全 文 :天然产物研究与开发 Nat Prod Res Dev 2013,25:581-584,633
文章编号:1001-6880(2013)5-0581-05
Recieved:27 March 2013 Accepted:3 April 2013
Foundation Item:Young Academic and Technical Leader Raising Foun-
dation of Yunnan Province to Y-T Di(2009CI072)
* Corresponding author Tel:86-871-65223070;E-mail:diyt@ mail. kib.
ac. cn;haoxj@ mail. kib. ac. cn
大叶桃花心木中的柠檬苦素成分
张 荣1,2,曹明明1,2,何红平1,张 于1,邸迎彤1* ,郝小江1*
1中国科学院昆明植物研究所植物化学与西部植物资源国家重点实验室,昆明 650201;2中国科学院大学,北京 100049
摘 要:为研究大叶桃花木(Swietenia macrophylla)的柠檬苦素类成分,采用柱层析的方法从大叶桃花心木的枝
叶中分离得七个柠檬苦素分别为 swimacronoid A(1)、mahonin(2)、methyl angolensate(3)、methyl 6-hydroxyango-
lensate(4)、methyl 6-acetoxyangolensate(5)、swietmanin(6)、deacetylsecomahoganin(7)。其中化合物 1 为一个新的
evodulone型的柠檬苦素,化合物 7 为首次从该种中分的。
关键词:大叶桃花心木;楝科;柠檬苦素;天然产物
中图分类号:Q946. 91;R284. 1 文献标识码:A
Limonoids from the Twigs and Leaves of Swietenia macrophylla
ZHANG Rong1,2,CAO Ming-ming1,2,HE Hong-ping1,ZHANG Yu1,DI Ying-tong1* ,HAO Xiao-jiang1*
1State Key Laboratory of Phytochemistry and Plant Resources in West China,Kunming Institute of Botany,Chinese Academy of Sciences,
Yunnan Kunming 650201,China;2University of Chinese Academy of Sciences,Beijing 100049,China
Abstract:To explore structural diversity of limonoids from Swietenia macrophylla,one new evodulone-type limonoid swi-
macronoid A(1)along with another six known limonoids,namely mahonin B(2) ,methyl angolensate C(3) ,methyl 6-
hydroxyangolensate D(4) ,methyl 6-acetoxyangolensate E(5) ,swietmanin F(6)and deacetylsecomahoganin G(7) ,were
isolated from the 95% ethanol extract of leaves and twigs of S. macrophylla with different chromatographic methods. A-
mong them,compound 7 was obtained from this plant for the first time. Their structures were elucidated by extensive
spectroscopic techniques,including 1D,2D-NMR spectroscopy,mass spectrometry and IR. We report herein the isola-
tion,structural elucidation of these limonoids.
Key words:Swietenia macrophylla;Meliaceae;limonoids;natural products
Introduction
Limonoids are a kind of structurally complicated com-
pounds with variety of potentially useful biological
properties. They are mainly elaborated by families of
Meliaceae,Rutaceae,Simaroubaceae,and Cneoraceae,
and about 1300 limonoids with more than 35 carbon
skeletons had been isolated [1,2]. Their unique structur-
al features have attracted much attention for biogenetic
research [1-6].
Swietenia is a genus of family Meliaceae which grows
mainly in Southeast Asia,Malaysia and India. Many of
them have been used as traditional medicines [7-9] for
the treatment of hypertension,diabetes,and malaria.
Chemical investigation on the genus of Swietenia have
led to the isolation of many structurally diverse li-
monoids [10,11]. These compounds have a range of bio-
logical activities such as antibacterial,antimalarial,an-
ticancer,etc. As a part of an ongoing program to explore
structural diversity and to screen bioactive natural
products,we isolated seven limonoids from the twigs
Fig. 1 Chemical structures of compounds 1-7
and leaves of S. macrophylla. Herein,we reported the
details of the isolation and structural elucidation of
these compounds.
Experimental
General
Optical rotations were measured with a JASCO P-1020
digital polarimeter. UV spectra were determined on a
Shimadzu UV-2401 PC spectrophotometer. IR spectra
were detected on a Bruker Tensor-27 infrared spec-
trometer with a KBr disk. CD spectra were obtained on
a JASCO J-810 spectro-photometer. Brucker HCT /E
squire and Waters Autospec Premier P776 spectrum
were respectively used for measuring ESI-MS and HR-
EI-MS spectra. 1D-NMR and 2D-NMR spectra were re-
corded on a Bruker AM-400 and Bruker DRX-500
spectrometer,using TMS as an internal standard. Col-
umn chromatography was performed on silica gel(100-
200,200-300 and 300-400 mesh,Qingdao Marine
Chemical Inc.) ,MCI gel CHP 20P(75-150 μm,Mit-
subishi Chemical Corporation,Tokyo) ,Sephadex LH-
20(40-70 μm,Amersham Pharmacia Biotech AB,Upp-
sala,Sweden) ,and Chromatorex RP-C18 gel(20-45
μm,Merck,Darmstadt,Germany).
Plant material
The twigs and leaves of S. macrophylla were collected
from Hainan Province,P. R. China in August,2012,
which were identified by Mr. Chen Y,Kunming Institu-
te of Botany,Chinese Academy of Sciences(CAS). The
voucher specimen(No. H201207291)was deposited at
the State Key Laboratory of Phytochemistry and Plant
Resources in West China,Kunming Institute of Botany,
CAS.
Extraction and isolation
The leaves and twigs of S. macrophylla(5. 5 kg)were
extracted with 95% EtOH three times. The EtOH dis-
tillate was concentrated in vacuum to obtain a crude
residue,which was partitioned with PE(petroleum e-
ther) ,EtOAc,and n-BuOH,successively. The com-
bined PE fraction and EtOAc fraction(300 g)was sub-
mitted to column chromatography(CC)over normal sili-
ca gel(100-200 mesh)using PE / EtOAc 50∶ 1,and fi-
nally cleaned by 100% MeOH give six fractions A-F.
Fr. D(26 g)was then separated over a MCI to give six
fractions(D1-D6). Compounds 3(22 mg) ,4(66 mg)
and 5(46 mg)were obtained from Fr. D5(3 g)by nor-
mal silica gel(300-400 mesh)eluted by PE /Acetone
= 2∶ 1. Fr. D4(1 g)was further subjected to repeated
normal silica gel and Sephadex LH-20 to yield com-
pounds 1(9 mg) ,2(10 mg) ,6(7 mg) ,and 7(22
mg).
Structural identification
Swimacronoid A(1) :white amorhous powder;ESI-MS
m/z 547[M + Na]+;HR-EI-MS m/z 524. 2417(C30
H36O8,calcd for 524. 2410) ; [α]16D-72. 0(c 0. 15,
MeOH) ;IR(KBr)νmax 3438,2949,1748,1705,1630,
1240 and 1223 cm-1;UV(MeOH)λmax343 nm(0. 88) ,
201 nm(30. 02) ;1H and 13C NMR data were shown in
Table 1.
In addition to the easily distinguishable resonances for
two acetyl(δH 1. 99,2. 02,each 3H,s)groups,the
1H
NMR spectrum also indicated the presence of five terti-
ary methyls(δH 1. 04,1. 45,1. 47,1. 48,1. 54,each
3H,s) ,one cis-disubsituted double bonds(δH 6. 67,d,
J = 11. 6,δH 5. 98,d,J = 12. 0,each 1H) ,and one β-
substituted furan ring(δH 6. 26,7. 48,and 7. 43,each
1H,s). The 13C NMR spectrum displayed 30 carbon
resonances,which were classified by DEPT and HSQC
experiments as seven methyls,two sp3 methylenes,five
sp3 methines(two oxygenated) ,four sp3 quaternary car-
bons,two ester,one ketone conjugated to a trisubstitut-
ed double bond(δH 5. 93,δC 123. 1) ,and one ester or
lactone(δC 167. 8)conjugated to the disubstituted
double bond(δH 5. 98 and 6. 68,AB system). Apart
from the eight degrees of unsaturation occupied by four
carbonyls and four double bonds,the remaining five de-
grees of unsaturation require 1 to contain a pentacyclic
core ring system. The aforementioned data implied that
1 was an evodulone-type limonoid.
Table 1 1H(400 MHz)and 13C(100 MHz)NMR Data for
1 in CDCl3(δ in ppm,J in Hz)
Position 1H NMR 13C NMR HMBC
1 6. 67(d,J = 12. 0) 159. 2(d) 5,9,10,19
2 5. 98(d,J = 12. 0) 124. 3(d) 3,10
285 Nat Prod Res Dev Vol. 25
3 167. 8(s)
4 85. 0(s)
5 2. 66(d,J = 12. 1) 53. 1(d) 4,6,10,19,28,29
6 5. 35(dd,J = 12. 1,2. 6) 69. 1(d) 5,7,6-Ac
7 5. 56(d,J = 2. 6) 72. 7(d) 5,8,9,7-Ac
8 43. 1(s)
9 2. 57(m) 39. 6(d) 1,19,30
10 43. 8(s)
11 1. 93(m) 16. 7(t) 9,12,13
12 2. 18(s) 30. 6(t) 14,18
13 47. 5(s)
14 189. 9(s)
15 5. 93(s) 123. 1(d) 8,13,14,16,17
16 204. 9(s)
17 3. 46(s) 61. 0(d) 13,16,18,20,21,22
18 1. 04(s) 28. 0(q) 13,14,17
19 1. 45(s) 15. 3(q) 1,5,9
20 118. 1(s)
21 7. 43(s) 141. 7(d) 20
22 6. 26(s) 111. 0(d) 20,21
23 7. 47(s) 142. 9(d) 20,22,
28 1. 54(s) 34. 7(q) 4,5,29
29 1. 48(s) 24. 5(q) 4,5,28
30 1. 47(s) 26. 6(q) 7,8,9
6-OAc 2. 02(s) 21. 1(q)169. 9(s) , 6
7-OAc 1. 99(s) 20. 8(q)169. 5(s) , 7
The NMR spectra data of 1 were closely related to those
of Munronoid E [11],with the only difference being the
presence of a β-furan ring group at C-17 in 1 instead of
a γ-lactone in the latter. This structural variation was
confirmed by HMBC correlations of H-21(δH7. 43,s)to
C-20(δC 118. 1) ,C-22(111. 0) ,C-23(142. 9) ,and
C-17(61. 0) ,as well as H-22(δH6. 26,s)to C-20 and
C-17. Peaks of H-6 /C-6-OAc and H-7 /C-7-OAc in
HMBC spectra identi?ed the two acetoxyl groups loca-
ted at C-6 and C-7,respectively. The planar structure of
1 was thus established as shown in Fig. 1.
The relative configuration of compound 1 was deduced
from the ROESY correlations and the 1H-1H vicinal
coupling constants. As shown in Fig. 2B,ROESY corre-
lations of Me-19 /Me-30 /H-6,Me-30 /H-17,indicated
that they were cofacial,and were arbitrarily assigned as
β-configuration. the 1H-1H vicinal coupling constants of
H6-H5J = 12. 1 Hz and H6-H7J = 2. 6 Hz requiring a
trans relationship between H-5 and H-6,and cis rela-
tionship between H-6 and H-7,thus H-5 and H-7 were
assign as α-orientation and β-orientation respectively.
In addition,the ROESY cross-peaks of H-5 /H-9 and
H-9 /Me-18 revealed their a-orientation. Consequently,
the relative configuration of compound 1 was achieved
as shown in Fig. 2B. According to the naming conven-
tions and published papers,compound 1 was named as
swimacronoid A which consisted of three parts:swi- is
from the genus name,Swietenia;-macro- is from the
species name macrophylla,and-niod means the com-
pound is terpenoid.
Fig. 2 1H-1H COSY(Bold) ,Key HMBC corre-
lations(A)and Key ROESY correlations
(B)of compound 1
Mahonin[13](2) White amorphous powder;ESI-MS
m/z 531[M + Na]+;molecular formula C30H36O7;
1H
NMR(CDCl3,400 MHz) :7. 13(1H,d,J = 10. 2 Hz,
H-1) ,5. 96(1H,d,J = 10. 2 Hz,H-2) ,5. 47(1H,dd,
J = 12. 5,2. 5 Hz,H-6) ,5. 56(1H,d,J = 2. 5 Hz,H-
7) ,5. 88(1H,s,H-15) ,3. 43(1H,s,H-17) ,1. 03
(3H,s,H-18) ,1. 24(3H,s,H-19) ,7. 45(1H,s,H-
21) ,6. 27(1H,s,H-22) ,7. 47(1H,s,H-23) ,1. 27
(3H,s,H-28) ,1. 20(3H,s,H-29) ,1. 44(3H,s,H-
30) ,2. 05(3H,s,-Ac) ,2. 00(3H,s,-Ac) ;13 C NMR
(CDCl3,100 MHz) :155. 9(C-1) ,126. 7(C-2) ,204. 1
(C-3) ,44. 9(C-4) ,36. 8(C-5) ,69. 2(C-6) ,73. 3(C-
7) ,44. 7(C-8) ,47. 9(C-9) ,40. 7(C-10) ,15. 8(C-
11) ,30. 0(C-12) ,47. 8(C-13) ,190. 8(C-14) ,123. 5
(C-15) ,204. 7(C-16) ,60. 8(C-17) ,26. 7(C-18) ,
21. 3(C-19) ,118. 2(C-20) ,141. 7(C-21) ,111. 1(C-
22) ,142. 8(C-23) ,31. 8(C-28) ,20. 8(C-29) ,25. 7
(C-30) ,20. 7(Ac) ,20. 4(Ac) ,170. 2(Ac) ,169. 6
(Ac).
385Vol. 25 ZHANG Rong,et al:Limonoids from the Twigs and Leaves of Swietenia macrophylla
Methyl 6-hydroxyangolensate[14](3) White amor-
phous powder;ESI-MS m/z 493 [M + Na]+;formula
C27H34O8;
1H NMR(CDCl3,400 MHz) :5. 64(1H,s,
H-17) ,0. 90(3H,s,H-18) ,1. 00(3H,s,H-19) ,7. 50
(1H,s,H-21) ,6. 45(1H,s,H-22) ,7. 54(1H,s,H-
23) ,1. 01(3H,s,H-28) ,1. 21(3H,s,H-29) ,5. 02
(1H,s,H-30) ,5. 21(1H,s,H-30) ,3. 70(3H,s,-
OCH3) ;
13 C NMR(CDCl3,100 MHz) :79. 1(C-1) ,
40. 5(C-2) ,216. 1(C-3) ,49. 3(C-4) ,44. 5(C-5) ,
34. 7(C-6) ,175. 8(C-7) ,147. 3(C-8) ,51. 2(C-9) ,
45. 2(C-10) ,25. 0(C-11) ,30. 8(C-12) ,41. 2(C-
13) ,81. 7(C-14) ,33. 6(C-15) ,172. 8(C-16) ,81. 4
(C-17) ,14. 4(C-18) ,21. 8(C-19) ,122. 4(C-20) ,
142. 2(C-21) ,110. 9(C-22) ,144. 3(C-23) ,21. 9(C-
28) ,25. 9(C-29) ,112. 5(C-30) ,52. 5(OCH3).
Methyl angolensate[14](4) White amorphous pow-
der;ESI-MS m/z 509[M + Na]+;C27H34O7;
1H NMR
(CDCl3,500 MHz) :3. 54(1H,dd,J = 5. 0,2. 5 Hz,H-
1) ,4. 38(1H,s,H-6) ,5. 60(1H,s,H-17) ,0. 84(3H,
s,H-18) ,1. 01(3H,s,H-19) ,7. 36(1H,d,J = 0. 8
Hz,H-21) ,6. 33(1H,s,H-22) ,7. 40(1H,s,H-23) ,
1. 35(3H,s,H-28) ,1. 43(3H,s,H-29) ,5. 17(1H,s,
H-30) ,4. 89(1H,s,H-30) ,3. 80(3H,s,-OCH3) ;
13 C
NMR(CDCl3,125 MHz) :78. 3(C-1) ,39. 1(C-2) ,
212. 8(C-3) ,48. 7(C-4) ,47. 4(C-5) ,72. 2(C-6) ,
176. 6(C-7) ,145. 7(C-8) ,50. 7(C-9) ,44. 5(C-10) ,
23. 9(C-11) ,28. 5(C-12) ,41. 2(C-13) ,80. 3(C-
14) ,33. 6(C-15) ,170. 6(C-16) ,79. 5(C-17) ,13. 7
(C-18) ,23. 2(C-19) ,120. 6(C-20) ,140. 8(C-21) ,
109. 8(C-22) ,142. 7(C-23) ,23. 6(C-28) ,24. 7(C-
29) ,111. 6(C-30) ,53. 2(OCH3).
Methyl 6-acetoxyangolensate[14](5) White amor-
phous powder;ESI-MS m/z 551 [M + Na]+;formula
C29H36O9;
1H NMR(CDCl3,400 MHz) :3. 54(1H,dd,
J = 5. 0,2. 5 Hz,H-1) ,4. 85(1H,s,H-6) ,5. 56(1H,
s,H-17) ,0. 81(3H,s,H-18) ,1. 01(3H,s,H-19) ,
7. 32(1H,d,J = 1. 5 Hz,H-21) ,6. 30(1H,s,H-22) ,
7. 37(1H,s,H-23) ,1. 05(3H,s,H-28) ,1. 41(3H,s,
H-29) ,5. 39(1H,s,H-30) ,5. 12(1H,s,H-30) ,3. 70
(3H,s,-OCH3) ,2. 15(3H,s,-Ac) ;
13C NMR(CDCl3,
100 MHz) :78. 1(C-1) ,39. 1(C-2) ,211. 9(C-3) ,
48. 9(C-4) ,46. 5(C-5) ,72. 3(C-6) ,170. 9(C-7) ,
145. 3(C-8) ,50. 7(C-9) ,44. 4(C-10) ,23. 8(C-11) ,
28. 6(C-12) ,41. 2(C-13) ,80. 4(C-14) ,33. 5(C-
15) ,170. 3(C-16) ,79. 6(C-17) ,13. 7(C-18) ,22. 6
(C-19) ,120. 5(C-20) ,140. 7(C-21) ,109. 7(C-22) ,
142. 8(C-23) ,23. 6(C-28) ,24. 7(C-29) ,111. 8(C-
30) ,53. 0(OCH3) ,170. 6(6-OAc) ,21. 0(6-OAc).
Swietmanin[14](6) White amorphous powder;ESI-
MS m/z 551[M + Na]+;formula C29H36 O9;
1H NMR
(CDCl3,400 MHz) :5. 06(1H,s,H-2) ,5. 69(1H,s,
H-17) ,1. 07(3H,s,H-18) ,1. 25(3H,s,H-19) ,7. 5
(1H,s,H-21) ,6. 47(1H,s,H-22) ,7. 41(1H,s,H-
23) ,0. 76(3H,s,H-28) ,0. 69(3H,s,H-29) ,3. 71
(1H,s,-OMe) ;13 C NMR(CDCl3,100 MHz) :217. 4
(C-1) ,78. 0(C-2) ,85. 6(C-3) ,38. 9(C-4) ,40. 8(C-
5) ,33. 4(C-6) ,174. 0(C-7) ,125. 7(C-8) ,52. 0(C-
9) ,52. 0(C-10) ,18. 7(C-11) ,29. 1(C-12) ,38. 2(C-
13) ,133. 0(C-14) ,33. 2(C-15) ,170. 0(C-16) ,80. 5
(C-17) ,18. 0(C-18) ,16. 8(C-19) ,120. 5(C-20) ,
141. 8(C-21) ,109. 9(C-22) ,142. 9(C-23) ,22. 6(C-
28) ,19. 8(C-29) ,44. 1(C-30) ,52. 2(OMe) ,21. 3
(3-Ac) ,169. 7(3-Ac).
Deacetylsecomahoganin[15](7) White amorphous
powder;ESI-MS m/z 509[M + Na]+;formula C27H34
O8;
1H NMR(CDCl3,400 MHz) :6. 65(1H,d,J =
10. 4 Hz,H-1) ,5. 90(1H,d,J = 10. 5 Hz,H-2) ,4. 07
(1H,m,H-6) ,3. 91(1H,m,H-6) ,5. 40(1H,s,H-
17) ,1. 20(3H,s,H-18) ,1. 16(3H,s,H-19) ,7. 36
(1H,s,H-21) ,6. 31(1H,s,H-22) ,7. 36(1H,s,H-
23) ,1. 23(3H,s,H-28) ,1. 04(3H,s,H-29) ,1. 23
(3H,s,H-30) ,3. 77(-OMe) ;13 C NMR(CDCl3,100
MHz) :153. 9(C-1) ,127. 8(C-2) ,204. 9(C-3) ,46. 4
(C-4) ,52. 9(C-5) ,62. 5(C-6) ,177. 8(C-7) ,44. 6
(C-8) ,44. 6(C-9) ,52. 2(C-10) ,23. 1(C-11) ,33. 9
(C-12) ,39. 3(C-13) ,69. 6(C-14) ,52. 8(C-15) ,
168. 2(C-16) ,79. 8(C-17) ,20. 9(C-18) ,19. 7(C-
19) ,121. 3(C-20) ,142. 4(C-21) ,111. 3(C-22) ,
144. 5(C-23) ,25. 8(C-28) ,24. 7(C-29) ,16. 7(C-
30) ,54. 8(-OMe).
References
1 Fang X,Di YT,Hao XJ. The advances in the limonoid chem-
istry of the Meliaceae family. Curr Org Chem,2011,15:
1363-1391.
( 下转第 633 页)
485 Nat Prod Res Dev Vol. 25
(C-1,C-1″) ,120. 1(C-6,6″) ,116. 9(C-5,5″) ,
111. 4(C-2,2″) ,86. 8(C-2,6) ,72. 4(C-4,8) ,56. 4
(2 × OCH3) ,55. 2(C-1,5)。以上数据与文献
[8]报
道的松脂素数据一致。
参考文献
1 Flora of China Commission. Flora of China(中国植物志).
Beijing:Science Press,2010,63:496.
2 Chinese Materia Medica Commission. Chinese Materia Medi-
ca(中华本草). Shanghai:Shanghai Scientific & Technical
Publishers,1999,6:358.
3 Shen XL(沈小玲) ,Hu YJ(胡英杰) ,Xu J(许杰)et al.
Study on the chemical constituents of Dregea sinensis Hemsl.
Acta Pharm Sin(药学学报) ,1996,31:613-616.
4 Chen PD(陈佩东) ,Ding AW(丁安伟). Study on the con-
stituents of Typha angustifolia L. . Strait Pharm J(海峡药
学) ,2007,19:60-61.
5 Zhao M(赵敏) ,Wang YN(王亚男) ,Wang DC(王大成) ,
et al. The chemical constituents of Isodon excia(Maxim.)
Hara. Lishizhen Med Mater Med Res(时珍国医国药) ,2011,
22:2881-2882.
6 Lu CY(陆崇玉) ,Deng Y(邓赟) ,Mei L(梅玲)et al. Stud-
ies on the chemical constituents of Gracilaria lemaneiformis.
Chin Tradit Herb Drugs(中草药) ,2011,42:1069-1071.
7 Zhan YC(詹永成) ,Dong ZM(董振敏) ,Liu T(刘涛)et al.
Study of the chemical constituents from ASterias rollentias
BELL. Chin J Med Chem(中国药物化学杂志) ,2005,15:
100-102.
8 Chen XH(陈显宏) ,Liu YB(刘云宝) ,Yu SS(庾石山)et
al. Study on phenylpropanoids from Dregea sinensis var. cor-
rugata. Chin J Chin Mater Med(中国中药杂志) ,2008,33:
櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵
2787-2789.
( 上接第 584 页)
2 Zhang H,Tan J,Chen F,et al. Khayanolides from African
Mahogany Khaya senegalensis(Meliaceae) :A revision. Phy-
tochemistry,2009,70:294-299.
3 Fang X,Zhang Q,Hao XJ,et al. Cipadonoids B-G,six new li-
monoids from Cipadessa cinerascens. Tetrahedron,2009,65:
7408-7414.
4 Geng ZL,Shen YM,Hao XJ,et al. Trichilin B,a novel li-
monoid with highly rearranged ring system from Trichilia
connaroides. Tetrahedron Lett,2009,50:2132-2134.
5 Zhang Q,Di YT,Hao XJ,et al. Phragmalin- and mexicanol-
ide-type limonoids from the leaves of Trichilia connaroides. J
Nat Prod,2011,74:152-157.
6 Fang X,Di YT,Hao XJ,et al. Trichiliton A,a novel limonoid
from Trichilia connaroides. Eur J Org Chem,2010,7:1381-
1387.
7 Chen SK,Chen BY,Li H. In Flora Reipublicae Popularis
Sinicae(Zhongguo Zhiwu Zhi). Beijing:Science Press,
1997. 77.
8 Kojima K,Isaka K,Ogihara Y. Tetranortriterpenoids from
Swietenia macrophylla. Chem Pharm Bull,1998,46:523-
525.
9 Mootoo BS,Ali A,McLean S,et al. Limonoids from Swietenia
macrophylla and S. aubrevilleana. J Nat Prod,1999,62:
1514-1517.
10 Lin BD,Yuan T,Yue JM,et al. Structurally diverse limonoids
from the fruits of Swietenia mahagoni. J Nat Prod,2009,72:
2084-2090.
11 Saad MMG,Iwagawa T,Nakatani M,et al. Swietenialides,no-
vel ring D opened phragmalin limonoid orthoesters from Swi-
etenia mahogany JACQ. Tetrahedron,2003,59:8027-8033.
12 Ge YH,Zhang JX,Hao XJ,et al. Munronoids A-J,ten new li-
monoids from Munronia unifoliolata Oliv. Tetrahedron,2012,
68:566-572.
13 Kadota S,Marpaung L,Ekimoto H. Constituents of the seeds
of Swietenia mahagoni JACQ. III. structures of mahonin and
secomahoganin. Chem Pharm Bull,1990,38:1495-1500.
14 Narender T,Khaliq T,Shweta. 13 C NMR spectroscopy of D
and B,D-ring seco-limonoids of Meliaceae family. Nat Prod
Res Dev,2008,22:763-800.
15 Samir AM,Yoshiki M,Munehiro N,et al. Rings B,D-seco li-
monoids from the leaves of Swietenia mahogany. Phytochem-
istry,2006,67:452-458.
336Vol. 25 贾少华等:云南苦绳化学成分的研究