No. 20702061)and the financial support from the
Chinese Academy of Sciences (KSCX2-YW-R-172).
References
1 Chen SX,Wan M,Loh BN. Active constituents against HIV-1
proteaseHIV-1 from Garcinia mangostana. Planta Med,
1996,62:381-382.
( 下转第 1074 页)
9501
Vol. 24 FAN Qing-fei,et al:Chemical Constituents from Garcinia Bracteata and Ultra Performance
Liquid Chromatography /Mass Spectrometry Guided Isolation of Tautomers
Acknowledges
The authors are grateful to Dr. Yuele Pan,Institute of
Medicinal Plant Development,Chinese Academic of
Medical Science,Peking Union Medical College,Dr.
Yuhuan Li,Institute of Medicinal Biotechnology,Chi-
nese Academic of Medical Science and Peking Union
Medical College,Dr. Yuan Liu,Analytical and Testing
Center,Beijing Normal University.
References
1 Liu AL,Wang YT,Du GH,et al. Elsholtzia:review of tradi-
tional uses,chemistry and pharmacology. J Chin Phar Sci,
2007,16:73-78.
2 Zhang J,Wang ZH,Yao J,et al. Studies on the essential oil
from Elsholtzia densa. Acta Prat Sin,2005,14:112-116.
3 Wang J,Zhao LJ,Han JM,et al. Studies on the essential oil
from Elsholtzia densa. Wild Plant Res,1996,2:35-36.
4 Gong MX. Research progress of Elsholtzia splendens on phar-
macology. Beijing Med,1997,6:46-48.
5 Zhang Y. Advances in the study of Elsholtzia splendens. J
Chin Med Mater,2002,25:146-147.
6 Suzan O,Sezai E. The chemical composition of essential oil
and in vitro antibacterial activities of essential oil and metha-
nol extract of Ziziphora persica Bunge. J Ethnopharmacol,
2006,106:372-376.
7 Mann CM,Cox SD,Markham JL. The outer membrane of
Pseudomonas aeruginosa NCTC 6749 contributes to its toler-
ance to the essential oil of Melaleuca alternifolia(tea tree
oil). Lett Appl Microbiol,2000,30:294-297.
8 Margarita DG,Carmen R,Mariano E. Activation of the IFN-
inducible enzyme Rnase L causes apoptosis of animal cells.
Virology,1997,236:
櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵
354-363.
( 上接第 1059 页)
2 Iinuma M,Tosa H,Ito T,et al. Three new benzophenone-xan-
thone dimers from the root of Garcinia dulcis. Chem Pharm
Bull,1996. 44:1744-1747.
3 Wu JH,Tung YT,Chyu CF,et al. Antioxidant activity and
constituents of extracts from the root of Garcinia multiflora. J
Wood Sci,2008. 54:383-389.
4 Waterman PG,Crichton EG. xanthones,benzophenones and
triterpenes from the stem bark of Garcinia ovalifolia. Planta
Med,1980:351-355.
5 Li XW,Li YH,Tong SQ,et al . Flora Reipublicae Popularis
Sinicae. Beijing:Science Press,1990. 50(2) :99.
6 Na Z,Hu HB,and Fan QF. A novel caged-prenylxanthone
from Garcinia Bracteata. Chin Chem Lett,2010,21:443-445.
7 Thoison O,Cuong DD,Gramain A,et al. Further rearranged
prenylxanthones and benzophenones from Garcinia bracteata.
Tetrahedron,2005,61:8529-8535.
8 Na Z,Hu HB,Fan QF. Three new caged prenylxanthones
from Garcinia Bracteata. Helv Chim Acta,2010,93:958-963.
9 Ito C,Itoigawa M,Mishina Y,et al. Chemical constituents of
Calophyllum brasiliensis:Structure elucidation of seven new
xanthones and their cancer chemopreventive activity. J Nat
Prod,2002,65:267-272.
10 Gunasekera SP,Selliah S,Sultanbawa MUS. Chemical inves-
tigation of Ceylonese plants. Part XV. Extractives of Kayea
stylosa Thw.(Guttiferae). J Chem Soc,1975:1539-1544.
11 Thoison O,Cuong DD,Gramain A,et al. Cytotoxic prenylxan-
thones from Garcinia Bracteata. J Nat Prod,2000,63:441-
446.
12 Botta B,Delle MG,Delle MF,et al. Vismione H and prenylat-
ed xanthones from Vismia guineensis. Phytochemistry,1986,
25:1217-1219.
13 Henry GE,JacobsStewart H,Reynolds WF,et al. Xerophe-
nones A and B,new isoprenylated derivatives of 11-oxatricy-
clo[4. 3. 1. 14,10]undecane-7,9-dione from Clusia port-
landiana (Guttiferae). Tetrahedron Lett,1995,36:4575-
4578.
14 Iinuma M,Tosa H,Shimano R,et al. Two xanthones from root
bark of Garcinia subelliptica. Phytochemistry,1994,35:1355-
1360.
4701 Nat Prod Res Dev Vol. 24