免费文献传递   相关文献

水胁迫条件下引物处理对巴西盾柱木种子萌发的影响(英文)



全 文 :Journal of Forestry Research, 15(4): 287-290 (2004)

287


Effect of priming on the germination of Peltophorum dubium seeds
under water stress

ZHANG Wan-li1, LI Le-ihong2, ZU Yuan-gang2, Sonia Perez3
1 East China Normal University, Shanghai 200062, P. R. China
2 Northeast Forestry University, Harbin 150040. P. R. China
3 Federal University of Sao Carlos, Sao Carlos 13565-905, Brazil

Abstract: Peltophorum dubium seeds provided by Anhembi, SP were scarified in 98% H2SO4 for 15 min to overcome mechani-
cal dormancy. Seeds were primed in solutions of 0.2% Captan at 10 °C and 27°C, PEG 6000 -1.0 MPa at 10°C and 27°C, 0.5
mol KNO3, 0.75 Mol KNO3, 1.0 Mol KNO3. Eight treatments including the primed seeds and nonprimed seeds, five replicates
with 100 seeds for each treatment, were set to 15-cm-Petri dish with double filter paper moistened with testing solution PEG in
refrigerator at 27°C. For the experiments of all the groups, osmotic potential were 0.0, -0.2, -0.4, -0.6, -0.8, -1.0, -1.2, and
-1.4 MPa. P. dubium seeds were also set to water stress experiment in rolled paper with PEG solutions from 0.0 to -1.0 M Pa.
Germination percentage decreased with the increase of PEG concentration. Control group had a better germination percentage
than other groups. Germination hardly occurred in PEG -1.4 MPa.
Key words: Priming; Osmotic potential; Germination; Seeds, Peltophorum dubium
CLC number: S721.13 Document code: A Article ID: 1007-662X(2004)04-0287-04



Introduction

Seeds sown in the field may be unexpectedly exposed to
numerous environmental hazards during germination and
emergence. Moreover, the young seedlings may also be
subjected to the detrimental effects of drought and cold
weather. Temperature and moisture levels appear to be
critical (Haridi 1985).
Water stress can reduce both the rate and percentage of
germination. The range of response among species is wide,
from the very sensitive (e.g., soybean) to the resistant (e.g.,
pearl millet). Resistant seeds may have an ecological ad-
vantage in that they can establish plants in areas in which
drought-sensitive seeds cannot do so (Bewley & Black
1986).
Control of seeds water content by osmotic solutions or
other methods can be used to prevent seeds from initiating
radicle emergence and becoming susceptible to injury.
Primed seeds can be dehydrated, stored and when rehy-
drated, they will germinate more rapidly and completely
than these untreated seeds, particularly under stress con-
ditions. Data from several studies indicated that seed prim-
ing shortens the time to germinate without lowering the
potential that promote the radicle growth, that is, the
primed seeds germinated faster but are not able to germi-

Foundation item: This work is Supported by CAPES, Brazil. Open research
laboratory of forest plant ecology, NEFU. The States tenth five-year 211
Project-supported key academic discipline program of ECNU。
Biography: ZHANG Wan-li (1971-), Associate professor, East China Normal
University, Shanghai 200062, P. R. China Received date: 2004-09-29 (E-
mail: wanlizhg@yahoo.com)
Received date: 2004-09-29
Responsible editor: Chai Ruihai
nate at the water potential significantly lower than that
control seeds could. The situation could be different how-
ever, under stressful conditions (Khan 1992).
Seed priming (osmoconditioning) has been used to im-
prove vegetable and ornamental seeds performance by
increasing the speed of germination as well as improving
germination seed uniformity (Bradford 1986; Yoon et al
1997). Priming can also help seeds overcome environ-
mental stresses such as germination under extremely high
temperatures or salt and water stress (Atheron and Faroo-
que, 1983; Cantliffe 1981; Yoon et al. 1997).
In bedding plants, primed seeds in PEG 6000 solutions
had significantly higher germination rates at supraoptimal
temperatures than non-primed seeds (Carpenter 1990)
Ornamental seeds primed with salt solution had signifi-
cantly higher germination at a high temperature than con-
trol seeds and seeds primed in PEG 8000 solutions. Seeds
respiration during germination of seeds primed with salt
was higher than for control seeds or those primed with
PEG. Primed seed with salt solution also was effective in
increasing seedling emergence and for reducing the time
of emergence in summer greenhouse studies (Yoon et al.
1997). Although priming has been used for many years to
improve vegetable seed germination, little work has been
reported on native species (Cordeiro & Di Stefano 1991;
Cordoba et al. 1995).
The water potential of a dry seed is normally not more
than -1.0 MPa, which is lower than the water potential of
surrounding environment. It would be difficult for the seeds
to germinate with water potential under -1.0 MPa.
Our work is to show the germination of primed and non-
primed P. dubium seeds under water stress in solutions of
PEG 6000 from osmotic potential 0.0 to –1.4Mpa. The aim
ZHANG Wan-li et al.

288
of this part experiment is to compare the germinability of
primed seeds and nonprimed seeds under adverse condi-
tions in the incubator and field. We try to find a group of
seeds which are resistant to water stress in PEG solutions.

Materials and methods

Peltophorum dubium were provided by Anhembi, SP. All
the testing seeds were scarified in 98% solution H2SO4 for
15 min to break dormancy. Seeds were primed in 0.2%
captan for 10 h at temperature of 10°C, 4 h at 27°C, 24 h
for PEG 6000 –1.0 MPa at 10°C and 27°C. Priming time
was 10 h in solutions 0.5 mol KNO3, 0.75 mol KNO3, 1.0
mol KNO3 at 27°C. All the seeds were kept in the refrigera-
tor at 5(±)°C during the experiment. Concentrations of
testing PEG solution were prepared at 0.0, –0.2, –0.4, –0.6,
–0.8, –1.0, –1.2, and –1.4 MPa at 27°C according to F. A.
Villela’s osmotic potential table. Eight groups of seeds
were designed for the test: control group, primed in captan
10 °C, captan 27 oC, PEG 10°C, PEG 27 °C, 0.5 mol KNO3,
0.75 mol KNO3, 1.0 mol KNO3. For each group, five repli-
cates were conducted with 100 seeds incubated in 15-cm-
diameter Petri dish covered with double filter paper mois-
tened by testing PEG solutions. Petri dishes with filter
paper were sterilized 2 h at 150°C to minimize seed
contamination. Daily observation of seeds germination was
carried out, and fungi on the seeds were cleaned with
0.2% solution captan at any time when they appeared.
Filter paper was changed when its color turned to yellow.
Germinated seeds with 2 mm long radicles were removed
out of the Petri dish. Tests finished with the germination of
all the seeds or when the seeds no longer were able to
germinate.
Seeds primed in water at 27°C for 10 h and none primed
seeds were set to water stress experiment in rolled paper
moistened with PEF solutions of 0.0, –0.2, –0.4, –0.6, –0.8,
–1.0, –1.2 MPa.
For each treatment there were 4 replicates with 20
seeds in each replicate. Daily observation was recorded on
seeds germination, clarening fungi from seeds and
seedlings when it is necessary. After 2 weeks, all seedlings
in each replicate were dried for dry matterrs of cotyledon,
stem and root three parts. Lengthes of stem and root were
noted down before drying.
Seeds primed in KNO3 solutions and nonprimed seeds
were planted in the experimental garden in June. Daily
observation on seedlings was conducted. Five weeks later
the seedlings were cut for analysis
Final germination percentages were collected to analyze
the germination of different groups under water stress in
PEG solutions.
Results and data were analyzed using Test F.

Results and discussion

Seeds germination percentage decreases with the in-
crease of osmotic potential, and normally the higher the
potential is, the lower the percentage is. For P. dubium , an
appropriate potential helps the germination percentage
when the potential is below –0.4 MPa, after this potential
the percentage decreases sharply. No germination oc-
curred when potential was below –1.2 Mpa. Seeds primed
in captan 10°C and captan 27 °C had the highest germina-
tion percentages at–0.2 MPa. The highest germination
percentage for seeds primed in captan PEG 10°C occurred
at –0.4 MPa, while the highest percentage for seeds
primed in PEG 27°C was at 0.0 MPa. Control group had
the highest germination percentage at –0.4 MPa. (Fig. 1)
-0,2 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6
0
20
40
60
80
100
B C D E F
Pe
rc
en
ta
ge
(%
)
Osmotic potential (-MPa)

Fig. 1 Germination percentage of P. dubium seeds of five
treatments (B--control; C-- captan 10° C; D-- captan 27° C; E--
PEG 10° C; F--PEG 27° C) in osmotic potential of solution PEG
6000.

All the groups had a trend to decrease with the increase
of PEG concentration. Few seeds germinated at –1.2 MPa,
no seed germinated at –1.4 MPa. Control group had a
higher germination percentage than any other group from
-0.4 to-1.2 MPa. Only at –0.2 MPa did the seeds primed
in captan 10°C and captan 27°C have higher germination
percentages than those in control groups.
The highest germination percentages of seeds for 0.5
mol KNO3 group, 0.75 mol KNO3 group, and 1.0 mol KNO3
group occurred at –0.2 MPa, –0.4 MPa, –0.6 MPa, respec-
tively. Only seeds in control group and primed in 0.75 mol
KNO3 group had 3% germination in PEG at –1.2 MPa.
Other groups had no germination at this high concentration.
There was no germination for seeds treated in PEG solu-
tion at –1.4 MPa (Figure 2). The experiment lasted 35 days,
after then no more seed had the possibility to germinate.
From Figure 2, we can see that the seeds in control
group had the highest germination percentage and the
above ground biomass of individual was also the highest in
the field performance. Seeds primed in 0.75 mol KNO3 also
had the lowest above ground biomass. The germination
percentage in 1.0 mol KNO3 was higher than that in 0.75
mol KNO3 and 0.5 mol KNO3, while germination percent-
Journal of Forestry Research, 15(4): 287-290 (2004)

289
age in 0.5 mol KNO3 was the lowest.
-0,2 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6
0
20
40
60
80
100
B C D E
Pe
rc
en
tg
ae
(%
)
Osmotic potential(-MPa)

Fig. 2. Germination percentage of P. dubium seeds of four
treatments (B--control; C--primed in K+ 0.5; D--primed in K+
0.75; E--primed in K+1.0) in osmotic potential of solution PEG
6000

There was no significant difference in germination
percentage between nonprimed seeds and primed seeds
in PEG solution with osmotic potencial above –0.6 Mpa
(Table 1). Nonprimed seeds had significant higher
germination percentage than the seeds primed with captan
in PEG solution below –0.6 Mpa. The germination
percentage for seeds primed in PEG was significant lower
than that of nonprimed seeds.

Table 1. Mean germination percentage(arcsin) for P. dubium
seeds of control group and primed groups.
Treatment
(-MPa)
Germination
Percentage/%
Treatment Percentage
control-0.0
control-0.2
control-0.4
control-0.6
control-0.8
captan10-0.0
captan10-0.2
captan10-0.4
captan10-0.6
captan10-0.8
captan27-0.0
captan27-0.2
captan27-0.4
captan27-0.6
captan27-0.8
80.31
77.555
90
86.77
76.8975
74.325
75.7025
68.3
69.8225
17.855
76.465
80.31
70.7675
52.25
13.535
AB
AB
A
AB
AB
AB
AB
BC
B
D
AB
AB
B
C
D
control-0.0
control-0.2
control-0.4
control-0.6
control-0.8
peg10-0.0
peg10-0.2
peg10-0.4
peg10-0.6
peg10-0.8
peg27-0.0
peg27-0.2
peg27-0.4
peg27-0.6
peg27-0.8
80.31
77.555
90
86.77
76.8975
80.31
69.39
81.0725
71.2
18.98
73.235
70.055
83.54
70.4475
48.7975
A
A
A
A
A
A
AB
A
A
C
A
AB
A
AB
B
D=16.44
F=49.22
Fc=2.15
D=22.01
F=16.42
Fc=2.15
* The numer after the groups means the osmotic potential of PEG
solutions.
From Table 2, the seeds primed in KNO3 had
significantly lower germination percentage than nonprimed
seeds. Field performance showed that seeds primed in
captan 10 °C had a significant lower germination
percentage than nonprimed seeds. No significant
difference in germination was found between nonprimed
seeds and seeds primed ín captan 27°C, PEG 10 º and 27
°C, KNO3 0.5, 0.75 and 1.0 mol (see Table 3).

Table 2. Mean germination percentage(arcsin) for P. dubium
seeds of control group and primed in KNO3 solutions groups.
Treatment
(-MPa) Germination percentage (%)
control-0.0
control-0.2
control-0.4
control-0.6
control-0.8
0.5 K-0.0
0.5 K-0.2
0.5 K-0.4
0.5 K-0.6
0.5 K-0.8
0.75 K-0.0
0.75 K-0.2
0.75 K-0.4
0.75 K-0.6
0.75 K-0.8
1.0 K-0.0
1.0 K-0.2
1.0 K-0.4
1.0 K-0.6
1.0 K-0.8
74.6125
69.39
77.08
67.355
62.5725
60.1975
65.465
56.4
50.825
53.43
54.495
60.235
60.055
53.21
49.3425
58.955
53.8175
49.39
57.685
53.015
AB
AB
A
AB
B
BC
AB
BC
BC
BC
BC
BC
BC
BC
C
BC
BC
C
BC
BC
D=13.18
F=10.09
Fc=1.96



* The numer after the groups means the osmotic potential of PEG
solutions.

Table 3. Mean germination percentage(arcsin) for P. dubium
seeds of control group and primed groups of field
performance.
Treatment Percentage
Control-1
captan10
captan27
PEG 10
PEG 27
control-2
0,5 KNO3
0,75 KNO3
1,0 KNO3
82,1625
67,21
69,39
70,48
78,9325
55,26
41,3275
38,49
29
A
B
AB
AB
AB
BC
C
C
C
D=14.85
F=37.24
Fc=2.71




Germination percenages of nonprimed seeds and seeds
primed ín water had no significant difference. There was
ZHANG Wan-li et al.

290
also no significant difference in germination for primed
seeds and nonprimed seeds in osmotic potential at 0.0, –
0.2, –0.4, –0.6, and –0.8 Mpa. No seed germinated ín PEG
solution below –0.8 Mpa.
Ratio of root/stem decreased from 0.0 to –0.6 Mpa for
seedlings of nonprimed seeds. This value increased at –
0.8 Mpa , but lower than that at 0.0 Mpa. For seeds primed
in water, the ratio of root/stem of seedlings had a trend to
increase from 0.0 to –0.8 Mpa. Dry matter of seedlings of
monrimed seeds had a trend to decrease, from 0.0 to –0.8
Mpa. But no significant difference was found among them
(see Table 3).

Conclusion

Peltophorum dubium is an orthodox species and resis-
tant to water stress. It was possible to have a very high
germination percentage under water stress at –0.8 MPa in
PEG solution. Water stress had almost no impact on its
germination with the concentration that is not lower than –
0.6 MPa. Seeds primed in 0.2% captan and–1.0 MPa PEG
solutions at 10°C and 27°C had a significant decrease of
germination under water stress at–0.8 MPa. Seeds primed
in solution KNO3 had also a significant decrease in germi-
nation percentage under water stress at –1.0 MPa. It is
hard for P. dubium seeds to germinate at –1.2 MPa and
impossible to germinate at –1.4 MPa at either 10°C or
27°C.


References

Atherton, J.G. & Farooque, A.M. 1983. High temperature and germina-
tion in spinach: II. Effects of osmotic priming [J]. Scientia Hort., 19:
221-227.
Bewley, J.D. & Black, M. 1986. Seeds: Physiology of development and
germination [M]. New York and London: Plenum Press, pp.231-233.
Bradford, K.J. 1986. Manipulation of seed water relations via osmotic
priming improve germination under stress conditions. Proc. Seed
germination Under Environ. Stress [J]. Hort Science. 2: 1105-1112.
Cantliffe, D.J. 1981. Priming of lettuce seed of early and uniform emer-
gence under conditions of environmental stress [J]. Acta Hort., 122:
29-38.
Carpenter, W.J. 1990. Priming dusty miller seeds: Role of aeration,
temperature, and relative humidity [J]. Hort Science, 25: 299-302.
Cordeiro, S.R. & Di Stefano, G.J.L. 1991. Efeito del estrés osmótico
sobre la germinaçao de semillas de Tecoma stans (Bignoniaceae.)
[J] Ver. Bras. Sem., 39: 107-110.
Cordoba, G.A.T., et al. 1995. Osmocondiçionamentos, secagem e
armazenamento de Eucalyptus citriodora. Hook e Eucalyptus gran-
dis W. Hill [J]. Rev. Bras. Sem.,17: 81-95.
Haridi, M.B. 1985. Effect of osmotic priming with
polyethylene glycol on germination of Pinus elliottii seeds [J]. Seed
Sci. & Technol., 13: 669-674.
Khan, A.A. 1992. Preplant physiological seeds conditioning. Horticul-
tural Review, 14: 131-181.
Yoon, B.Y., Lang, H.J., Cobb, B.G. 1997. Priming with salt solutions
improves germination of pansy seed at high temperatures [J]. Hort
Science, 32(2): 248-250.


Chinese Abstracts 2
(中国科学院沈阳应用生态研究所陆地生态过程重点实验
室,沈阳 110016,中国),梁战备(内布拉斯加林肯大学,
林肯 NE 68583-0915,美国),黄国宏(中国科学院沈阳应
用生态研究所陆地生态过程重点实验室,沈阳 110016,中
国)// Journal of Forestry Research. –2004, 15(4): 268-272.
随着大气CO2浓度的升高,主要由其引起的温室效应与
对生物新陈代谢的影响变得越来越显著。森林生态系统在全
球碳循环中扮演着重要的角色。为了评估和理解森林土壤
CO2 通量及其随空气和土壤温度的季节和昼夜变化规律,我
们在长白山北坡典型阔叶红松林内利用静态箱技术进行了原
位观测。实验在整个生长季(6 月初至 9 月末)昼夜进行,
利用气相色谱进行气体分析。结果表明: 长白山阔叶红松林
土壤是大气二氧化碳源,其 CO2通量具有明显的季节和昼夜
变化规律。通量的变化范围是(0.30-2.42)μmol·m-2·s-1,平均
值为 0.98μmol·m-2·s-1。土壤 CO2排放的季节规律表明,土
壤 CO2通量的变化与气温和土壤温度的变化有关。CO2平均
通量的最大值出现在 7月((1.27±23%)μmol·m-2·s-1),最小
值出现在 9 月((0.5±28%)μmol·m-2·s-1)。土壤 CO2的昼夜
波动与土壤温度变化有关,而在时间上滞后于温度的变化。
森林下垫面土壤 CO2通量与土壤温度显著相关,与 6cm深度
土层温度相关系数最大。基于气温和土壤温度计算的 Q10值
范围为 2.09-3.40。图 2表 3参 37。
关键词:土壤 CO2 排放通量;阔叶红松林;Q10;长白山;
全球变化
CLC number: S712.5 Document code: A
Article ID: 1007-662X(2004)04-0268-05

04-04-005
紫金山两种主要林型有机物层中丝状真菌多样性/宋福强,田
兴军,李重琦,杨昌林,陈斌,郝杰杰,朱静(南京大学生
命科学学院,南京 210093)//Journal of Forestry Research.
–2004, 15(3): 273-279.
本文对紫金山两种主要林型 ,栓皮栎林 (Quercus
variabilis)和马尾松 -枫香 (Pinus massoniana-Liguidam
barformasana)混交林的有机物层(L, F, H层及土壤淋溶A层)
可培养丝状真菌多样性进行了研究。通过分离鉴定,共得到
真菌67种,其中接合菌3种、子囊菌5种、半知菌类56种和未
确定种3种,半知菌类最为丰富。两种林型分解真菌优势种群
为链格孢(Alternaria sp.)、曲霉(Aspergillus spp.)、枝孢
(Cladosporium sp.)、毛霉(Mucor sp.)、青霉(Penicillium
sp.)、木霉(Trichoderma spp.)、根霉(Rhizopus sp.)、粘
帚霉(Gliocladium sp.)。混交林型中真菌的种类和数量明显
高于栓皮栎林。两个林型均以F层真菌种类最多,但F层之间
和L层之间真菌多样性差异较大。在混交林型中从马尾松针叶
上分离的真菌种类和数量比从枫香上分离得到的少; 从马尾
松针叶上分离的真菌丰富度随着有机物层深度增加而增加,
枫香则反之。比较两个林型以及混交林的两种落叶上真菌种
类发现,随着有机物层深度的增加,真菌的种类差异性却随
之减少,即同时出现在两个林型或两种针叶上的真菌种类增
多。真菌种类随着分解过程的进行具有明显的演替现象。混
交林型中同一层内不同落叶上分解真菌多样性的差异,表明
凋落物基质的差异是决定真菌种类和数量的重要因素之一。
图5表2参36。
关键词:紫金山;林型;丝状真菌;多样性;凋落物
CLC number: S718.8 Document Code: A
Article ID: 1007-662X(2004)04-0273-07

04-04-006
不同损伤形式诱导合作杨挥发物释放差异的研究/胡增辉(北
京林业大学生物科学与技术学院,北京 100083),杨迪(北
京林业大学图书馆,北京 100083),沈应柏(北京林业大学生
物科学与技术学院,北京 100083)//Journal of Forestry
Research. –2004, 15(3): 280-282.
该研究采用机械损伤、舞毒蛾 (Lymantria dispar) 幼虫
取食、机械损伤后伤口涂抹舞毒蛾幼虫口腔分泌物三种方法
处理合作杨 (P. simonii× P. pyramibalis c.v)植株,以寻求引
起树木对昆虫取食有效抗性反应的真正原因。应用
TCT-GC/MS 的技术分析了损伤处理 24h后诱导挥发物的释
放情况。结果表明一些挥发物,如(Z)-3-hexenyl acetate,
decanal, decanal, 3-hexenyl isovalerate, nonanal, ocimene,
and 2-cyanobutane均可由机械损伤和舞毒蛾幼虫取食诱导,
而 2,6-dimethyl-1,3,5,7-octatetraene,
2-methyl-6-methylene-1,7-octadien-3-one, caryophyllene,
Isovaleronitrile, diethyl-methyl-benzamide, and dicapryl
phthalate 仅能被昆虫取食所诱导。舞毒蛾口腔分泌物中的活
性成分引起了释放的挥发物的差异。图 1参 14。
关键词:诱导挥发物;昆虫口腔分泌物;机械损伤;舞毒蛾
取食
CLC number: S718.43 Document code: A
Article ID: 1007-662X(2004)04-0280-03

04-04-007
一种基于数字高程模型的流域边界提取修正方法/王殿中,郝
占庆,熊在平(中国科学院沈阳应用生态研究所,沈阳,
110016) //Journal of Forestry Research. –2004, 15(3):
283-286.
流域边界提取是森林景观研究中的重要步骤。本研究利
用数字高程模型(DEM)信息在 ArcInfo8.1 中提取出位于中
国辽东山区的浑河上游流域边界,然后叠加经过主成分变换
的相应地区遥感 ETM影像,借助遥感影像上反映出来的丰富
的地貌信息,修正流域的边界。在原边界和修正后的流域边
界上分别叠加县界图和水网图,目视检查两次结果的效果。
对两次结果叠加县界图时,流域边界和县界图匹配效果很好,
说明通过计算机程序提取流域边界有着较高的精度。继续叠
加水网图后,原边界与水网图匹配时有三处不符,而修正过
的流域边界与水网图符合得很好。对比分析论证了通过计算
机程序提取流域边界精度优于手工数字化,只是在局部会产
生空间位置上的错误。这主要是因为复杂地形的存在尤其是
经过人类活动改变过的地表的存在,可以辨认和修正,因为的
ETM影像的空间分辨率小于本研究中所用的 DEM数据的空
间分辨率。本研究的结果证明,应用遥感信息改善从DEM中
提取的流域边界,是一种行之有效的方法。图 3参 15。
关键字:流域;边界提取;DEM;ETM
CLC number: S715 Document code: A
Article ID: 1007-662X(2004)04-0283-04

04-04-008
水胁迫条件下引物处理对巴西盾柱木种子萌发的影响/张万
里(华东师范大学生命科学学院,上海市 200062),李雷鸿,
祖元刚(东北林业大学森林植物生态学开放研究实验室,哈尔
滨市(150040)), Soni Perez(Botanical Department, Federal
University of Sao Carlos, Sao Carlos 13565-905, Brazil)//
Chinese Abstracts 3
Journal of Forestry Research. –2004, 15(4): 287-290.
实验所用巴西盾柱木种子由圣保罗州 Anhembi 公司提
供,种子经由 98%的浓硫酸预处理 15 min, 以打破物理休
眠。分别在 0.2%克菌丹溶液 10 oC和 27 oC下,-1.0 MPa
聚乙二醇 6000 10 oC和 27 oC下,以及, 0.5 mol,0.75 mol,
1.0 mol 硝酸钾溶液进行引物处理. 包括对照组种子,共 8个
实验处理,每一个处理 5个重复,每一个处理实验用 100 粒
种子,置于滤纸浸透引物聚乙二醇 6000溶液的 15厘米培养
皿中,置于冰箱保持 27oC恒温。实验引物渗透势为 0.0, -0.2,
-0.4, -0.6, -0.8, -1.0-MPa, -1.4 MPa. 实验同时将种子置
于浸有引物聚乙二醇的卷纸中,观察水胁迫下的萌发情况。
实验结果证明,随着聚乙二醇 6000 浓度的升高,巴西盾柱
木种子萌发率降低,对照组萌发率比实验引物处理组高。聚
乙二醇达到 PEG -1.4 MPa,种子不能萌发。图 2表 3参 10。
关键词:引物处理;渗透势;萌发;巴西盾柱木
CLC number: S721.13 Document code: A
Article ID: 1007-662X(2004)04-0287-04

04-04-009
昆明市三个主要广场园林植物绿量研究/董燕(西南林学院,园
林学院,昆明 650224),赵林森(西南林学院,园林学院,昆
明 650224),赵宇翔(国家林业局森林病虫害防治总站,沈阳
110034)// Journal of Forestry Research. -2004,
15(4):291-294.
通过对昆明市区三个主要广场上 30 种园林植物的调查
测定,建立了其中 13种园林植物绿量计算的回归方程,直接
测算出另外 17种园林植物的绿量,并分别得出三个广场园林
植物的总绿量。研究结果表明,乔、灌、草结合的胜利广场
的绿地率和单位面积绿量均为三个广场之最,这种多层次立
体栽培模式既有利于提高单位面积的绿量,也有利于植物群
落生态效益和景观效益的充分发挥。在综合分析三个广场园
林植物绿量特点的基础上,认为设计合理的复层结构、良好
的抚育管理可以有效提高人工植物群落的单位面积绿量并据
此提出相关建议。表 3参 7。
关键词:广场;园林植物;绿量;昆明
CLC number: S688 Document Code: A
Article ID: 1007-662X(2004)04-291-04

04-04-010
大熊猫血清犬冠状病毒的中和抗体调查/乔军(中国人民解放
军军事医学科学院军事兽医研究所,长春 130062,中国;
塔里木大学动物科技学院,新疆 阿拉尔 843300,中国),夏
咸柱,杨松涛(中国人民解放军军事医学科学院军事兽医研究
所, 长春 130062,中国),李德生(中国大熊猫保护研究中心,
四川 卧龙 623006,中国),胡桂学(吉林农业大学动物科技
学院, 吉林 长春 130118,中国),高玉伟,孙贺廷,赵忠鹏,
谢之景,闫芳,贺文琦,黄耕(中国人民解放军军事医学科学
院军事兽医研究所 , 长春 130062,中国 )// Journal of
Forestry Research. -2004, 15 (4): 295-297.
本文为进一步了解犬冠状病毒在大熊猫群体中的感染情
况,采用固定病毒(100 TCID50)-稀释血清法建立了检测大
熊猫血清CCV抗体的微量中和试验。运用该方法测定了四川
大熊猫保护区和动物园的 62份大熊猫血清CCV中和抗体,
以大于 1:4抗体效价作为阳性判定标准,结果 8份大熊猫血
清为阳性,抗体滴度在 1:8和 1:32之间,阳性率达 12.9%。
这是首次比较全面地对大熊猫进行 CCV中和抗体水平调查,
结果表明: CCV 感染在我国大熊猫群体中较为普遍,已给大
熊猫的健康带来威胁。因此,有必要研制安全有效的疫苗以
保护大熊猫的安全。表 1参 17。
关键词:血清学调查;犬冠状病毒;大熊猫;中和试验
CLC number: S852.5; Q959.838 Document code: A
Article ID: 1007-662X(2004)04-0295-03

04-04-011
用土壤养分系统研究法评价杨树人工林土壤养分状况/余常
兵,陈防(中国科学院武汉植物园,武汉 430074,中国),罗
治建,陈卫文(湖北省林科院森林保护所,武汉 430079,中
国)// Journal of Forestry Research. -2004, 15(4): 298-300.
杨树是中国速生丰产人工林主要树种之一。简单、准确
的评价杨树林地的土壤养分状况对人工林的发展具有重要意
义。土壤养分系统研究法(SNSA)在评价我国农田土壤养
分状况方面已有成功的应用,本文首次应用该法对江汉平原
杨树人工林的土壤养分状况进行了评价。通过土壤样品的收
集、理化特征分析、实验室预测与最佳施肥推荐、田间试验
验证等过程,研究结果认为田间试验结果与实验室的预测一
致,表明 SNSA在评价杨树人工林土壤养分状况方面是可信
的。结果表明,N和 Zn是试验地区土壤主要养分限制因子,
且 N的缺乏程度大于 Zn。图 2表 3参 13。
关键词:土壤养分系统研究法;杨树;限制因子;评价
CLC number: S792.11; S151.9 Document Code: A
Article ID: 1007-662X(2004)04-0298-03

04-04-012
大鸨人工育雏及雏鸟生长发育的研究/田秀华,张佰莲,刘群
秀(东北林业大学野生动物资源学院 哈尔滨市 150040),何
相宝(哈尔滨北方森林动物园) // Journal of Forestry
Research .–2004, 15(4): 301-304.
1999-2002 年在哈尔滨动物园对 21 只健康成长的笼养
大鸨(Otis tarda)雏鸟进行了人工育雏的研究,总结出成功
的育雏方法和经验,并对雏鸟生长发育的各项生理指标如:
体重、体长、翅长、尾长、跗蹠、嘴裂、中趾及头宽进行了
测定,结果表明:大鸨为早成鸟,其初生体重为 86.31+3.56g
(n=21),其新出雏雏鸟的环境温度控制在 36℃,以后每天
降低一度,大鸨的饲喂实行少吃多餐的原则,雏鸟生长发育
中雌雄体重从第六周有明显差异,第十四周雄鸨体重是雌鸨
体重的 1.8 倍,可以从体形上明显区别雌雄;雌雄各器官的
生长发育差异不显著;大鸨雏鸟各器官的生长符合 Logistic
曲线增长。图 3表 2参 14
关键词:人工育雏;大鸨;Otis tarda;雏鸟;生长发育
CLC number S865.34 Document code A
Article ID: 1007-662X(2004)04-0301-04

04-04-013
树木、林内、林冠上与森林区风速廓线研究/朱教君(中国
科学院沈阳应用生态研究所,沈阳 110016,中国,日本国立
新泻大学农学部,950-2181,新泻 日本),李秀芬(中国科
学院沈阳应用生态研究所,沈阳 110016,中国),Gonda
Yutaka,MATSUZAKI Takeshi(日本国立新泻大学农学部,
950-2181,新泻 日本) //Journal of Forestry Research.
–2004, 15(3): 305-312.
风速是森林生态系统研究中最为重要的变量之一,同时
也是控制气流运输过程最基本的要素。由于树木生理指标和