免费文献传递   相关文献

长柄异木患的化学成分(英文)



全 文 : 36 Chin J Nat Med Jan. 2012 Vol. 10 No. 1 2012 年 1 月 第 10 卷 第 1 期

Chinese Journal of Natural Medicines 2012, 10(1): 0036−0039
doi: 10.3724/SP.J.1009.2012.00036
Chinese
Journal of
Natural
Medicines







Chemical constituents of Allophylus longipes
ZHANG Xiang-Yun1, 2, CAI Xiang-Hai1, LUO Xiao-Dong1*
1 State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of
Sciences, Kunming 650204, China;
2 State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences,
Guangzhou 510640, China
Available online 20 Jan. 2012
[ABSTRACT] AIM: To investigate the chemical constituents of Allophylus longipes. METHODS: Compounds were isolated and
purified by various chromatographic techniques and their structures were elucidated by physicochemical characteristics and spectral
data. RESULTS: Twenty-five compounds were isolated and identified as cycloart-24-en-3β, 26-diol (1), 3-oxotrirucalla-7,
24-dien-21-oic acid (2), zizyberenalic acid (3), colubrinic acid (4), ent-4(15)-eudesmene-1β, 6a-diol (5), 4(15)- eudesmene-1β, 8a-diol
(6), 4(15)-eudesmene-1β, 5a-diol (7), methyl asterrate (8), betulin (9), betulinic aldehyde (10), betulinic acid (11), 3β-hydroxy-5a,
8a-epidioxyergosta-6, 22-dien (12), 3-oxo-19a-hydroxyurs-12-en-28-oic acid (13), ursolic acid (14), scopoletin (15), fraxidin (16),
cleomiscosin A (17), 4-hydroxy-3-methoxybenzaldehyde (18), 4-hydroxy-3-methoxycinnamaldehyde (19),
2,6-dihydroxy-4-methoxyacetophenone (20), p-(aminoalkyl)-benzoic acid (21), 4-hydroxy-3-methoxybenzoic acid (22),
1-O-p-coumaroylglucose (23), β-sitosterol (24), and poriferast-5-ene-3β, 4β-diol (25). CONCLUSION: All the compounds were
isolated from Allophylus longipes for the first time.
[KEY WORDS] Allophylus longipes; Chemical constituents
[CLC Number] R284.1 [Document code] A [Article ID] 1672-3651(2012)01-0036-04

1 Introduction
The genus Allophylus comprises about 255 species, 6 of
which are distributed in China including 3 in Yunnan
Province[1]. A. longipes has been historically used as a folk
remedy in ‘Dai’ ethnopharmacy for the treatment of cold and
inflammation, but its chemical constituents have not been
investigated up to now. In the present phytochemical study on
this species, twenty-five compounds were isolated and
identified as cycloart-24-ene-3β, 26-diol (1)[2], 3-oxotriru-
calla-7, 24-dien-21 -oic acid (2)[3], zizyberenalic acid (3)[4],
colubrinic acid (4)[5], ent-4(15)-eudesmene-1β, 6a-diol (5)[6],
4(15)-eudesmene-1β, 8a-diol (6)[7], 4(15)-eudesmene-1β,
5a-diol (7)[8], methyl asterrate (8)[9], betulin (9)[10], betulinic

[Received on] 23-Feb.-2011
[Research funding] This project was supported by the Ministry of
Science and Technology of China (No. 2009CB522300) and the
National Natural Science Foundation of China (No.
2007AA021505).
[*Corresponding author] LUO Xiao-Dong: Prof., Tel: 86-871-
5223177, Fax: 86-871–5150227, E-mail: xdluo@mail.kib.ac.cn
These authors have no any conflict of interest to declare.
aldehyde (10)[10], betulinic acid (11)[11], 3β-hydroxy-5a, 8a-
epidioxyergosta-6, 22-dien (12)[12], 3-oxo-19a-hydroxyurs-
12-en-28-oic acid (13)[13], ursolic acid (14)[14], scopoletin
(15)[15], fraxidin (16)[16], cleomiscosin A (17)[17], 4-hydroxy-
3-methoxybenzaldehyde (18)[18], 4-hydroxy-3- methoxycin-
namaldehyde (19)[19], 2, 6- dihydroxy-4-methoxyacetophe-
none (20)[20], p-(aminoalkyl)-benzoic acid (21)[21], 4-hydro-
xy-3-methoxybenzoic acid (22)[22], 1-O-p-coumaroylglucose
(23)[23], β-sitosterol (24), and poriferast-5-ene-3β, 4β-diol
(25).
2 Apparatus and Reagents
NMR spectra were run on Bruker DRX-500 and AV-400
spectrometers with TMS as internal standard. Chemical shifts
(δ) are expressed in ppm with reference to the solvent signals.
Mass spectra were recorded on a VG Autospec-3000
spectrometer or an API QSTAR Pulsar 1 spectrometer.
Column chromatography was performed on silica gel (48−75
μm, Qingdao Marine Chemical Ltd., Qingdao, China), Rp-18
gel (20−45 μm, Fuji Silysia Chemical Ltd., Japan), and
Sephadex LH-20 (Pharmacia Fine Chemical Co., Ltd.,
Sweden). Fractions were monitored by TLC (GF254, Qingdao
Marine Chemical Co., Ltd., Qingdao, China), and spots were
ZHANG Xiang-Yun, et al. /Chinese Journal of Natural Medicines 2012, 10(1): 36−39
2012 年 1 月 第 10 卷 第 1 期 Chin J Nat Med Jan. 2012 Vol. 10 No. 1 37

visualized by heating silica gel plates sprayed with 10%
H2SO4 in EtOH.
3 Plant Material
A. longipes was collected in Xishuangbanna, Yunnan
Province, China, and identified by Mr. CUI Jing-Yun,
Xishuangbanna Tropical Plant Garden. A voucher specimen
(No. Cui20081124) has been deposited at the Kunming
Institute of Botany, Chinese Academy of Sciences.
4 Extraction and Isolation
The air-dried and powdered stems of A. longipes (10 kg)
were extracted with methanol at room temperature for three
times (2 d × 3) and concentrated under reduced pressure to
yield a residue, which was partitioned between H2O and
EtOAc. The EtOAc extract (107 g) was subjected to silica gel
(48−75 μm, 2 kg) column chromatography (CC), eluted with
a CHCl3-Me2CO (1 : 0,70 : 1, 50 : 1, 30 : 1, 20 : 1, 10 : 1, 6 :
1, 3 : 1, 2 : 1, 1 : 2) to yield 6 fractions Fr. 1−6. Fraction 2 (15
g) was chromatographed on silica gel (petroleum ether-
Me2CO, 30 : 1-1 : 2) to give five subfractions 2.1-2.5.
Subfraction 2.2 (3 g) was chromatographed on silica gel
(petroleum ether- Me2CO, 30 : 1−1 : 2) to give 1 (8 mg) and
4 (5 mg) while subfraction 2.3 (4 g) was subjected to silica
gel (petroleum ether- EtOAc, 20:1−1:2) to yield 2 (5 mg)
and 5 (8 mg). Subfraction 2.4 (5 g) was subjected to an Rp-18
CC (MeOH-H2O, 50%−95%) to give 19 (6 mg) and 20 (7
mg). Fraction 3 (9 g) was chromatographed on silica gel
(CDCl3- Me2CO, 25 : 1−1 : 2) to give 10 (1 012 mg), 25
(622 mg) and a mixture, which was chromatographed on
silica gel (petroleum ether- EtOAc, 15 : 1−1 : 2) to yield 21
(7 mg), 24 (6 mg). Fraction 4 (12 g) was subjected to an
Rp-18 CC (MeOH-H2O, 40%−95%) to give 26 (27 mg) and a
mixture, which was chromatographed on silica gel
(petroleum ether - Me2CO, 25 : 1−1 : 2) to yield 13 (23 mg),
16 (31 mg) and 3 (71 mg), respectively. Fraction 5 (16 g) was
subjected to an Rp-18 CC (MeOH-H2O, 30%−95%) to give
18 (88 mg) and 5 subfractions 5.1-5.5. Subfraction 5.4 (5 g)
was chromatographed on silica gel (petroleum ether-EtOAc,
20 : 1−1 : 2) to yield 11 (27 mg) and 12 (6 mg). 14 (11 mg),
22 (14 mg) and 27 (3 mg) were obtained by repeated silica
gel CC, Sephadex LH-20 CC (MeOH) and further
recrystallized from subfraction 5.3 (4 g). Fraction 6 (20 g)
was subjected to an Rp-18 column (MeOH-H2O, 20%−95%)
to give 6 subfractions 6.1-6.6. Subfractions 6.3 (4 g) was
chromatographed on silica gel (petroleum ether-Me2CO, 16 :
1−1 : 2) to yield 6 (8 mg), 8 (24 mg) and 23 (6 mg),
respectively. Subfractions 6.4 (3 g) was chromatographed on
silica gel (petroleum ether-EtOAc, 18 : 1-1 : 2) to give 7 (10
mg) and 9 (40 mg). 15 (8 mg) and 17 (17 mg) were obtained
by repeated silica gel CC and further recrystallized from
subfraction 6.5 (2 g).
5 Identification
Compound 1 White amorphous powder (petroleum
ether-EtOAc). ESI-MS m/z 443 [M + H]+, C30H50O2. 1H
NMR (CDCl3, 500 MHz) δ : 5.29 (1H, m, H-24), 4.13 (2H, s,
H-26), 3.28 (1H, dd, J = 4.4, 8.5 Hz, H-3), 1.79 (3H, s, H-27),
0.33 (1H, d, J = 4.2 Hz, H-19), 0.55 (1H, d, J = 4.2 Hz,
H-19), 3.28 (1H, dd, J = 4.4, 8.5 Hz, H-3), 0.81, 0.87, 0.88,
0.95, 0.96, 1.78 (each 3H × 6). 13C NMR (CDCl3, 100 MHz)
δ: 133.8 (s, C-25), 129.2 (d, C-24), 78.8 (d, C-3), 61.6 (t,
C-26), 52.2 (d, C-17), 48.1 (s, C-10), 47.9 (d, C-8), 45.2 (s,
C-13), 40.3 (s, C-4), 36.6 (t, C-22), 35.8 (d, C-20), 35.5 (t,
C-12), 32.8 (t, C-15), 31.9 (t, C-1), 30.3 (t, C-2), 29.8 (t,
C-19), 28.1 (t, C-7), 26.4 (t, C-16), 25.9 (t, C-23), 24.5 (t,
C-11), 21.1 (t, C-6), 25.4 (q, C-29), 21.3 (q, C-27),19.3 (q,
C-28), 18.1 (q, C-21), 18.0 (q, C-18), 13.9 (q, C-30). It was
characterized as cycloart-24-en-3β, 26-diol by comparison of
the spectral data with the literature[2].
Compound 2 White amorphous powder (petroleum
ether-EtOAc). EI-MS m/z 454, C30H46O3. 1H NMR (CDCl3,
500 MHz) δ: 5.18(1H, m, H-7), 4.96(1H, m, H-24), 0.75,
0.87, 0.88, 0.91, 0.99, 1.35, 1.54 (each 3H × 7). 13C NMR
(CDCl3, 100 MHz) δ: 178.9 (s, C-21), 145.4 (s, C-8), 131.8 (s,
C-25), 123.4 (d, C-24), 117.8 (d, C-7), 52.2 (d, C-5), 50.1 (s,
C-14), 49.4 (d, C-17), 48.6 (d, C-9), 48.4 (s, C-4), 47.4 (d,
C-20), 42.1 (s, C-13), 38.2 (t, C-1), 34.8 (s, C-10), 34.7 (t,
C-2), 33.2 (t, C-15), 33.2 (t, C-22), 29.8 (t, C-12), 27.0 (t,
C-16), 26.9 (q, C-30), 25.7 (t, C-23), 25.3 (q, C-27), 24.1 (t,
C-6), 21.4 (q, C-18), 21.3 (q, C-29), 17.4 (q, C-26), 17.3 (t,
C-11), 12.4 (q, C-19). It was characterized as
3-oxotrirucalla-7, 24-dien-21-oic acid by comparison of the
physical and spectral data with the literature[3].
Compound 3 White amorphous powder (petroleum
ether-EtOAc). EI-MS m/z 452, C30H44O3. 1H NMR (CDCl3,
500 MHz) δ: 9.70 (1H, s, H-2), 6.57 (1H, s, H-3), 4.76 (1H,s,
H-30), 4.63 (1H, s, H-30), 1.77 (3H, s, H-29), 1.01 (3H, s,
H-25), 1.00 (3H, s, H-26), 0.99 (3H, s, H-27), 0.94 (3H, s,
H-24). 13C NMR (CDCl3, 125 MHz) δ: 191.4 (d, C-2), 182.3
(s, C-28), 163.3 (d, C-3), 157.3 (s, C-29), 150.1 (s, C-20),
109.8 (t, C-29), 63.0 (d, C-5), 56.2 (s, C-17), 52.2 (d, C-18),
49.4 (d, C-9), 46.9 (d, C-19), 42.5 (s, C-8), 38.2 (t, C-13),
37.1 (t, C-22), 35.1 (t, C-7), 32.3 (t, C-21), 30.6 (t, C-15),
25.1 (t, C-12), 24.1 (t, C-11), 28.1 (q, C-23), 19.3 (q, C-29),
18.9 (q, C-25), 17.6 (q, C-26), 16.8 (t, C-6), 14.7 (q, C-27). It
was characterized as zizyberenalic acid by comparison of the
physical and spectral data with the literature[4].
Compound 4 White amorphous powder (petroleum
ether-EtOAc). ESI-MS m/z 471 [M + H]+, C30H46O4. 1H
NMR (CDCl3, 500 MHz) δ: 9.72 (1H, s, H-2), 4.13 (1H, d, J
= 8.5 Hz, H-3), 5.21 (1H,s, H-30), 4.98 (1H, s, H-30). 13C
NMR (CDCl3, 100 MHz) δ: 206.5 (d, C-2), 179.8 (s, C-28),
150.3 (s, C-20), 109.4 (t, C-29), 80.5 (d, C-1), 72.5 (d, C-3),
62.1 (d, C-5), 17 (s, C-17), 49.7 (d, C-18), 48.9 (d, C-9), 47.8
(s, C-4), 46.8 (d, C-19), 42.5 (t, C-8), 37.9 (d, C-13), 36.9 (t,
ZHANG Xiang-Yun, et al. /Chinese Journal of Natural Medicines 2012, 10(1): 36−39
38 Chin J Nat Med Jan. 2012 Vol. 10 No. 1 2012 年 1 月 第 10 卷 第 1 期

C-22), 33.9 (t, C-7), 32.1 (t, C-16), 30.3 (t, C-15), 29.5 (t,
C-21), 25.0 (q, C-25), 24.5 (t, C-11), 18.9 (q, C-30), 17.9 (t,
C-6),16.3 (q, C-24), 14.5 (q, C-26), 14.4 (q, C-27). It was
characterized as colubrinic acid by comparison of the
physical and spectral data with the literature[5].
Compound 5 Colorless oil (petroleum ether- Me2CO).
EI-MS m/z 238, C15H26O2. 1H NMR (CDCl3, 500 MHz) δ:
5.02 (1H, s, H-15), 4.74 (1H, s, H-15), 3.70 (1H, t, J = 9.8 Hz,
H-1), 3.42 (1H, br, s, H-6), 0.70 (3H, s, H-14), 0.86 (3H, d, J
= 7.0 Hz, H-12), 0.94 (3H, d, J = 7.0 Hz, H-13). 13C NMR
(CDCl3, 100 MHz) δ: 146.2 (s, C-4), 107.8 (t, C-15), 78.9 (d,
C-1), 66.9 (d, C-6), 55.8 (d, C-5), 49.3 (d, C-7), 41.6 (s,
C-10), 36.2 (t, C-9), 35.1 (t, C-3), 31.9 (t, C-2), 25.9 (d,
C-11), 21.1 (q, C-12), 18.1 (t, C-8), 16.1 (q, C-13), 11.6 (q,
C-14). It was characterized as ent-4(15)-eudesmene-1β,
6a-diol by comparison of the physical and spectral data with
the literature[6].
Compound 6 Colorless oil (petroleum ether-Me2CO).
EI-MS m/z 238, C15H26O2. 1H NMR (CDCl3, 500 MHz) δ:
4.94 (1H, s, H-15), 4.80 (1H, s, H-15), 3.58 (1H, dd, J = 4.8,
11.4 Hz, H-8), 3.58 (1H, dd, J = 4.8, 11.4 Hz, H-8), 3.22 (1H,
br, s, H-1), 0.99 (3H, d, J = 7.0 Hz, H-13), 0.90 (3H, d, J =
7.0 Hz, H-12), 0.66 (3H, s, H-14). 13C NMR (CDCl3, 100
MHz) δ: 150.4 (s, C-4), 109.1 (t, C-15), 84.2 (d, C-8), 80.4 (d,
C-1), 57.9 (d, C-5), 50.9 (s, C-10), 43.5 (d, C-5), 40.8 (d,
C-7), 38.7 (t, C-9), 36.3 (t, C-3), 33.3 (t, C-2), 32.8 (d, C-11),
27.4 (t, C-6), 22.0 (q, C-13), 16.1 (q, C-12), 13.7 (q, C-14). It
was characterized as 4(15)-eudesmene-1β, 8a-diol by
comparison of the physical and spectral data with the
literature[7].
Compound 7 Colorless oil (petroleum ether- Me2CO).
EI-MS m/z 238, C15H26O2. 1H NMR (CDCl3, 500 MHz) δ:
4.85 (1H, s, H-15), 4.75 (1H, s, H-15), 4.05 (1H, dd, J = 4.9,
11.6 Hz, H-1), 0.76 (3H, s, H-14). 13C NMR (CDCl3, 100
MHz) δ: 150.6 (s, C-4), 108.6 (t, C-15), 76.1 (s, C-5), 73.1 (s,
C-1), 42.2 (s, C-10), 38.2 (d, C-7), 34.3 (t, C-6), 32.8 (d,
C-11), 30.5 (t, C-2), 29.9 (t, C-9), 29.7 (t, C-3), 23.6 (t, C-8),
19.9 (q, C-13), 19.7 (q, C-12), 12.7 (q, C-14). It was
characterized as 4(15)-eudesmene-1β, 5a-diol by comparison
of the physical and spectral data with the literature[8].
Compound 8 White amorphous powder (petroleum
ether-Me2CO). EI-MS m/z 362, C18H18O8. 1H NMR (CDCl3,
500 MHz) δ: 11.33, 11.80 (each s, OH), 6.91 (1H, d, J = 2.7
Hz, H-3), 6.82 (1H, d, J = 2.7 Hz, H-5), 6.37 (1H, m, H-6’),
5.84 (1H, m, H-4’), 3.93 (3H, s, H-9’), 3.74 (3H, s, H-7),
3.63 (3H, s, H-9), 2.16 (3H, s, H-7’). 13C NMR (CDCl3, 125
MHz) δ: 136.0 (s, C-1), 126.9 (s, C-2), 108.7 (d, C-3), 156.0
(s, C-4), 105.5 (d, C-5), 154.7 (s, C-6), 56.5 (q, C-7), 166.0 (s,
C-8), 52.2 (q, C-9), 164.3 (s, C-1’), 102.0 (s, C-2’), 160.9 (s,
C-3’), 106.6 (d, C-4’), 146.5 (s, C-5’), 111.1 (d, C-6’), 21.9
(q, C-7’), 172.2 (s, C-8’), 52.6 (q, C-9’). It was characterized
as methyl asterrate by comparison of the physical and
spectral data with the literature[9].
Compounds 9−23 isolated from this plant were identified
as betulin[10], betulinic aldehyde[10], betulinic acid[11],
3β-hydroxy-5a, 8a-epidioxyergosta-6, 22-dien[12], 3-oxo-19a-
hydroxyurs-12-en-28-oic acid[13], ursolic acid[14],
scopoletin[15], fraxidin[16], cleomiscosin A[17], 4-hydroxy-3-
methoxybenzaldehyde[18], 4-hydroxy-3-methoxycinnamal-
dehyde[19], 2, 6-dihydroxy-4-methoxyaceto-phenone[20],
p-(aminoalkyl)-benzoic acid[21], 4-hydroxy-3-methoxyben-
zoic acid[22] and 1-O-p-coumaroylglucose[23], respectively, by
comparison of the spectral data with those reported in the
literatures. Compounds 24-25 were identified as β-sitosterol,
poriferast-5-ene-3β, 4β-diol by comparing with the standard
compounds. All the twenty-five compounds were isolated
from Allophylus longipes for the first time.
References
[1] Flora Yunnanica[M]. Beijing: Science Press, 1983, 1: 256.
[2] Takahashi K, Takani M.Constituents of medicinal plants. XIV.
Constituents of Schizandra nigra.1[J]. Chem Pharm Bull, 1975,
23(3): 538-542.
[3] Ma CM, Nakamura N, Hattori M, et al. Inhibitory effects on
HIV-1 protease of constituents from the wood of Xanthoceras
sorbifolia[J]. J Nat Prod, 2000, 63(2): 238-242.
[4] Kundu AB, Barik BR, Mondal DN, et al. Zizyberanalic acid, a
pentacyclic triterpenoid of Zizyphus jujuba[J]. Phytochemistry,
1989, 28(11): 3155-3158.
[5] Lee SS, Shy SN, Liu KCS. Triterpenes from Paliurus
hemsleyanus[J]. Phytochemistry, 1997, 46(3): 549-554.
[6] Fumihiro N, Katsuhiro K, Yuko H, et al. ent-Verticillane-type
diterpenoids from the Japanese liverwort Jackiella javanica[J].
Phytochemistry, 2005, 66(14): 1662-1670.
[7] Sun ZH, Chen B, Zhang S, et al. Four new eudesmanes from
Caragana intermedia and their biological activities[J]. J Nat
Prod, 2004, 67(12): 1975-1979.
[8] Sun ZH, Zhang S, Shi J, et al. Sesquiterpenes from Caragana
intermedia [J]. Chin J Org Chem, 2004, 24 (7): 806-810.
[9] Hargreaves J, Park J, Ghisalberti EL, et al. New chlorinated
diphenyl ethers from an Aspergillus species[J]. J Nat Prod,
2002, 65(1): 7-10.
[10] Monaco P, Previtera L. Isoprenoids from the leaves of Quercus
suber [J]. J Nat Prod, 1984, 47(4): 673-676.
[11] Bhakuni RS, Shukla YN, Thakur RS. Constituents of Cornus
capitata [J]. J Nat Prod, 1986, 49(4): 714.
[12] Gauvin A, Smadja J, Aknin M, et al. Isolation of bioactive 5a,
8a-epidioxy sterols from the marine sponge Luffariella cf.
variabilis [J]. Can J Chem, 2000, 78(7): 986-992.
[13] Cheng DL, Cao XP. Pomolic acid derivatives from the root of
Sanguisorba officinalis[J]. Phytochemistry, 1992, 31(4):
1317-1320.
[14] Alves JS, Castro JCM, Freire MO, et al. Complete assignment
of the 1H and 13C NMR spectra of four triterpenes of the
ursane, artane, lupane and friedelane groups[J]. Magn Reson
Chem, 2000, 38: 201-206.
[15] Zhang WD, Kong DY, Li HT, et al. Study on Chemical
Constituents of Erigeron breviscapus.Ⅲ [J]. Chin J Pharm,
2000, 31(8): 347-348.
ZHANG Xiang-Yun, et al. /Chinese Journal of Natural Medicines 2012, 10(1): 36−39
2012 年 1 月 第 10 卷 第 1 期 Chin J Nat Med Jan. 2012 Vol. 10 No. 1 39

[16] Ulubelen A, Oksuz S, Aynehchi Y, et al. Capillarin and
scoparone from Artemisia lamprocaulos [J]. J Nat Prod, 1984,
47(1): 170-171.
[17] Ray AB, Chattopadhyay SK, Kumar S, et al. Structures of
cleomiscosins, coumarinolignoids of Cleome viscosa seeds[J].
Tetrahedron, 1985, 41(1): 209-214.
[18] Le Quesne PW, Larrahondo JE, Raffauf RF. Antitumor plants.
X. Constituents of Nectandra rigida[J]. J Nat Prod, 1980,
43(3): 353-359.
[19] Shen CC, Ni CL, Shen YC, et al. Phenolic constituents from
the stem bark of Magnolia officinalis [J]. J Nat Prod, 2009,
72(1): 168-171.
[20] Scott AL, Guiford H, Skingle D. Biogenetic-type synthesis of
uvaretin, an antitumor and antimicrobial flavonoid[J].
Tetrahedron Lett, 1985, 26(39): 4807-4810.
[21] Bhakuni RS, Shukla YN, Thakur RS. Constituents of Cornus
capitata [J]. J Nat Prod, 1986, 49(4): 714.
[22] Mandado M, Grana AM, Mosquera RA. AIM charge density
study of simple natural phenolic antioxidants[J]. Chem Physics
Lett, 2004, 400(1-3): 169-174.
[23] Marco JL. Iridoid glucosides of Pinguicula vulgaris [J]. J Nat
Prod, 1985, 48(2): 338.

长柄异木患的化学成分
张向云 1, 2, 蔡祥海 1, 罗晓东 1*
1 中国科学院昆明植物研究所植物化学与西部植物资源持续利用国家重点实验室, 昆明 650204;
2 中国科学院广州地球化学研究所有机地球化学国家重点实验室, 广州 510640
【摘 要】 目的: 研究长柄异木患(Allophylu logipess)茎中的化学成分。方法: 对长柄异木患茎甲醇提取物的乙酸乙酯部分
进行色谱分离, 根据光谱数据和理化性质确定各化合物的结构。结果: 分离得到 25 个化合物, 分别鉴定为: ycloart-24-ene-3β,
26-diol (1), 3-oxotrirucalla-7,24-dien-21-oic acid (2), zizyberenalic acid (3), 蛇藤酸 (4), ent-4(15)-eudesmene-1β, 6a -diol (5),
4(15)-eudesmene-1β, 8a -diol (6), 4(15)-eudesmene-1β, 5a-diol (7), 甲基埃斯特瑞 (8), 白桦脂醇 (9), 白桦脂醛(10),白桦脂酸(11),
3β-hydroxy-5a, 8a-epidioxyergosta-6, 22-dien (12), 3-oxo-19a-hydroxyurs-12-en-28-oic acid (13), 熊果酸 (14), 东莨菪内酯 (15), 梣
皮啶(16),黄花菜木脂素 A (17), 香草醛 (18), 松柏醛(19), 2, 6-dihydroxy-4-methoxyacetophenone (20), p-(aminoalkyl)-benzoic acid
(21), 香草酸 (22), 1-O-p-coumaroylglucose (23), β-谷甾醇 (24), poriferast-5-ene-3β, 4β-diol (25)。结论: 所有化合物均为首次从长
柄异木患(Allophylu logipess)中分离得到。
【关键词】 长柄异木患; 化学成分

【基金项目】 国家基础研究发展计划 (No. 2009CB522300)和国家自然科学基金 (No. 2007AA021505) 资助项目