全 文 :国际药学研究杂志 2016年10月 第43卷 第5期 J Int Pharm Res,Vol.43,No.5,October,2016
A new tetrahydrofuran lignan from Peperomia blanda
SUN Ruo-feng,YANG Yu,XU Rui,ZHAO Yi-min,YU Neng-jiang*
(Institute of Pharmacology and Toxicology,Academy of Military Medical Sciences,Beijing 100850,China)
[Abstract] Objective To investigate the chemical constituents of Peperomia blanda. Methods Guided by HPLC detec⁃
tion,integrated methods including vacuum liquid chromatography(VLC),ODS and semi-preparative RP-HPLC were used for separa⁃
tion. The structure was determined by spectral analyses including ESI-MS,1D NMR,2D NMR and ECD spectra. Results Four com⁃
pounds were isolated and identified as(7S,7′S,8R,8′R)-7-(5-methoxy-3,4-methylenedioxyphenyl)-7′-(4-hydroxy-3,5-dimethoxy⁃
phenyl)-8,8′-dihydroxymethyltetrahydrofuran(1),7,8-trans-8,8′-trans-7′,8′-cis-7,7′-(4-hydroxy-3,5-dimethoxy phenyl)-8,8′-di⁃
acetoxymethyltetrahydrofuran(2),(+)-(7S,7′S,8R,8′R)-4,4′-dihydroxy-3,3′,5,5′-tetramethoxy-7,9′,7′,9-diepoxylignane(3),
and(6R,7E,9R)-9-hydroxy-4,7-megastigmadien-3-one(4). Conclusion Compound 1 is a new tetrahydrofuran lignan,compounds
2-4 were isolated from P. blanda for the first time.
[Key words] tetrahydrofuran lignan;Peperomia dindygulensis;chemical components;structure elucidation
[Clc number] R284.1;R284.2 [Document code] A [Article ID] 1674-0440(2016)05-0935-05
DOI:10.13220/j.cnki.jipr.2016.05.024
石蝉草中的一个新四氢呋喃木脂素
孙若峰,杨 郁,徐 锐,赵毅民,于能江*
[摘要] 目的 研究草胡椒属植物石蝉草的化学成分。方法 HPLC分析图谱指导分离,采用硅胶层析柱色谱、ODS层
析柱色谱、半制备高效液相色谱等方法,对石蝉草乙酸乙酯部位所包含的化合物进行分离纯化。根据ESI-MS、1D NMR、2D
NMR数据以及ECD数据对新化合物进行结构解析。 结果 从石蝉草乙酸乙酯部位分离得到4个低含量化合物,结构分别确
定为:(7S,7′S,8R,8′R)-7-(5-甲氧基-3,4-亚甲二氧基苯基)-7′-(4-羟基-3,5-二甲氧基苯基)-8,8′-二羟甲基四氢呋喃(1)、7,8-
trans-8,8′-trans-7′,8′-cis-7,7′-(4-hydroxy-3,5-dimethoxyphenyl)-8,8′-diacetoxymethyltetrahydrofuran(2)、(+)-(7S,7′S,8R,8′R)-
4,4′-dihydroxy-3,3′,5,5′-tetramethoxy-7,9′,7′,9-diepoxylignane(3)、(6R,7E,9R)-9-hydroxy-4,7-megastigmadien-3-one(4). 结
论 化合物1为新化合物,化合物2~4为首次从该植物中分离得到。
[关键词] 四氢呋喃木脂素;石蝉草;化学成分;结构解析
Peperomia blanda Jacq. Kunth(P. dindygulensis
Miq.)is mainly distributed in the tropic area of China
and has been used as for folk medicine in China for the
treatment of bronchitis,asthma,tuberculosis and ne⁃
phritis dropsy,as well as for the treatment of stomach,
liver,lung and esophageal cancers[1-2]. Previous chemi⁃
cal investigations of P. blanda indicate that it mainly
contains secolignans[3- 7],tetrahydrofuran lignans[4,8],
polyketides[9-12],and flavonoids[13-14]. Among the above
chemical components, secolignans were proved to
have anti-cancer[5,15],anti-inflammatory[5],anti-angio⁃
genic[6],and anti-HIV[16] activities and were supposed
to be the main active constituents of P. blanda,while
tetrahydrofuran lignans exhibited markedly estrogen-
like property[15],multidrug resistance reversal(MDR)
activity[4]and in vitro trypanocidal activity[17] in litera⁃
ture. In our present study for the new functions of P.
blanda,four compounds(1-4)(Fig. 1)including one
基金项目:国家“重大新药创制”科技重大专项资助项目(2013ZX09102108);北京市科委资助项目(Z131100006513013)
作者简介:孙若峰,女,在读硕士研究生,研究方向:天然产物活性成分研究,E-mail:RF_S2013@163.com
作者单位:100850 北京,军事医学科学院毒物与药物研究所(孙若峰,杨 郁,徐 锐,赵毅民,于能江)
*通讯作者:于能江,男,副研究员,硕士生导师,研究方向:天然药物化学成分活性先导物发现和中药新药研究,Tel:010-66874617,E-mail:
ynj08@hotmail.com
··935
国际药学研究杂志 2016年10月 第43卷 第5期 J Int Pharm Res,Vol.43,No.5,October,2016
new tetrahydrofuran lignan(1)were first isolated from
P. blanda. Here we report the isolation and structure
elucidation of the above compounds.
1 Material and methods
1. 1 Instruments and reagents
Optical rotations were measured on pol AAr 3005
polarimeter(Optical Activity Ltd.,England);ECD
spectrum was recorded on Biologic M450 spectropolar⁃
imeter(Biologic Science Instruments,France);NMR
spectra were acquired with JNM-ECA-400(JEOL,Ja⁃
pan)and Varian-Inova-600(Varian,USA);ESI-MS
and HRESI-MS were conducted on an API 3000 LC-
MS/MS(ESI)(SCIEX,USA)and an Agilent 1260-
G6230A LC-MS(ESI)(Agilent,USA),respectively;
HPLC analysis was performed on an Agilent 1200
series(Agilent,USA) with VWD detector using a
WondasilTM ODS column(4.6 mm× 150 mm,5 μm,GL,
Japan)and an YMC-PACK-ODS-A column(4.6 mm×
150 mm,5 μm,YMC,Japan);semi-preparative RP-
HPLC was carried out on Shimadzu LC-15C(Shimadzu,
Japan)with SPD-15C detector using an YMC-PACK-
ODS-A column(10 mm× 250 mm,5 μm,YMC,Ja⁃
pan);silica gel(200- 300 mesh,Qingdao Haiyang
Chemical,China),reversed- phased gel ODS(50
μm,YMC,Japan)and ODS(50 μm,GH,China)
were employed for column chromatography(CC);silica
gel TLC (Yantai Dexin Biotechnology Co.,Ltd.,
China).
1. 2 Plant material
The dried plant of P. blanda was from Kangmei
Pharmaceutical Co.,Ltd.,Bozhou City,Anhui Prov⁃
ince,China,in March 2012 and authenticated by Mr.
Nengjiang Yu,Institute of Pharmacology and Toxicology,
Academy of Military Medical Sciences,Beijing,China.
A voucher specimen(No. 2012-3-SCC)is deposited at
Department of Natural Products Chemistry of the same
institute.
1. 3 Extraction and isolation
Air-dried plant material(1.3 kg)was chopped and
refluxed with 80% EtOH(3 × 10 L). The solvent was
removed under vacuo to obtain an ethanol extract(300 g).
The extract(290 g)was dissolved in water,and then
extracted with EtOAc to afford an EtOAc extract(105 g),
which was concentrated and separated under HPLC de⁃
tection guidance. The extract was divided into seven
equal parts,and each part was subjected to a silica gel
column(300 g),vacuum liquid chromatography(VLC)
gradient eluted by EtOAc-petroleum ether(40∶60-100
∶0). All eluents(150 ml each)were collected and
combined by the detection of thin- layer chromatogra⁃
phy(TLC)to afford Fr. A-E. Fr. D(15.1 g)was chro⁃
matographed over an reverse phase silica gel column
chromatography(ODS)column(GH- ODS,50 μm,
11 cm × 21 cm)gradient eluted by methanol-water(40
∶60-55∶45). Thirty eluents(500 ml each)were col⁃
lected and combined by the HPLC detection to yield
four fractions(Fr. D-1-4). Fr. D-2(1.4 g)was re-chro⁃
matographed over an ODS column(YMC- ODS,50
μm,5 cm × 27 cm)eluted by MeOH-H2O(45∶55).
50 eluents(50 ml each)were collected and combined
in 6 fractions(Fr. D-2-1-6)according to HPLC detec⁃
tion. Fr. D-2-1(58 mg)was subjected to semi-prepara⁃
tive reverse phase HPLC(RP- HPLC)(YMC- Pack-
ODS-A,5 μm,10 mm × 250 mm)eluted by MeOH-
H2O(45∶55)to yield 1(2.2 mg). Fr. D-2-2(183 mg)
was successively prepared over a semi-preparative RP-
HPLC eluted by MeOH-H2O(45∶55)and CH3CN-H2O
(37∶63)to obtain 3(18.2 mg)and 4(2.0 mg). Fr. D-
2-4(286 mg)was purified with semi-preparative RP-
HPLC eluted by MeOH-H2O(50:50)and CH3CN-H2O
(40∶60)to obtain 2(7.1 mg).
2 Structure elucidation
Compound 1 had the molecular formula C22H26O9
determined by HRESI-MS(m/z 457.1468[M + Na]+,
calcd. for 457.1475). The degree of unsaturation was
calculated as 10. The 1H NMR spectrum(Tab.1)
showed two sets of tetrasubstituted aromatic ring sig⁃
Fig.1 Structures of compounds 1-4
··936
国际药学研究杂志 2016年10月 第43卷 第5期 J Int Pharm Res,Vol.43,No.5,October,2016
nals at δH 6.58(1H,d,J = 1.2 Hz,H-2),6.55(1H,
d,J = 1.2 Hz,H-6)and 6.60(2H,s,H-2′,6′),one
methylenedioxy group at δH 5.95,and 5.94(2H,d,
J = 1.2 Hz,3,4-OCH2O),and three methoxy groups
at δH 3.89(6H,s,3′,5′-OCH3),and 3.90(3H,s,5-
OCH3)attached to the aromatic rings,indicated the
presence of a 3,4-methylenedioxy- 5-methoxyphenyl
group and a 3′,5′-dimethoxy- 4′-hydroxyphenyl group.
Moreover,two oxygenated methines at δH 4.73(2H,
d,J = 9.0 Hz,H- 7,7′),two methines at δH 2.30
(2H,m,H-8,8′),and two oxygenated methylenes at
δH 3.67(2H,m,Ha-9,Ha-9′)and 3.83(2H,m,Hb-
9,Hb-9′)were also observed in 1H NMR and HSQC
spectra.
HMBC correlations from H-7,7′ to C-8,8′ and C-
9,9′,as well as from H-9,9′ to C-7,C-7′ and C-8,C-
8′ revealed the connections of C7- C8- C9,C7′- C8′-
C9′. The degree of unsaturation was 10,and the above
accounted for 9,the remaining one was attributed to a
tetrahydrofuran ring. HMBC correlations from H-2,H-
6 to C-7 and H-2′,H-6′ to C-7′ as well as from C-2,
C-6 and C-2′,C-6′ to H-7,7′ indicated the 3,4-meth⁃
ylenedioxy-5-methoxyphenyl group was connected with
C-7 and the 3′,5′-dimethoxy-4′-hydroxyphenyl group
connected with C-7′ . Thus,the planar structure of 1
was confirmed as 7-(5-methoxy-3,4-methylenedioxy⁃
phenyl)-7′-(4-hydroxy-3,5-dimethoxyphenyl)-8,8′-
dihydroxymethyltetrahydrofuran.
The relative configuration of compound 1 had
eight possibilities including 7,8- trans-8,8′- trans-7′,
8′-trans,7,8-cis-8,8′-trans-7′,8′-cis,7,8-trans-8,
8′-cis-7′,8′-trans,7,8-cis- 8,8′-cis-7′,8′-cis,7,8-
trans-8,8′-trans-7′,8′-cis,7,8-trans-8,8′-cis-7′,8′-
cis,7,8-cis-8,8′-cis-7′,8′- trans and 7,8-cis-8,8′-
trans-7′,8′-trans,The basically same proton and car⁃
bon chemical shifts between C7-C8-C9 and C7′-C8′-
C9′ indicated the relative configuration must be the
one among 7,8-trans-8,8′-trans-7′,8′-trans,7,8-cis-
8,8′-trans-7′,8′-cis,7,8-trans-8,8′-cis-7′,8′-trans
and 7,8-cis-8,8′-cis-7′,8′-cis(see Fig. 2). NOESY
Spectrum of 1 showed the proton signal at δH 4.73(H-
7,7′)had NOE correlations both with the signal at δH
2.30(H-8,8′)and the signals at δH 3.67 and 3.83(H-
9,9′). The relative configuration 7,8-trans-8,8′-trans-
Position
1
2
3
4
5
6
1′
2′,6′
3′,5′
4′
7,7′
8,8′
9,9′
5-OCH3
3′,5′-OCH3
3,4-OCH2O
δH,(J in Hz)
6.58,1H,d(1.2)
6.55,1H,d(1.2)
6.60,2H,s
4.73,2H,d(9.0)
2.30,2H,m
3.67,2H,m,Ha-9,Ha-9′
3.83,2H,m,Hb-9,Hb-9′
3.90,3H,s
3.89,6H,s
5.95,1H,d(1.2)
5.94,1H,d(1.2)
δC
136.4
100.4
149.1
134.9
143.6
106.1
134.6
103.1
147.2
132.3
83.2,C-7′
83.7,C-7
56.7
56.8
63.1
57.0
56.4
101.5
HMBC(H→C)
C-3,C-4,C-6,C-7
C-2,C-4,C-5,C-7
C-1′,C-3′,5′,C-4′,C-7′
C-2,C-6,C-2′,6′,C-8,C-8′,C-9,9′
C-7,C-7′,C-8,C-8′
C-7,C-7′,C-8,Cv8′
C-5
C-3′,5′
Tab.1 NMR spectral data of compound 1(600 MHz for 1H NMR and 125 MHz for 13C NMR,obtained in CDCl3 with tetra⁃
methylsilance as internal standard)
··937
国际药学研究杂志 2016年10月 第43卷 第5期 J Int Pharm Res,Vol.43,No.5,October,2016
7′,8′-trans or 7,8-cis-8,8′-trans-7′,8′-cis could agree
with these NOE correlations(Fig. 2). In contrast,H-7
or H-7′ of 7,8- trans-8,8′-cis- 7′,8′- trans configura⁃
tion had NOE correlation with H-9 and H-9′,but not
with H-8 or H-8′. And H-7 or H-7′ of 7,8-trans-8,8′-
cis-7′,8′-trans configuration had NOE correlation with
H- 8 and H- 8′,but not with H- 9 or H- 9′(Fig. 2).
Thus,the relative configuration of 1 only could be ei⁃
ther 7,8-trans-8,8′-trans-7′,8′-trans or 7,8-cis-8,8′-
trans-7′,8′-cis.
The coupling constants between H-7 and H-8 as
well as those between H- 7′ and H- 8′ were both 9.0
Hz,indicating the relative configuration was 7,8-trans-
7′,8′-trans[18]. The identical carbon chemical shifts of
C7-C8-C9 and C7′-C8′-C9′ with that of(+)-(7R,7′R,
8S,8′S)-4′-hydroxy -3,3′,4,5,5′-pentamethoxy-7,
7′-epoxylignan-9,9′-diol[19] also supported the result
that the relative configuration of 1 was 7,8-trans-8,8′-
trans- 7′,8′- trans. The ECD spectrum of 1 showed a
negative cotton effect at 248 nm. Similar compound
icariol A2 had the same relative configuration as 1 and
its absolute configuration 7S,7′S,8R,8′R was deter⁃
mined by its negative cotton effect at 246.3 nm[20].
Therefore the absolute configuration of 1 was deter⁃
mined as 7S,7′ S,8R,8′R. Thus,the structure of 1
was determined as(7S,7′S,8R,8′R)-7-(5-methoxy-
3,4-methylenedioxyphenyl)-7′-(4-hydroxy-3,5-dime⁃
thoxyphenyl)-8,8′-dihydroxymethyltetrahydrofuran.
Additionally,three known compounds were as⁃
signed as 7,8-trans-8,8′-trans-7′,8′-cis-7,7′-(4-hy⁃
droxy-3,5-dimethoxyphenyl)-8,8′-diacetoxymethyltet⁃
rahydrofuran[15](2),(+)-(7S,7′S,8R,8′R)-4,4′-di⁃
hydroxy-3,3′,5,5′- tetramethoxy-7,9′,7′,9-diepox⁃
ylignan[21](3),and(6R,7E,9R)- 9- hydroxy- 4,7-
megastigmadien-3-one[22](4)by comparing their spec⁃
troscopic data with published literature values.
Compound 1:amorphous powder;[α]25D + 25.8
(c 0.40,MeOH);ECD(c 1 mmol/L,MeOH):220
(Δε -3.64),248(Δε-18.96);1H NMR(600 MHz,
CDCl3),13C NMR(125 MHz,CDCl3),(Tab.1);(+)
ESI-MS:m/z 435.3[M + H]+,457.3[M + Na]+,
891.5[2M + Na]+;(-)ESI-MS m/z:433.3[M-
H]-;(+)HRESI- MS m/z:457.1468[M + Na]+
(calcd. for C22H26O9Na+,457.1475).
Compound 2:amorphous powder;1H NMR(400
MHz,CDCl3):δ 1.91(3H,s,9′-OAc),2.05(3H,s,
9-OAc),2.40(1H,m,H-8),2.70(1H,m,H-8′),
3.82(2H,m,H- 9′),3.89(6H,s,OCH3),3.93
(6H,s,OCH3),4.27(2H,m,H-9),4.64(1H,d,
J = 7.8 Hz,H-7),5.11(1H,d,J = 6.9 Hz,H-7′),
5.56(1H,brs,OH),5.60(1H,brs,OH),6.63
(2H,s,H-2′,6′),6.73(2H,s,H-2,6);13C NMR
(100 MHz,CDCl3):δ 20.8,20.9(9,9′-CH3CO),
45.6(C-8′),50.0(C-8),56.2,56.3(3,5,3′,5′-
OCH3),64.3(C-9),64.4(C-9′),81.0(C-7′),83.1
(C-7),102.7(C-2′,6′),103.2(C-2,6),128.5(C-1′),
131.2(C-1),134.0(C-4′),134.6(C-4),147.0(C-
3′,5′),147.1(C-3,5),171.0(9,9′-COCH3);(+)
ESI-MS m/z:543.2[M + Na]+;(-)ESI-MS m/z:
519.2[M-H]–。
Compound 3:pale yellow gum;[α] 21D +12.1(c
0.05,CHCl3);1H NMR(400 MHz,DMSO- d6):δ
3.05(2H,m,H-8,8′),3.75(12H,s,3,5,3′,5′-OCH3),
3.76(2H,overlapped,H-9′a,9a),4.15(2H,m,H-
9′b,9b),4.61(2H,d,J = 4.0 Hz,H-7,7′),6.60
(4H,s,H-2,2′,6,6′);13C NMR(100 MHz,DMSO-
d6):δ 54.2(C-8,8′),56.5(3,5,3′,5′-OCH3),71.6
(C-9,9′),85.9(C-7,7′),104.1(C-2,6,2′,6′),
131.9(C-1,1′),135.3(C-4,4′),148.4(C-3,5,3′,
5′);(+)ESI-MS m/z:419.5[M + H]+,436.5[M +
NH4]+,441.5[M + Na]+,859.4[2M + Na]+;(-)
ESI-MS m/z:417.4[M-H]-。
Compound 4:pale yellow gum;1H NMR(600MHz,
CDCl3):0.94(3H,s,CH3-12),1.01(3H,s,11-CH3),
1.28(3H,d,J = 6.0 Hz,10-CH3),1.89(3H,d,
Fig.2 The key NOE relations of four possible relative con⁃
figurations of compound 1
··938
国际药学研究杂志 2016年10月 第43卷 第5期 J Int Pharm Res,Vol.43,No.5,October,2016
J = 1.2 Hz,13-CH3),2.06(1H,d,J = 16.8 Hz,Heq-
2),2.32(1H,d,J = 16.8 Hz,Hax-2),2.50(1H,d,
J = 9.6 Hz,H-6),4.33(1H,m,H-9),5.53(1H,
ddd,J = 9.6,15.0,1.2 Hz,H-7),5.60(1H,dd,
J = 6.0,15.0 Hz,H- 8),5.88(1H,s,H- 4);13C
NMR(125 MHz,CDCl3):23.5(C- 13),23.7(C-
10),27.1(C-11),27.9(C-12),36.2(C-1),47.5
(C-2),55.5(C-6),68.3(C-9),125.9(C-4),126.6
(C-7),138.6(C-8),161.8(C-5),199.1(C-3);EI-
MS m/z 208[M]+,190[M-H2O]+ .
3 Conclusion
Guided by HPLC detection,compounds(1-4)were
isolated from the EtOAc extract of P. blanda by the in⁃
tegrated methods including vacuum liquid chromatog⁃
raphy(VLC),ODS and semi-preparative RP-HPLC.
Compound 1 is elucidated as one new tetrahydrofuran
lignan by spectral analysis.
【References】
[1] Xing FW,Chen JF,Qing XS,et al. Illustrated Handbook of
Plants in Tropical Rainforest Area of China:Plants of Hainan
[M]. Wuhan(China):Huazhong University of Science and
Technology Press,2013:322.
[2] Ye HG,Zeng FY,Ye YS,et al. Medicinal plants of south Chi⁃
na[M]. Wuhan(China):Huazhong University of Science and
Technology Press,2013:64.
[3] Govindachari TR,Kumari GNK,Partho PD. Two secolignans
from Peperomia dindigulensis[J]. Phytochemistry,1998,49
(7):2129-2131.
[4] Wu JL,Li N,Hasegawa T,et al. Bioactive tetrahydrofuran lig⁃
nans from Peperomia dindygulensis[J]. J Nat Prod,2005,68
(11):1656-1660.
[5] Wu JL,Li N,Hasegawa T,et al. Bioactive secolignans from
Peperomia dindygulensis[J]. J Nat Prod,2006,69(5):790-
794.
[6] Lin MG,Yu DH,Wang QW,et al. Secolignans with antiangio⁃
genic activities from Peperomia dindygulensis[J]. Chem Biodiv⁃
ers,2011,8(5):862-871.
[7] Wang XZ,Liang JY,Wen HM,et al. Qualitative and quantita⁃
tive analyses of bioactive secolignans from folk medicinal plant
Peperomia dindygulensis using UHPLC-UV/Q- TOF-MS[J]. J
Pharmaceut Biomed,2014,94:1-11.
[8] Felippe LG,Baldoqui DC,Kato MJ,et al. Trypanocidal tetrahy⁃
drofuran lignans from Peperomia blanda[J]. Phytochemistry,
2008,69(2):445-450.
[9] Wang QW,Du DH,Lin MG,et al. Antiangiogenic polyketides
from Peperomia dindygulensis Miq.[J]. Molecules,2012,17
(4):4474-4483.
[10] Wang XZ,Qu W,Liang JY. Two N-containing polyketide deriv⁃
atives from Peperomia dindygulensis[J]. Chem Nat Compd,
2012,48(6):1027-1030.
[11] Wang XZ,Qu W,Liang JY. New long- chain aliphatic com⁃
pounds from Peperomia dindygulensis[J]. Nat Prod Res,2013,
27(9):796-803.
[12] Zhu WJ. Lin MG,Yang GH,et al. Two novel polyketides from
Peperomia dindygulensis[J]. Chin Tradit Herbal Drugs,2011,
42(3):420-423.
[13] Chen L,Zhou Y,Dong JX. Three new flavonoid glycosides from
Peperomia dindygulensis[J]. Acta Pharmacol Sin,2007,42
(2):183-186.
[14] Chen L,Zhou Y,Zhou YL,et al. A new C- glycosyl flavone
from Peperomia dindygulensis[J]. Chin J Chin Mater Med,
2008,33(7):772-774.
[15] Xu S,Li N,Ning MM,et al. Bioactive compounds from Pepero⁃
mia pellucida[J]. J Nat Prod,2006,69(2):247-250.
[16] Zhang GL,Li N,Wang YH,et al. Bioactive lignans from Pep⁃
eromia heyneana[J]. J Nat Prod,2007,70(4):662-664.
[17] Martins RCC,Lago JHG,Albuquerque S,et al. Trypanocidal
tetrahydrofuran lignans from infolrescences of Piper solmsianum
[J]. Phytochemistry,2003,64(2):667-670.
[18] Hassan AG,Erdal B,Satoshi T,et al. Antioxidant lignans from
Larrea tridentata[J]. Phytochemistry,2004,65(17):2499-
2505.
[19] Xiong L,Zhu CG,Li YR,et al. Lignans and neolignans from
Sinocalamus affinis and their absolute configurations[J]. J Nat
Prod,2011,74(5):1188-1200.
[20] Yamauchi H,Kakuda R,Yaoita Y,et al. Two new glycosides
from the whole plants of Glechoma hederacea L.[J]. Chem
Pharm Bull,2007,55(2):346-347.
[21] Liu ZZ,Zhan ZL,Liu F,et al. Acyl glycosides lignans,couma⁃
rins,and terpenes from the stems of Erycibe obtusifolia[J]. Car⁃
bohyd Res,2013,372:47-54.
[22] Abrosca DB,Greca MD,Fiorentino A,et al. Structure elucida⁃
tion and phytotoxicity of C13 nor-isoprenoids from Cestrum parqui
[J]. Phytochemistry,2004,65(4):497-505.
(收稿日期:2016-04-20 修回日期:2016-05-30)
··939