全 文 : ·916· Chin JMAP, 2009 November, Vol.26 No.11 中国现代应用药学杂志 2009 年 11 月第 26 卷第 11 期
Traditional Chinese Medicine(中药现代研究与应用)[M].Vol
Ⅱ. Beijing: Xue Yuan Press, 1998, 1047-1024.
[2] ABULZZA K A,CONTRERAS L G, LU D R. Preparation and
evaluation of sustained release AZT-loaded microspheres:
optimizing of the release characteristics using response surface
methodology [J]. J Pharm Sci, 1996, 85(2): 144-149.
[3] WANG C T, ZHANG X J, LI F Z, et al. Analysis of fatty acid
in Arctium lappa L. seed oil by GC-MS [J]. J Plant Resour
Environ (植物资源与环境学报), 2002, 11(4):58-59.
[4] LIU J H, CUI Q X, CHENG X. Study on the physical-chemical
properties and fatty acid composition of lappa seed oil [J].
China oils and fats(中国油脂), 2000, 25(2): 51-52.
[5] MA C J, HANG Q, TIAN X R, et al. Supercritical CO2
extraction and physicochemical properties of jicama seed oil
[J]. China oils and fats(中国油脂), 2008, 33(12):20-23.
[6] DING Y P, CUI Z J, QIU Q, et al. The fatty oil extraction from
Arctium lappa L. by supercritical fluidextraction and analysis
by GC-MS [J]. Sci Technol Food Ind(食品工业科技), 2006,
27(4): 73-75.
[7] LIU B B, KANG T G. The study on the historical development
and status quo of the processed Arctium lappa L[J]. Shanxi
Med J(山西医药杂志), 2005, 34(6): 443-445.
[8] LUO Y M, ZHU Y, LI B, et al. Analysis of volatile oil of
Arctium lappa L. by GC-MS [J]. J Chin Med Mater (中药材),
1997, 20(12): 621-623.
[9] CHANG X Q, DING L X. Handbook on analysis of the active
composition in TCM(中药活性成分分析手册)[M]. Beijing:
Xue Yuan Press, 2002, 514-520.
[10] GONG Y M, LIU L G, SONG K F, et al. Study of the fruits of
Arctium lappa L. [J]. Strait Pharm J (海峡药学 ), 2005,
17(4):1-4.
收稿日期:2009-02-16
Study on Chemical Constituents from Salacia amplifolia
PU Jiang1, FENG Feng1,2*, GUO Qinglong2, XIE Ning1 (1.Department of Natural Medicinal Chemistry, China
Pharmaceutical University, Nanjing 210009, China; 2.Key Laboratory of Carcinogesis and Intervention of Jiangsu Province,
Nanjing 210009, China)
ABSTRACT: OBJECTIVE To investigate the chemical constituents of Salacia amplifolia. METHODS The chemical
constituents were isolated and purified by silica gel and Sephadex LH-20 column chromatography, their structures were elucidated
by chemical and spectral methods. RESULTS Nine compounds were isolated and their structures was determined as 2-
hydroxyfriedelan-3-one (1), friedelin (2), lup-20 (29)-en-3, 21-dione (3), D-friedoolean-14-en-3-one (4), 3-(3′′, 4′′-dihydroxy-trans-
cinnamoyloxy)-D-friedoolean-14-en-28-oic acid (5), 3, 22-dioxo-29-normoretane (6), Lupeol (7), β-Sitosterol (8), β-Daucosterol (9).
CONCLUSION Compounds 1-9 are isolated for the first time from the plant.
KEY WORDS: Salacia amplifolia; chemical constituents; triterpenoids
阔叶五层龙的化学成分研究
濮江 1,冯锋 1,2*,郭青龙 2,谢宁 1(1.中国药科大学天然药化教研室,南京 210009;2.江苏省肿瘤发生与干预重点实验室,南京 210009)
摘要:目的 对阔叶五层龙所含化学成分进行研究。方法 应用液-液萃取及多种柱层析方法进行化学成分的分离、纯化,
并利用多种光谱技术进行结构的分析鉴定。结果 从阔叶五层龙植物中分离得到 9 个化合物:2-hydroxyfriedelan-3-one (1),
软木三萜酮 (2), lup-20(29)-en-3, 21-dione (3),D-friedoolean-14-en-3-one (4),3-(3′′,4′′-dihydroxy-trans-cinnamoyloxy)-D-
friedoolean-14-en-28-oic acid (5), 3, 22-dioxo-29-normoretane (6), 羽扇豆醇 (7), β-谷甾醇 (8), β-胡萝卜苷(9)。结论 该 9 个化
合物均为首次从阔叶五层龙中分离得到。
关键词:阔叶五层龙;化学成分;三萜类化合物
中图分类号:R284.1 文献标志码:B 文章编号:1007-7693(2009)11-0916-04
The genus Salacia, belonging to the family
Hippocrateaceae, is composed of more than 100
species distributed in the tropics, of which 10 species
grow in Hainan, Guangdong, and Guangxi provinces[1].
The extractions of their stem or root have significant
anti-oxidation, liver protection, lipid-lowering diet,
and hypoglycemic activities. The main active
ingredient are found to be pentacyclic triterpenoids
including the derivatives of friedelane, lupinane,
quinone methide[2]. As a specific plant in China, there
is no report about the systematic chemical study of
Salacia amplifolia Merr. ex Chun & F. C.. How we
作者简介:濮江,男,硕士 *通信作者:冯锋,男,教授 Tel: (025)83271038 E-mail: fengsunlight@163.com
DOI:10.13748/j.cnki.issn1007-7693.2009.11.016
中国现代应用药学杂志 2009 年 11 月第 26 卷第 11 期 Chin JMAP, 2009 November, Vol.26 No.11 ·917·
study on the chemical composition of Salacia
amplifolia to demonstrate the efficacy of the material
basis and to improve the research and development of
the plant. Here we report the isolation and
identification of 9 compounds: 2-hydroxyfriedelan-3-
one (1), friedelin (2), lup-20(29)-en-3, 21-dione (3),
D-friedoolean-14-en-3-one (4), 3-(3′′, 4′′-dihydroxy-
trans-cinnamoyloxy)-D-friedoolean-14-en-28-oic acid
(5), 3, 22-dioxo-29-normoretane (6), Lupeol (7), β-
Sitosterol (8), β-Daucosterol (9). All above were
isolated from the plant for the first time.
1 General experimental procedures
XT-4 Microscope melting point apparatus (the
temperatures were not corrected); Nicolet Impact 410
Infrared Spectrophotometer (KBr); Brucker ACF300
and AV500 NMR spectrometer; HP-1100 LC/MSD
System (ESI Mode); YMC GEL ODS-A (50 µm),
Sephadex LH-20 (Pharmacia), Column chroma-
tography and TLC(Qingdao Chemical Factory),
Reagents are analytically reagent.
2 Plant material
The plant of S. amplifolia was collected from the Gan
Shi Ling nature reserve of Hainan province. The plant
was authenticated by HUANG Shi Man, College of
Life Science and Agriculture, Hainan University.
3 Extraction and Separation
Dried and crushed plant materials of Salacia
amplifolia (10 kg) were refluxing extracted in 95%
ethanol (2 h) for three times. The extract was filtered
and concentrated. The concentrated extract was
dissolved in water and extracting with petroleum ether
followed by ethyl acetate and n-butanol to get
petroleum ether extract (150 g), ethyl acetate extract
(88 g). The latter was separated on silica gel eluted
gradiently with petroleum ether-acetone and
chloroform-methanol, and then purified with
Sephadex LH-20 chromatography, the following
compounds were obtained after recrystallization: 1(50
mg), 2(23 mg), 3(40 mg), 4(26 mg), 5(17 mg), 6(80
mg), 7(130 mg), 8(1 g), 9(300 mg).
3.1 Compound 1
Colorless crystals (chloroform), mp 247-249 ℃.
Liebermann-Burchard positive reaction. ESI-MS
m/z 441[M-H]—. According to 1H-NMR and 13C-NMR
the molecular formula was C30H50O2. 1H-NMR
(CDCl3, 500MHz) δ 0.92 (3H, s), 0.95 (3H, s), 1.03
(3H, s), 1.05 (3H, s), 1.08 (3H, s), 1.12(3H, s), 2.27
(2H, m, H-1), 2.40 (1H, m, H-4), 3.72 (1H, dd,
J=4.35 Hz, H-2); 13C-NMR (CDCl3, 500 MHz) δ
213.18 (C-3), 74.28 (C-2), 59.45 (C-10), 58.16 (C-4),
51.49 (C-8), 46.95 (C-18), 44.27 (C-6), 42.04 (C-5),
41.45 (C-22), 41.20 (C-16), 38.97 (C-13), 38.78
(C-14), 37.45 (C-9), 36.06 (C-11), 35.92 (C-19),
35.24 (C-30), 34.33 (C-17), 33.10 (C-1), 32.46 (C-20),
31.85 (C-21), 30.38 (C-15), 30.14 (C-28),
24.88(C-29), 22.24 (C-12), 19.25 (C-26), 18.21
(C-27), 18.18 (C-7), 17.69 (C-25), 14.63 (C-24), 6.79
(C-23). The compound was identified as
2-hydroxyfriedelan-3-one because all the data above
were coincident with the literature [3].
3.2 Compound 2
Colorless crystals (chloroform), mp 242-245 ℃.
Liebermann-Burchard positive reaction. ESI-MS
m/z 426 [M+]. According to 1H-NMR and 13C-NMR
the molecular formula was C30H50O. 1H-NMR (CDCl3,
500 MHz) δ 0.75 (3H, s), 0.89 (3H, s), 0.91 (3H, s),
0.95 (3H, s), 0.98 (3H, s), 1.02 (3H, s), 1.03 (3H, s),
1.20 (3H, s), 1.98 (2H, m, H-1), 2.32 (2H, m, H-2),
2.40 (1H, m, H-4); 13C-NMR (CDCl3, 500 MHz) δ
213.62 (C-3), 59.49 (C-10), 58.23 (C-4), 53.11 (C-8),
42.80 (C-18), 42.14 (C-5), 41.53 (C-2), 41.30 (C-6),
39.70 (C-13), 39.25 (C-22), 38.30 (C-14), 37.45 (C-9),
36.01 (C-11), 35.62 (C-19), 35.35 (C-29), 35.04
(C-15), 32.78 (C-21), 32.42 (C-16), 32.08 (C-28),
31.7 (C-30), 30.50 (C-12), 30.00(C-17), 28.17 (C-20),
22.27 (C-1), 20.25 (C-26), 18.65 (C-27), 18.23 (C-7),
17.94 (C-5), 14.65 (C-24), 6.81 (C-23). The
compound was identified as friedelin because all the
data above were coincident with the literature [4].
3.3 Compound 3
Colorless crystals (chloroform), mp 170-172 ℃.
Liebermann-Burchard positive reaction. ESI-MS m/z
437 [M-H]—. 1H-NMR (CDCl3, 500 MHz) δ 0.92 (3H,
s), 0.95 (3H, s), 1.03 (3H, s), 1.05 (3H, s), 1.08 (3H, s),
1.12 (3H, s), 4.81 (1H, s, H-30), 4.93 (1H, s,H-30′),
3.82 (1H, d, J=14.8 Hz, H-19), 1.65 (3H, s, H-29);
13C-NMR (CDCl3, 500 MHz) δ 217.79 (C-21), 217.65
(C-3), 143.46 (C-20), 114.96 (C-30), 59.03 (C-19),
55.40 (C-5), 54.95 (C-22), 49.61 (C-9), 47.31 (C-4),
47.00 (C-18), 42.75 (C-14), 40.89 (C-8), 39.58
(C-1), 37.85 (C-17), 37.31 (C-13), 36.88 (C-10),
34.84 (C-2), 34.08 (C-16), 33.28 (C-7), 26.93 (C-15),
26.63 (C-12), 25.36 (C-24), 21.26 (C-28), 21.02
(C-23), 20.84 (C-29), 19.59 (C-11), 18.17 (C-6),
15.91 (C-26), 15.76 (C-25), 14.51 (C-27). The
compound was identified as lup-20(29)-en-3,21-dione
·918· Chin JMAP, 2009 November, Vol.26 No.11 中国现代应用药学杂志 2009 年 11 月第 26 卷第 11 期
(salacianone) because all the data above were
coincident with the literature [5].
3.4 Compound 4
Colorless crystals (chloroform), mp 240-243 ℃.
Liebermann-Burchard positive reaction. ESI-MS m/z:
447.3 [M+Na]+. The molecular formula C30H50O
which was supported by NMR. 1H-NMR (CDCl3,
300 MHz) δ 5.56(dd, J=8.1, 3.3 Hz, H-15), 2.57 (m,
H-2), 2.31 (m, H-2′), 1.14 (3H, s), 1.09 (3H, s), 1.07
(3H, s), 1.06 (3H, s), 0.97(3H, s), 0.92 (6H, s,
2×CH3), 0.83 (3H, s); 13C-NMR (CDCl3, 300 MHz)
δ: 38.8 (C-1), 33.9 (C-2), 217.5 (C-3), 47.8 (C-4),
55.9 (C-5), 21.3 (C-6), 35.6 (C-7), 39.2 (C-8), 49.1
(C-9), 35. 1 (C-10), 17.5 (C-11), 38.9 (C-12), 38.1
(C-13), 157.9 (C-14), 117.4 (C-15), 37.1 (C-16),
37.7 (C-17), 48.9 (C-18), 40.9 (C-19), 28.9 (C-20),
33.9 (C-21), 33.4 (C-22), 26.1 (C-23), 21.6 (C-24),
15.1 (C-25), 29.9 (C-26), 26.0(C-27), 30.3 (C-28),
33.1 (C-29), 20.8 (C-30). The compound was
identified as D- friedoolean-14-en-3-one (Taraxerone)
because all the data above were coincident with the
literature [6].
3.5 Compound 5
Light yellow amorphous (chloroform-methanol),
mp 196-198 ℃, Vanillin concentrated oil of vitriol
reaction significant purple, FeCl3 significant purple
blue, UV 365 nm blue-fluorescence. Liebermann-
Burchard positive reaction, tips for Triterpenes.
ESI-MS m/z 617[M-H]—. According to 1H-NMR and
13C-NMR the molecular formula was C39H53O6.
1H-NMR (CDCl3, 500 MHz), δ 7.53 (1H, d, J=16 Hz,
H-3′), 6.28 (1H, d, J=16 Hz, H-2′), 7.04 (1H, d, J=2
Hz, H-2′′), 7.01 (1H, dd, J=8.2 Hz, 2Hz, H-6′′), 6.77
(1H, d, J=8.2 Hz, H-5′′), 5.58 (1H, dd, J=8 Hz, 3.5 Hz,
H-15), 4.67(1H, t, J=2.5 Hz, H-3); 13C-NMR (CDCl3,
500 MHz), δ 183.3 (C-28), 167.2 (C-1′), 161.0 (C-14),
151.1 (C-4′′), 146.0 (C-3′), 145.4 (C-3′′), 127.9 (C-1′′),
122.3 (C-6′′), 117.8(C-5′′), 116.7 (C-15), 114.8(C-2′′),
78.5 (C-3), 51.4 (C-17), 50.7 (C-5), 50.3 (C-9), 41.6
(C-18), 40.9 (C-7), 39.2 (C-8), 38.1 (C-4), 37.4 (C-13),
36.8 (C-10), 36.7 (C-1), 34.3 (C-19), 33.7 (C-21),
33.5 (C-12), 32.2 (C-16), 32.0 (C-29), 31.9 (C-22),
30.4 (C-20), 29.3 (C-30), 27.9 (C-23), 26.2 (C-26),
22.8 (C-2), 22.5 (C-27), 21.8 (C-24), 18.6 (C-6), 17.3
(C-11), 15.4 (C-25). The compound was identified as
3-(3′′,4′′-Dihydroxy-trans-cinnamoyloxy)-D-friedoole
an-14-en-28-oic acid because all the data above were
coincident with the literature [7].
3.6 Compound 6
Colorless crystals (chloroform), mp 260-263 .℃
Liebermann-Burchard positive reaction. ESI-MS m/z
426 [M]+. According to 1H-NMR and 13C-NMR the
molecular formula was C29H46O2. 1H-NMR (CDCl3,
500 MHz) δ 0.78 (3H, s), 0.92 (3H, s), 0.97 (3H, s),
1.02 (3H, s), 1.05 (3H, s), 1.07 (3H, s), 2.15 (3H, s,
COCH3-30), 2.44 (2H, m, COCH2-2), 2.59 (1H, dt,
H-21); 13C-NMR (CDCl3, 500 MHz) δ 218.1 (C-3),
212.7 (C-22), 54.7(C-21), 52.5(C-5), 49.5(C-9), 49.4
(C-13), 47.2(C-4), 43.0(C-14), 42.7(C-8), 40.6(C-14),
39.7(C-13), 39.4(C-2), 37.0(C-18), 36.8(C-10), 34.8
(C-1), 34.0(C-17), 33.4(C-7), 29.2(C-19), 27.6(C-15),
27.2(C-29), 27.1(C-20), 26.7(C-19), 21.4(C-24), 21.0
(C-6), 19.6(C-26), 17.9(C-23), 15.9(C-27), 15.6(C-25),
14.3(C-28). The compound was identified as 3, 22-
dioxo-29-normoretane because all the data above
were coincident with the literature [8].
3.7 Compound 7
Colorless crystals (chloroform), mp 204~206 . ℃
Liebermann-Burchard positive reaction. ESI-MS m/z
425[M-H]—. According to 1H-NMR and 13C-NMR the
molecular formula was C30H50O. 1H-NMR(CDCl3, 300
MHz) δ 0.82(3H, s), 0.83(3H, s), 0.86(3H, s), 0.99(3H,
s), 1.13(3H, s), 1.16(3H, s), 1.65(3H, s), 3.23(1H, dd,
J=10.5, 5.7 Hz, H-3), 4.59(1H, s, H-30′), 4.60(1H, s,
H-30); 13C-NMR(CDCl3,300MHz) δ 150.7 (C-20),
109.3(C-30), 78.9(C-3), 55.3(C-5), 50.4(C-9),
48.7(C-18), 46.8(C-19), 42.9(C-17), 42.6(C-14),
40.8(C-8), 40.2(C-22), 38.8(C-4), 38.3(C-1), 37.1(C-10),
36.9(C-13), 34.3(C-16), 34.2(C-7), 29.7(C-21), 27.4
(C-15), 27.35(C-2), 25.0(C-12), 21.6(C-23), 20.9 (C-11),
19.7(C-28), 19.5(C-29), 18.2(C-6), 16.0(C-25),
15.9(C-26), 15.3(C-24), 14.4(C-27). The compound was
identified as Lupeol [9].
3.8 Compound 8
Colorless crystals (chloroform), mp 140-142 .℃
Liebermann-Burchard positive reaction, Molish
negative reaction. TLC verify with β-sitosterol, Rf and
color consistent, melting test mixture, mp does not
decline. The compound was identified as β-sitosterol.
3.9 Compound 9
White crystals (chloroform-methanol), mp 281-
283 .℃ Liebermann-Burchard positive reaction, Molish
negative reaction. TLC verify with β-Daucosterol, Rf
and color consistent, melting test mixture, mp does not
decline. The compound was identified as β-Daucosterol.
(下转第 920 页)
·920· Chin JMAP, 2009 November, Vol.26 No.11 中国现代应用药学杂志 2009 年 11 月第 26 卷第 11 期
2 雷公藤溴内酯醇(化合物 3)
将化合物 2 135 mg 溶于 Me2CO 30 mL 中,缓
慢滴加 48% HBr 10.5 mL,在搅拌下加热至 70 ℃,
回流 40 min,稍冷却,加 H2O 50 mL,搅拌后减压
蒸去部分 Me2CO, 然后用 20 mL CH2Cl2 萃取 4 次,
萃取液用饱和 NaCl 水溶液洗涤至中性,用无水
Na2SO4干燥。减压蒸干,得到类白色固体,用乙酸
乙酯清洗后,CH2Cl2-石油醚重结晶得到方型结晶
138 mg (83.4%)。Mp 231~232 ℃(文献[4]:收率 67%;
mp:228 ℃)。显色剂 Kedd’s 试剂,呈紫红色。MS
m/e 441(M+)。IR(KBr)cm−1:3 500,2 950,2 930,
1 750,1 680,1 340,1 200,1 050。1H-NMRδppm:
0.86(3H,d,J=7 Hz,16-H),0.95(3H,d,J=7 Hz,
17-H),1.09(3H,s,20-H),1.20(1H,m,1-H),
1.41(1H,m,1-H),1.60(1H,dd,J=4 Hz,J=12 Hz,
5-H),1.99(1H,m,2-H),2.13(1H,m,2-H),2.30(1H,
m,15-H),2.60(2H,m,6-H),3.13(1H,s,14-H),
3.39(1H,d,J=6 Hz,7-H),3.86(1H,d,J=4 Hz,
11-H),4.16(1H,d,J=4 Hz,12-H),4.71(2H,m,
19-H),4.89(1H,s,13-OH),5.23(1H,d,J=4 Hz,
14-OH)。
3 雷公藤硫氰酸基内酯醇(化合物 1)
将化合物 3 (0.044 g , 0.1 mmol) 加入 5 mL
t-BuOH,在 50 ℃搅拌 20 min,分次加入 NH4SCN
0.114 8 g (1.5 mmol),反应液在 80 ℃下搅拌 1 h,停
止加热,加入 15 mL 乙酸乙酯。用饱和 NaCl 溶液洗
涤有机相 3 次,并用无水 Na2SO4干燥。减压浓缩,
水浴温度 60 ℃,得到类白色固体,柱层析,硅胶
(20 g,160~200 目),用 CHCl3/CH3OH(95∶5)洗脱,
收集组分,真空干燥。残余物用 Me2CO 重结晶,得
到产物 0.04 g(95.4%)。mp:266~268 ℃(文献[5]:收
率 90%;mp:265~266 ℃)。Kedd’s 试剂显紫红色。
MS m/e 419(M+)。元素分析:C21H25NSO6,计
算值(%):C 60.14,H 6.01,N 3.34。试验值(%):C
59.98,H 5.96,N 3.29。IR(KBr)cm−1:3 460,3 000,
2 148,1 735,1 670,1 437,1 030,980。1H-NMR,
ppm:0.82(3H,d,J=7 Hz,16-H),0.97(3H,s,
20-H),1.01(3H,d,J=7 Hz,17-H),1.29(1H,m,
1-H),1.48(1H,m,1-H),1.87(1H,t,J=14 Hz,
6-H),2.01(1H,m,2-H),2.18(1H,m,2-H),2.20(1H,
m,6-H),2.26(1H,m,15-H),2.69(1H,m,5-H),
3.02(1H,d,J=4 Hz,14-H),3.38(1H,m,7-H),
3.77(1H,d,J=6 Hz,11-H),3.93(1H,d,J=6 Hz,
12-H),4.88(2H,m,19-H),5.01(1H,s,13-OH),
5.46(1H,d,J=4 Hz,14-OH)。
REFERENCES
[1] LI Z, LI Y C. The Transactions in 5th Chinese Tripterygium
Wilfordii Conference(第五届全国雷公藤会议论文汇编) [G].
Fujian Taining: The Chinese Dermatology Society, 2008:
69-78.
[2] LIU M X, DONG J, YANG Y J, et al. Progress in study of
triptolide [J]. Chin J Chin Mater Med(中国中药杂志), 2005,
30(3): 170-173.
[3] SHAMON L A, PEZZUTO J M, MAHTA R R, et al.
Evaluation of the mutagenic, cytotoxic, and antitumor
potiential of triptolide, a highly oxygenated diterpene isolated
from Tripterygium wilfordii [J]. Cancer Lett, 1997, 112(1):
113-117.
[4] JUNG M J, WICKRAMARATNE M, HEPPERLE M.
Tirptolide derivatives useful in the treatment of autoimmune
diseases: USA, 5972998 [P]. 1999-10-26.
[5] WANG D Y, GAO X P, LI W W, et al. Preparation of
derivatives of triptolide for use in treatment of cancers: WO,
2000063212[P]. 2000-10-26.
收稿日期:2009-02-16
(上接第 918 页)
REFERENCES
[1] Institute of Botany of Guangdong Hainan Flora(海南植物
志)[M].Vol 11. Beijing: Science Press, 1965: 443.
[2] YOSHIKAWA M, NINOMIYA K, SHIMODA H, et al. Hepa-
toprotective and antioxidative properties of Salacia reticulate:
preventive effects of phenolic constituents on CCl4—induced
liver inury in mice [J]. Biol Pharm Bull, 2002, 25(1): 72-76.
[3] MOITEIRO C, JUSTINO F, TAVARES R, et al. Synthetic
secofriedelane and friedelane derivatives as inhibitors of
human lymphocyte proliferation and growth of human cancer
cell lines in vitro [J]. J Nat Prod, 2001, 64(10): 1273-1277.
[4] CHANG C W, WU T W, HSIEH Y S, et al. Terpenoids of
Syzygium formosanum [J]. J Nat Prod, 1999, 62 (2): 327-328.
[5] A. HISHAM, G. JAYA KUMAR, Y.FUJIMOTO, et al.
Salacianone and salacianol, two triterpenes from salacia
beddomei [J]. Phytochemistry, 1995, 40(4): 1227-1231.
[6] VAN KIEM P, VAN MINH C, HUONG HT, et al. Pentacyclic
triterpenoids from Mallotus apelta [J]. Arch Pharm Res, 2004,
27(11): 1109-1113.
[7] SULTANOVA N, MAKHMOOR T, YASIN A, et al.
Isotamarixen–a new antioxidant and prolyl endopeptidase-
inhibiting triterpenoid from tanarix hispida [J]. Planta Med,
2004, 70(1):65-67.
[8] HUI W H, LI M M. Triterpenoids from two Mallotus species:
a nor-tritepene and two new acids [J]. Phytochemistry, 1976,
15(6): 985-986.
[9] WENKERT E, BADDELEY G V, BURFITT IR, et al.
Carbon-13 nuclear magnetic resonance spectroscopy of
naturally-occurring substances-LVII+ Triterpenes Related to
Lupane and Hopane [J]. Organic Magnetic Resonance, 1977,
11(7): 337-343.
收稿日期:2009-01-12