免费文献传递   相关文献

羊踯躅的化学成分研究(英文)



全 文 : 94 Journal of Chinese Pharmaceutical Sciences http://www.jcps.ac.cn
Chemical constituents from the flowers of Rhododendron molle G. Don
Xuan Wang1,2, Yanwei Hu1,2, Dan Yuan1*, Hongzheng Fu2*
1. College of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China
2. State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China 
Abstract: The aim of current study was to investigate the chemical constituents from the flowers of Rhododendron molle G. Don.
The isolation and purification of components were achieved by a series of chromatography including silica gel, Sephadex LH-20,
and reversed-phase HPLC. Their structures were identified based on 1D, 2D NMR, and mass spectral analysis. Fifteen known
compounds were isolated and their structures were identified as 2E,4Z-abscisic acid (1), 2α-hydroxy-oleanolic acid (2), oleanic
acid (3), asiatic acid (4), benzyl glucoside (5), dibutyl phthalate (6), β-sitosterol (7), vitexin (8), quercetin (9), steraric acid (10),
rhodomollein I (11), rhodojaponin VI (12), rhodomollein XI (13), rhodojaponin II (14), kalmanol (15). Compounds 1–10 were
isolated from Rhododendron molle for the first time.
Keywords: Rhododendron molle; Chemical constituents; Structural identification
CLC number: R284 Document code: A Article ID: 1003–1057(2014)2–94–05
Received: 2013-05-03; Revised: 2013-05-27; Accepted: 2013-06-26.
Foundation item: National Natural Science Foundation of China (Grant
No. 81172943).
*Corresponding author. Tel./Fax: 86-10-82805212;
E-mail: drhzfu@sina.com
http://dx.doi.org/10.5246/jcps.2014.02.012
1. Introduction
Rhododendron molle G. Don (Ericaceae), a well-known
Chinese poisonous plant[1], is distributed widely in the
southern regions of People’s Republic of China[2]. It has
been used successfully in the treatment of rheumatism,
hypertension, toxicant, or insect growth regulator[3,4]. Many
compounds have been isolated from this plant. As a part
of our study on the active principles of traditional Chinese
medicines, we carried out comprehensive investigation on
the chemical constituents of Rhododendron molle, and
identified the ingredients[5]. Fifteen known compounds
(Fig. 1) were isolated, compounds 1–10 were isolated from
Rhododendron molle for the first time.
2. Experimental
2.1. General
NMR spectra were recorded on Bruker Avance III 400
spectrometer. A Lab Alliance HPLC system consisting of
binary pump and a Model 2000 detector was used. Silica
gel (200–300 mesh, Qingdao Marine Chemical Factory),
Sephadex LH-20 (Pharmacia Co.) was used for column
chromatography. Solvents of analytical grade were
purchased from Beijing Chemical Factory.







2.2. Plant materials
Rhododendron molle was purchased from Anguo
Medicinal Material Market of Hebei Province in 2011. It
was identified as the flowers of Rhododendron molle by
Prof. Hongzheng Fu. A voucher specimen was deposited
at the State Key Laboratory of Natural and Biomimetic
Drugs, Peking University Health Science Center.
2.3. Extraction and isolation
Dried flowers of Rhododendron molle (20 kg) were
extracted by 100% EtOH (10 L/kg) for three times. After
evaporation of solvent under reduced pressure, the residue
was suspended in water and extracted with EtOAc, then
was subjected to separation on a silica gel column eluting
with CHCl3–CH3OH (30:1–1:1, v/v) to afford three
fractions, Fr. A–C. Fr. B was further separated by a silica
gel column chromatography and eluted with CHCl3–CH3OH
of increasing polarity to give ten fractions B1–B10, Fr. B2
was applied to Sephadex LH-20 (petroleum ether–CHCl3–
CH3OH, 2:1:1, v/v/v), and compound 10 was obtained.
Fr. B3 was subjected to silica gel column, and gained
compound 7 (15 g). Fr. B4 was applied to a silica gel
column chromatography (petroleum ether–EtOAc, 50:1–1:10,
v/v), and obtained 9 (3 mg), then the left fractions were
subjected to Sephadex LH-20 column (MeOH–H2O, 7:5–1:10,
v/v), and ODS column (MeOH–H2O, 3:7–10:1, v/v) to
afford compound 1 (4 mg), 2 (30 mg), 3 (10 mg), 4 (4 mg),
7 (5 mg), 8 (6 mg). Fr. B5 was separated on an ODS
column with MeOH–H2O (4:6, v/v) and purified on
Sephadex LH-20 (MeOH–H2O, 4:6–1:10, v/v) to yield 6
(6 mg), 11 (10 mg), 12 (8 mg). Using the same method,
95 Wang, X. et al. / J. Chin. Pharm. Sci. 2014, 23 (2), 94–98
Fr. B6 was separated on an ODS column with MeOH–H2O
(3:7, v/v) to yield 5 (2 mg), 13 (10 mg), 14 (15 mg),
and 15 (8 mg).
3. Identification
3.1. 2E,4Z-Abscisic acid (1)
White amorphous powder; C15H20O4; ESI-MS m/z: 287
[M+Na]+; 1H NMR (400 MHz, CDCl3) δ: 7.80 (1H, d,
J 16.0 Hz, H-4), 6.15 (1H, d, J 16.0 Hz, H-5), 5.94 (1H,
s, H-8), 5.74 (1H, s, H-2), 1.09 (3H, s, H-12), 1.00 (3H, s,
H-13), 1.90 (3H, s, H-14), 2.02 (3H, s, H-15); 13C NMR
(100 MHz, CDCl3) δ: 170.1 (C-1), 118.2 (C-2), 162.8
(C-3), 128.5 (C-4), 137.0 (C-5), 80.1 (C-6), 151.6 (C-7),
127.0 (C-8), 198.2 (C-9), 49.9 (C-10), 41.8 (C-11),
19.2 (C-12), 23.3 (C-13), 21.6 (C-14), 24.5 (C-15). All
the data above were in consistent with those of 2E,4Z-
abscisic acid[6].
3.2. 2α-Hydroxy-oleanolic acid (2)
White amorphous powder; 1H NMR (400 MHz, CD3OD)
δ: 0.70, 0.71, 0.80, 0.84, 0.90, 0.91, 1.06 (7×CH3, s), 3.51
(1H, m, H-2), 5.15 (1H, s, H-12); 13C NMR (100 MHz,
CD3OD) δ: 47.4 (C-1), 69.6 (C-2), 84.7 (C-3), 40.3 (C-4),
56.5 (C-5), 19.7 (C-6), 33.9 (C-7), 39.8 (C-8), 48.1 (C-9),
38.9 (C-10), 23.8 (C-11), 123.6 (C-12), 145.5 (C-13),
42.7 (C-14), 28.3 (C-15), 24.1 (C-16), 49.8 (C-17), 42.8
(C-18), 47.3 (C-19), 31.7 (C-20), 34.2 (C-21), 33.7 (C-22),
29.5 (C-23), 17.2 (C-24), 17.7 (C-25), 17.9 (C-26), 26.2
(C-27), 181.9 (C-28), 35.0 (C-29), 24.7 (C-30). All
the above data were in good agreement with those of
2α-hydroxy-oleanolic acid[7].
3.3. Oleanolic acid (3)
White crystal (MeOH); 1H NMR (400 MHz, pyridine-d5)
δ: 0.89, 0.93, 1.01, 1.02, 1.03, 1.23, 1.28 (7×CH3, s),
3.33 (1H, dd, J1 14.0 Hz, J2 4.5 Hz, H-18), 3.42 (1H, dd,
J1 10.8 Hz, J2 5.0 Hz, H-3α), 5.51 (1H, t, J 3.5 Hz, H-12);
13C NMR (100 MHz, pyridine-d5) δ: 39.3 (C-1), 28.4 (C-2),
78.4 (C-3), 39.6 (C-4), 56.0 (C-5), 18.8 (C-6), 33.5 (C-7),
39.9 (C-8), 48.4 (C-9), 37.6 (C-10), 24.0 (C-11), 122.8
(C-12), 144.9 (C-13), 42.1 (C-14), 28.4 (C-15), 23.9 (C-16),
46.9 (C-17), 42.3 (C-18), 46.7 (C-19), 31.3 (C-20),
34.5 (C-21), 35.5 (C-22), 28.9 (C-23), 16.8 (C-24), 15.7
(C-25), 17.7 (C-26), 26.3 (C-27), 180.4 (C-28), 33.5 (C-29),
23.9 (C-30). All the above data were in good agreement
with those of oleanolic acid[8].
3.4. Asiatic acid (4)
White amorphous powder; 1H NMR (400 MHz, CD3OD)
δ: 1.12, 0.84, 0.70 (each 3H, s), 1.02, 0.84 (each 3H, d),
5.26 (1H, br s, H-12), 2.20 (1H, d, H-18); 13C NMR
(100 MHz, CD3OD) δ: 45.3 (C-1), 70.1 (C-2), 78.5 (C-3),
44.4 (C-4), 48.6 (C-5), 19.2 (C-6), 33.9 (C-7), 41.0 (C-8),
48.3 (C-9), 38.9 (C-10), 24.7 (C-11), 126.9 (C-12), 139.6
Figure 1. Chemical structures of compounds 1−15.
HO
COOH
H
H
H
O
O
OH
HO
OH
OH
OH
1 2 3 4 5
6 7 8 9 10
OH
OR
OH
HH
HO OH
OH
HO
H
O
OH
11 12 R = H
13 R = COCH3
14 15
HO
OH
OAc
OHOH
O
H
O
COOH
H
OH
1
2
3
4
5
6
7
89
10 11
1213
14
15
1
2
3 4 5
6
7
8
9
10
11
12
13
14 15
16
17
18
19
20
21 22
23
24
25
27
28
29
26
HO
1 2
3456
7 8 9
10
O
OOH
OH
HO
O
HO
OH
OH
HO 2
3
4
5
6
1
12
3
4
5
6
12
3
4 5
6 7
8
910
11 12
1314
15
16 17
18
19
20
HO
OH
H
H
OH
HO
H
H
OH
OH
HO
H
OH
OH
H
OH OH
HO
12
3
4 5
6 7
8
910
11 12
13
14
15
16
17
18
19
20
123
4 5 6
7
2 3 4
5 61
O O
OH
OH
HO OH
1 2
3
45
6
2
3 4
112
34
O O
OO
HO COOH
HO
HO
12
3 4 5
6
7
8910
11
12
13
14
15
16
1718
19 20 21
22
23 24
25 26
27
28
29
30
HO
COOH
H
H
H
HO
12
3 4
5
6 7
8
9
10
11
12
13
14
15
16
17
18
19 20 21
22
23 24
25 26
27
28
29 30
96 Wang, X. et al. / J. Chin. Pharm. Sci. 2014, 23 (2), 94–98
(C-13), 43.6 (C-14), 28.9 (C-15), 25.6 (C-16), 48.3 (C-17),
54.3 (C-18), 40.3 (C-19), 40.2 (C-20), 31.7 (C-21), 37.9
(C-22), 66.3 (C-23), 14.1 (C-24), 17.8 (C-25), 17.7 (C-26),
23.9 (C-27), 181.4 (C-28), 17.8 (C-29), 21.7 (C-30).
All the above data were in good agreement with those
of asiatic acid[9].
3.5. Benzyl glucoside (5)
White crystal (MeOH); 1H NMR (400 MHz, pyridine-d5)
δ: 7.20 (1H, m, H-4), 7.30 (2H, m, H-2, 6), 7.53 (2H, H-3, 5);
13C NMR (100 MHz, pyridine-d5) δ: 139.3 (C-1), 128.6
(C-2), 128.9 (C-3), 128.1 (C-4), 128.9 (C-5), 128.6 (C-6),
71.2 (C-7), 104.4 (C-1), 78.9 (C-2), 75.6 (C-3), 72.0
(C-4), 79.0 (C-5), 63.1 (C-6). All the above data were in
good agreement with those of benzyl glucoside[10].
3.6. Dibutyl phthalate (6)
White crystal (MeOH); 1H NMR (400 MHz, CDCl3) δ:
7.54 (2H, dd, J1 5.7 Hz, J2 3.3 Hz, H-3, 6), 7.73 (2H, dd,
J1 5.7 Hz, J2 3.3 Hz, H-4, 5), 4.32 (4H, t, J 6.7 Hz, H-1,
H-1), 1.74 (4H, quintet, J 7.2 Hz, H-2, H-2), 1.46 (4H,
sextet, J 7.2 Hz, H-3, H-3), 0.98 (6H, t, J 7.4 Hz, H-4,
H-4); 13C NMR (100 MHz, CDCl3) δ: 167.7 (COO-), 132.2
(C-1, 2), 130.9 (C-4, 5), 128.8 (C-3, 6), 65.6 (C-1, 1), 30.6
(C-2, 2), 19.2 (C-3, 3), 13.7 (C-4, 4). All the above data
were in good agreement with those of dibutyl phthalate[11].
3.7. β-Sitosterol (7)
White crystal (CHCl3); 1H NMR (400 MHz, CDCl3) δ:
0.69 (3H, s), 0.81 (3H, s), 0.84 (3H, d, J 6.5 Hz), 0.87
(3H, d, J 6.8 Hz), 0.93 (3H, d, J 6.5 Hz), 1.00 (3H, s),
3.53 (1H, m, H-3), 5.31 (1H, br s, H-6); 13C NMR (100 MHz,
CDCl3) δ: 32.3 (C-1), 32.0 (C-2), 70.3 (C-3), 42.5 (C-4),
140.9 (C-5), 122.0 (C-6), 32.2 (C-7), 32.1 (C-8), 50.3
(C-9), 36.7 (C-10), 21.7 (C-11), 28.5 (C-12), 45.9 (C-13),
57.0 (C-14), 24.7 (C-15), 40.0 (C-16), 56.7 (C-17), 12.0
(C-18), 19.3 (C-19), 36.4 (C-20), 19.9 (C-21), 26.2 (C-22),
34.0 (C-23), 42.5 (C-24), 23.3 (C-25), 12.3 (C-26), 29.5
(C-27), 20.0 (C-28), 19.8 (C-29). All the above data were
in good agreement with those of β-sitosterol[12].
3.8. Vitexin (8)
Yellow amorphous powder; 1H NMR (400 MHz, DMSO-d6)
δ: 4.69 (1H, d, H-1), 6.27 (1H, s, H-6), 6.77 (1H, s, H-3),
6.89 (2H, d, J 8.4 Hz, H-3, H-5), 8.02 (2H, d, J 8.4 Hz,
H-2, H-6), 10.30 (1H, s, 4-OH), 10.79 (1H, s, 7-OH),
13.16 (1H, s, 5-OH); 13C NMR (100 MHz, DMSO-d6)
δ: 164.0 (C-2), 102.5 (C-3), 182.2 (C-4), 161.2 (C-5), 98.2
(C-6), 162.6 (C-7), 104.6 (C-8), 156.1 (C-9), 104.1 (C-10),
121.7 (C-1), 129.1 (C-2), 115.9 (C-3), 160.4 (C-4),
116.0 (C-5), 129.1 (C-6), 73.4 (C-1), 70.9 (C-2), 78.7
(C-3), 70.6 (C-4), 81.9 (C-5), 61.3 (C-6). All the above
data were in good agreement with those of vitexin[13].
3.9. Quercetin (9)
Yellow amorphous powder (MeOH); EI-MS: m/z 302 [M]+;
1H NMR (400 MHz, DMSO-d6) δ: 12.4 (1H, 5-OH), 10.66
(1H, 7-OH), 9.28 (1H, 3-OH), 9.53 (1H, br s, 3-OH), 9.25
(1H, s, 4-OH), 6.07 (1H, d, J 2.0 Hz, H-6), 6.30 (1H, d,
J 2.0 Hz, H-8), 7.55 (1H, d, J 2.0 Hz, H-2), 7.43 (1H, dd,
J1 2.0 Hz, J2 8.5 Hz, H-6), 6.77 (1H, d, J 2.0 Hz, H-5);
13C NMR (100 MHz, DMSO-d6) δ: 156.2 (C-2), 135.8
(C-3), 175.3 (C-4), 147.7 (C-5), 98.5 (C-6), 163.9 (C-7),
93.3 (C-8), 160.8 (C-9), 103.1 (C-10), 122.2 (C-1), 115.3
(C-2), 144.8 (C-3), 148.0 (C-4), 115.4 (C-5), 120.1
(C-6). All the above data were in good agreement with
those of quercetin[14].
3.10. Steraric acid (10)
White oil (CHCl3), C18H36O2; 1H NMR (400 MHz,
pyridine-d5) δ: 0.84 (3H), 1.24 (28H), 1.78 (2H), 2.51 (2H);
13C NMR (100 MHz, pyridine-d5) δ: 14.3 (CH3, C-18), 22.9
(CH2, C-17), 25.6 (CH2, C-3), 29.6 (CH2), 29.7 (CH2), 29.8
(CH2), 29.9 (CH2, C4–15), 32.0 (CH, C-16), 34.8 (C-2),
176.0 (C-1). All the above data were in good agreement
with those of steraric acid[14].
3.11. Rhodomollein I (11)
White amorphous powder (MeOH); ESI-MS m/z 391
[M+Na]+; 1H NMR (400 MHz, CD3OD) δ: 2.64 (1H, d,
J 8.4 Hz, H-1), 4.12 (1H, d, J 6.9 Hz, H-2), 3.43 (1H, d,
J 3.6 Hz, H-3), 4.10 (1H, d, H-6), 1.94 (1H, dd, J1 8.5 Hz,
J2 13.0 Hz, H-7α), 1.64 (1H, dd, J1 3.5 Hz, J2 13.0 Hz,
H-7β), 2.67 (1H, d, J 8.4 Hz, H-9), 1.63 (1H, m, H-11α),
1.44 (1H, m, H-11β), 1.91 (1H, m, H-12α), 1.92 (1H, m,
H-12β), 1.97 (1H, br s, H-13), 4.05 (1H, br s, H-14), 1.96
(1H, d, J 13.5 Hz, H-15α), 1.93 (1H, d, J 13.5 Hz, H-15β),
1.14 (3H, s, H-17), 1.06 (3H, s, H-18), 1.33 (3H, s, H-19),
5.05 (2H, s, H-20); 13C NMR (100 MHz, CD3OD) δ: 52.6
(C-1), 83.2 (C-2), 88.6 (C-3), 48.4 (C-4), 83.3 (C-5), 70.7
(C-6), 41.4 (C-7), 50.3 (C-8), 53.9 (C-9), 149.8 (C-10),
24.6 (C-11), 24.7 (C-12), 55.6 (C-13), 82.7 (C-14), 61.6
(C-15), 80.8 (C-16), 24.6 (C-11), 24.7 (C-12), 55.6 (C-13),
82.7 (C-14), 61.6 (C-15), 80.8 (C-16), 26.4 (C-17), 25.0
(C-18), 19.0 (C-19), 113.9 (C-20). This compound was
characterized as rhodomollein I by comparison of the spectral
data with the literature[16].
3.12. Rhodojaponin VI (12)
White amorphous powder (MeOH); ESI-MS m/z 409
[M+Na]+; C22H36O8; 1H NMR (400 MHz, pyridine-d5)
δ: 2.95 (1H, d, J 8.0 Hz, H-1), 5.14 (1H, d, J1 3.9 Hz,
97 Wang, X. et al. / J. Chin. Pharm. Sci. 2014, 23 (2), 94–98
J2 8.0 Hz, H-2), 4.07 (1H, d, J 3.9 Hz, H-3), 4.70 (1H,
dd, J1 3.6 Hz, J2 10.3 Hz, H-6), 2.85 (1H, dd, J1 3.6 Hz,
J2 13.0 Hz, H-7α), 2.50 (1H, dd, J1 10.1 Hz, J2 13.0 Hz,
H-7β), 2.10 (1H, m, H-9), 2.04 (1H, m, H-11α), 1.60 (1H,
m, H-11β), 2.51 (1H, m, H-12α), 1.67 (1H, m, H-12β),
2.55 (1H,br s, H-13), 5.02 (1H, s, H-14), 2.29 (1H, d,
J 14.6 Hz, H-15α), 2.12 (1H, d, J 14.6 Hz, H-15β), 1.52
(3H, s, H-17), 1.59 (3H, s, H-18), 1.60 (3H, s, H-19), 1.88
(3H, s, H-20); 13C NMR (100 MHz, pyridine-d5) δ: 58.4
(C-1), 81.2 (C-2), 87.3 (C-3), 49.5 (C-4), 83.8 (C-5), 73.1
(C-6), 45.3 (C-7), 52.2 (C-8), 55.3 (C-9), 78.6 (C-10),
22.4 (C-11), 27.5 (C-12), 56.6 (C-13), 80.2 (C-14), 61.3
(C-15), 81.2 (C-16), 24.4 (C-17), 26.6 (C-18), 20.8 (C-19),
29.9 (C-20). All the above data were in good agreement
with those of rhodojaponin VI[17].
3.13. Rhodomollein XI (13)
White crystal (MeOH); ESI-MS m/z 451 [M+Na]+;
C22H36O8; 1H NMR (400 MHz, pyridine-d5), δ: 2.95 (1H,
d, J 7.2 Hz, H-1), 5.12 (1H, m, H-2), 4.20 (1H, d, H-3),
5.81 (1H, m, J1 4.9 Hz, J2 10.9 Hz, H-6), 2.90 (1H, dd,
J1 13.2 Hz, J2 4.9 Hz, H-7α), 2.20 (1H, dd, J1 10.8 Hz,
J2 13.2 Hz, H-7β), 2.20 (1H, d, J 6.3 Hz, H-9), 2.15 (1H,
m, H-11α), 1.63 (1H, m, H-11β), 2.66 (1H, m, H-12α),
1.73 (1H, m, H-12β), 2.55 (1H, br s, H-13), 5.15 (1H, s,
H-14), 2.31 (1H, d, J 14.6 Hz, H-15α), 2.06 (1H, d, J 14.6 Hz,
H-15β), 1.59 (3H, s, H-17), 1.39 (3H, s, H-18), 1.62 (3H,
s, H-19), 1.97 (3H, s, H-20), 2.06 (3H, s, CH3COO-21);
13C NMR (100 MHz, pyridine-d5) δ: 59.1 (C-1), 79.9 (C-2),
86.4 (C-3), 49.5 (C-4), 82.9 (C-5), 78.3 (C-6), 40.4 (C-7),
52.4 (C-8), 55.4 (C-9), 78.2 (C-10), 22.3 (C-11), 27.3
(C-12), 56.7 (C-13), 79.1 (C-14), 60.4 (C-15), 79.9 (C-16),
24.0 (C-17), 25.2 (C-18), 20.8 (C-19), 29.7 (C-20), 21.7
(CH3CO), 170.2 (CH3CO). All the above data were in
good agreement with those of rhodomollein XI[17].
3.14. Rhodojaponin II (14)
White crystal (MeOH); ESI-MS m/z 433 [M+Na]+;
C22H34O7; 1H NMR (400 MHz, pyridine-d5), δ: 2.81 (1H,
s, H-1), 4.11 (1H, dd, J 4 Hz, H-2), 3.22 (1H, d, J 4 Hz,
H-3), 3.90 (1H, s, H-5), 5.50 (1H, t, J1 4 Hz, J2 12 Hz,
H-6), 2.60 (1H, dd, J1 14.6 Hz, J2 9.3 Hz, H-7α), 2.41
(1H, t, J 12 Hz, H-7β), 2.52 (1H, m, H-9), 5.98 (1H, s,
H-10), 1.96 (1H, m, H-11α), 1.57 (1H, m, H-11β), 2.64
(1H, m, H-12α), 1.64 (1H, m, H-12β), 2.02 (1H, s, H-13),
4.93 (1H, s, H-14), 2.18 (1H, d, H-15α), 2.06 (1H, d,
H-15β), 6.58 (3H, br s, H-16), 1.48 (3H, s, H-17), 0.84
(3H, s, H-18), 1.42 (3H, s, H-19), 1.86 (3H, s, H-20), 2.01
(3H, s, CH3COO-21); 13C NMR (100 MHz, pyridine-d5)
δ: 54.6 (C-1), 59.6 (C-2), 64.1 (C-3), 47.2 (C-4), 79.3
(C-5), 77.0 (C-6), 39.2 (C-7), 51.8 (C-8), 56.8 (C-9), 77.3
(C-10), 22.2 (C-11), 26.7 (C-12), 54.6 (C-13), 78.3 (C-14),
59.7 (C-15), 78.8 (C-16), 23.4 (C-17), 21.2 (C-18), 19.8
(C-19), 30.6 (C-20), 20.7 (CH3CO), 169.9 (CH3CO).
All the above data were in good agreement with those of
rhodojaponin II[18].
3.15. Kalmanol (15)
White crystal (MeOH); ESI-MS m/z 393 [M+Na]+;
C20H34O6; 1H NMR (400 MHz, pyridine-d5) δ: 3.06 (1H,
dd, J1 11.9 Hz, J2 3.0 Hz, H-1), 2.72 (1H, dd, J1 15.0 Hz,
J2 3.0 Hz, H-2α), 2.42 (1H, ddd, J1 15.0 Hz, J2 11.9 Hz,
J3 4.4 Hz, H-2β), 3.88 (1H, dd, J 4.3 Hz, H-3), 4.77 (1H,
dd, J1 10.5 Hz, J2 9.3 Hz, H-6), 2.99 (1H, dd, J1 14.6 Hz,
J2 9.3 Hz, H-7α), 2.46 (1H, dd, 1.4 Hz, H-7β), 2.75 (1H,
m, H-9), 2.09 (1H, m, H-11α), 1.88 (1H, m, H-11β), 1.76
(1H, m, H-12α), 0.97 (1H, m, H-12β), 2.89 (1H, m, H-13),
3.34 (1H, d, 8.8 Hz, H-14), 1.46 (2H, s, H-15), 1.96 (1H,
s, H-16), 1.39 (3H, s, H-17), 1.25 (3H, s, H-18), 1.75
(3H, s, H-19), 1.94 (3H, s, H-20); 13C NMR (100 MHz,
pyridine-d5) δ: 52.3 (C-1), 36.0 (C-2), 83.3 (C-3), 53.5
(C-4), 86.7 (C-5), 72.6 (C-6), 44.1 (C-7), 83.2 (C-8), 54.4
(C-9), 76.0 (C-10), 30.0 (C-11), 31.4 (C-12), 61.2 (C-13),
53.2 (C-14), 53.9 (C-15), 80.3 (C-16), 24.5 (C-17), 23.9
(C-18), 21.4 (C-19), 25.5 (C-20). All the above data were
in good agreement with those of kalmanol[19].
Acknowledgments
This work was supported by the National Natural Science
Foundation of China (Grant No. 81172943).
References
[1] Chen, J.S.; Zheng, S. Chinese Poisonous Plant. Beijing:
Science Press, 1987, 216−239.
[2] Zhong, G.H.; Hu, M.Y.; Wei, X.Y.; Weng, Q.F.; Xie, J.J.;
Liu, J.X.; Wang, W.X. J. Nat. Prod. 2005, 68, 924−926.
[3] Hu, M.Y.; Klocke, J.A.; Chiu, S.F.; Kubo, I. J. Econ.
Entomol. 1993, 86, 706−711.
[4] Liu, Z.G.; Pan, X.F. Acta. Chim. Sin. (Engl. Ed.). 1989, 3,
235−239.
[5] Li, C.J.; Wang, L.Q.; Chen, S.N.; Qin, G.W. J. Nat. Prod.
2000, 63, 1214−1217.
[6] Wang, R. Ph.D. Lanzhou University. 2010.
[7] Wu, L.J.; Xiang, T.; Hou, B.L.; Liang, W.; Yin, S.; Zhou,
X.C. Acta Bot. Sin. 1998, 40, 83−87.
[8] Ju, J.H.; Zhou, L.; Lin, G.; Liu, D.; Wang, L.W.; Yang, J.S.
Chin. Pharm. J. 2003, 38, 753−754.
[9] Liu, P.; Duan, H.Q.; Pan, Q.; Zhang, Y.W.; Yao, Z. Chin.
J. Chin. Mater. Med. 2006, 31, 1875−1879.
98 Wang, X. et al. / J. Chin. Pharm. Sci. 2014, 23 (2), 94–98
[10] Nan, H.H.; Yin, H.; Zhang, S. Nat. Prod. Res. Dev. 2008,
20, 1008−1011.
[11] Wang, D.F.; Chou, G.X.; Zhou, N.Y.; Zhang, T.; Xu, H.
Chin. Tradit. Herb. Drugs. 2012, 43, 1492−1495.
[12] Zhang, B.B.; Dai, Y.; Liao, Z.X. Chin. J. Nat. Med. 2011, 9,
33−37.
[13] Hao, D.F.; Yang, R.P.; Zhou, Y.Z.; Chen, H.; Li, Z.F.;
Pei, Y.H. J. Shenyang Pharm. Univ. 2009, 26, 282−284.
[14] Zhang, Z.L.; Zuo, Y.M.; Xu, L.; Qu, X.S.; Luo, Y.M. Chin.
Tradit. Herb. Drugs. 2011, 42, 1490−1493.
[15] Cheng, Y.K.; Suo, Y.R.; Li, C.; Wang, H.Q. Chin. J. Chin.
Mater. Med. 2005, 30, 473−474.
[16] Wang, X.B.; Yang, C.S.; Hua, S.Z.; Kong, L.Y. Chin. J.
Nat. Med. 2010, 8, 419−421.
[17] Chen, S.N.; Zhang, H.P.; Wang, L.Q.; Bao, G.H.; Qin, G.W.
J. Nat. Prod. 2004, 67, 1903−1906.
[18] Liu, Z.G.; Pan, X.F. Chin. J. Org. Chem. 1990, 10,
187−190.
[19] Jocelyn, W.; Burke, R.; Doskotch, W.; Ni, C.Z.; Jon, C. J.
Am. Chem. Soc. 1989, 111, 5831−5833.
羊踯躅的化学成分研究
王璇1,2, 胡艳维1,2, 袁丹1*, 付宏征2*
1. 沈阳药科大学 中药学院, 辽宁 沈阳 110016
2. 北京大学医学部 天然药物及仿生药物国家重点实验室, 北京 100191
摘要: 对羊踯躅植物花蕾的化学成分进行研究, 应用多种色谱技术进行分离纯化、波谱技术鉴定其结构。从羊踯躅
花蕾中分离并鉴定了15个化合物, 分别为2E, 4Z-脱落酸 (1), 2α-羟基齐墩果酸 (2), 齐墩果酸 (3), 积雪草酸 (4), 苯甲基糖苷 (5),
邻苯二甲酸二丁酯 (6), β-谷甾醇 (7), 牡荆素 (8), 槲皮素 (9), 硬脂酸 (10), rhodomollein I (11), rhodojaponin VI (12),
rhodomollein XI (13), rhodojaponin II (14), kalmanol (15)。其中, 化合物1−10为首次从羊踯躅植物中得到。
关键词: 羊踯躅; 化学成分; 结构鉴定