免费文献传递   相关文献

豆叶九里香的化学成分研究



全 文 :豆叶九里香的化学成分研究

陈月梅,曹南开,屠鹏飞,姜勇*
(北京大学 天然药物及仿生药物国家重点实验室,北京 100191)

[摘要] 利用开放的硅胶、ODS 和 Sephadex LH-20 柱色谱及半制备型高效液相等色谱方法
对豆叶九里香(Murraya euchrestifolia)中的化学成分进行分离纯化,结合理化性质和 MS、
NMR 等波谱学数据对化学结构进行解析。结果从豆叶九里香 95%乙醇提取物的二氯甲烷部
位共分离并鉴定了 18 个化合物,分别为 sakuranetin (1),eriodictyol-7,4′-dimethyl ether (2),
isosakuranetin (3),5-hydroxy-7,4′-dimethoxyflavanone (4),eriodictyol-7-methyl ether (5),
lichexanthon (6) , 5,6,7-trimethoxycoumarin (7) , 5-hydroxy-6,8-dimethoxycoumarin (8) ,
8-hydroxy-6-methoxy-3-n-pentylisocoumarin (9) , ethyl caffeate (10) , 4-hydroxy-3,5-
dimethoxycinnamic acid ethyl ester (11) , methyl 3-(5′-hydroxyprenyl)-coumarate (12) ,
(E)-coniferol (13),β-hydroxypropiovanillone (14),3-hydroxy-7,8-didehydro-β-ionone (15),3β-
hydroxy-5α, 6α-epoxy-7-megastigmen-9-one (16) , grasshopper ketone (17) ,
4-hydroxy-3,5-dimethoxybenzaldehyde (18),其中化合物 1 ~ 15 和 18 为首次从九里香属植物
中分离得到,16 和 17 为首次从该植物中分离得到。
[关键词] 豆叶九里香;化学成分;黄酮类;香豆素;苯丙素

Chemical constituents from Murraya euchrestifolia

CHEN Yue-mei, CAO Nan-kai, TU Peng-fei, JIANG Yong*
(State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences,
Peking University, Beijing 100191, China)

[Abstract] The open silica gel, ODS, and Sephadex LH-20 column chromatography, along with
the semi-preparative HPLC was used to isolate and purify the chemical constituents from Murraya
                                                              
[收稿日期] 2017-02-17
[基金项目] 国家自然科学基金项目(81473106,81222051)
[通信作者] *姜勇,Tel/Fax: (010) 82802719,E-mail: yongjiang@bjmu.edu.cn
[作者简介] 陈月梅,硕士研究生,E-mail: 459048244@qq.com
DOI:10.19540/j.cnki.cjcmm.20170228.002 网络出版时间:2017-02-28 18:58:01
网络出版地址:http://kns.cnki.net/kcms/detail/11.2272.R.20170228.1858.004.html
euchrestifolia. The structures of the isolates were elucidated by their physiochemical properties,
NMR, and MS spectroscopic data, as well as the comparison with literature data. Eighteen
compounds were isolated from the CHCl2 fraction of the 95% aqueous EtOH extract of M.
euchrestifolia, and their structures were identified as sakuranetin (1), eriodictyol-7,4′-dimethyl
ether (2), isosakuranetin (3), 5-hydroxy-7,4′-dimethoxyflavanone (4), eriodictyol-7-methyl ether
(5), lichexanthon (6), 5,6,7-trimethoxycoumarin (7), 5-hydroxy-6,8-dimethoxycoumarin (8),
8-hydroxy-6-methoxy-3-n-pentylisocoumarin (9), ethyl caffeate (10), 4-hydroxy-3,5-
dimethoxycinnamic acid ethyl ester (11), methyl 3-(5′-hydroxyprenyl)-coumarate (12),
(E)-coniferol (13), β-hydroxypropiovanillone (14), 3-hydroxy-7,8-didehydro-β-ionone (15), 3β-
hydroxy-5α, 6α-epoxy-7-megastigmen-9-one (16), grasshopper ketone (17), and
4-hydroxy-3,5-dimethoxybenzaldehyde (18). Compounds 115 and 18 were first obtained from
the plants of Murraya genus, and compounds 16 and 17 were isolated from M. euchrestifolia for
the first time.
[Key words] Murraya euchrestifolia; chemical constituents; flavonoids; coumarins;
phenylpropanoids

豆叶九里香为芸香科九里香属植物豆叶九里香 Murraya euchrestifolia Hayata 的干燥枝
叶,主要分布在台湾、广东、海南、广西等地[1]。民间用其枝叶入药,有祛风活血、消炎止
痛作用[2]。抗菌实验表明,豆叶九里香挥发油有较强的广谱抗菌作用,广西北流县医药研究
所用豆叶九里香油做成外用油膏治疗感冒,取得了较满意的结果[2]。前期化学研究表明,豆
叶九里香主要含咔唑类生物碱类[3–5]和挥发油类[2],其他化学成分报道较少。为进一步阐明
豆叶九里香的化学成分,本课题组对豆叶九里香 95%乙醇提取物的二氯甲烷萃取部位进行
了化学成分研究,共分离鉴定了 18 个化合物,包括 6 个黄酮,3 个香豆素,5 个苯丙素,以
及 4 个其他类化合物,其中化合物 1 ~ 15 和 18 为首次从九里香属植物中分离得到,16 和 17
为首次从该植物中分离得到。
1 材料
Varian 500 MHz 型核磁共振仪(美国 Varian 公司);Agilent 6320 Ion Trap LC- MS 质
谱仪(美国 Agilent 公司);安捷伦 1260 半制备型高效液相色谱仪(美国 Agilent 公司);半
制备 HPLC 色谱柱为 Agilent Eclipse XDB-C18 柱(9.4 mm × 250 mm,5m);柱色谱用硅胶
(100 ~ 200 目和 200 ~ 300 目)和薄层色谱用硅胶(GF254)均为青岛海洋化工厂产品;
Sephadex LH-20(瑞典 Pharmacia 公司);RP-18 柱色谱(50 m,德国 Merck 公司);MCI GEL
CHP 20P(75 ~ 150 m,日本三菱化学公司);提取分离用石油醚、乙酸乙酯、甲醇、氯仿、
丙酮、异丙醇、乙醇为北京化工厂产品,均为分析纯;色谱纯乙腈(天津彪士奇试剂公司);
实验用水为蒸馏水和 Milli Q 超纯水;氘代溶剂 CDCl3, CD3COCD3(北京金鸥翔科贸有限公
司,Sigma- Aldrich 公司分装品)。
豆叶九里香于 2016 年 5 月采自广西靖西县三合翁, 由北京大学药学院天然药物学系
屠鹏飞教授鉴定为芸香科九里香属植物豆叶九里香 M. euchrestifolia 的干燥枝叶。标本(No.
DYJLX201605)保存于北京大学中医药现代研究中心标本库。 
2 提取与分离
豆叶九里香的干燥嫩枝叶 10 kg,以 10 倍量 95%乙醇回流提取 3 次,每次 2 h。合并提
取液,减压回收溶剂,得总浸膏 450 g。将浸膏悬浮于水中,依次用二氯甲烷、乙酸乙酯、
正丁醇萃取 3 次,分别回收溶剂,得到二氯甲烷部位 150 g、乙酸乙酯部位 25 g、正丁醇部
位 78 g。
二氯甲烷萃取物(150 g)首先使用硅胶柱色谱(100 ~ 200 目)进行粗分,采用石油醚
-丙酮(10:1, 8:1, 5:1, 3:1 和 1:1)5 个梯度洗脱系统,每个梯度洗脱 3 个柱体积,通过 TLC
检测终止色谱,合并流份,回收溶剂,最终得到 6 个流分(Frs. 1 ~ 6)。Fr. 2 经 Sephadex LH-20
柱色谱,二氯甲烷-甲醇(1∶1)洗脱得到 5 个亚流分 Frs. 2a ~ 2e。Fr. 2c 经硅胶柱色谱(石
油醚-丙酮,90:10 ~ 0:100)和半制备液相色谱(乙腈-水,80∶20, 3 mL﹒min-1)纯化得 6 (4.6
mg),9 (6.5 mg)和 18 (7.2 mg)。Fr. 3 经 Sephadex LH- 20 柱色谱,以二氯甲烷-甲醇(1:1)洗
脱得到 6 个流分(Frs. 3a ~ 3f)。Fr. 3b 经 ODS 柱色谱分离,依次用 50%, 70%, 90%甲醇梯
度洗脱,合并相同组分,得到流分 Frs. 3b-1 ~ 3b-5,其中 Fr. 3b-2 与 Fr. 3b-4 分别经半制备
液相色谱(流动相为乙腈-水,比例分别为 80:20 和 60:40,3 mL﹒min-1)分离得到化合物 4
(2.1 mg)和 7 (6.1 mg)。Fr. 4 经 Sephadex LH- 20 柱色谱,二氯甲烷-甲醇(1:1)洗脱得到 Frs.
4a ~ 4e。Fr. 4c 经 ODS 柱色谱(甲醇-水,50:50 ~ 100:0)和半制备液相色谱(乙腈-水,80:20,
3 mL﹒min-1)纯化得 1 (3.9 mg),2 (3.1 mg) 和 15 (3.5 mg)。Fr. 4d 经 ODS 柱色谱(甲醇-水,
50:50 ~ 100:0)和半制备液相色谱(乙腈-水,47:53,3 mL﹒min-1)纯化得 3 (4.2 mg)。Fr. 5
经 Sephadex LH- 20 柱色谱分离,得 6 个流分 Frs. 5a ~ 5f。Fr. 5b 再经 MCI 柱色谱(甲醇-水,
50:50 ~ 100:0)和半制备液相色谱(乙腈-水,45:55,3 mL﹒min-1)纯化得 5 (6.8 mg),8 (2.2
mg),10 (7.8 mg),11 (5.7 mg),16 (4.5 mg)和 19 (7.3 mg)。Fr. 5c 经 ODS 柱色谱(甲醇-水,
50:50 ~ 100:0)和半制备液相色谱(乙腈-水,42:58,3 mL﹒min-1)纯化得 12 (4.2 mg),13 (4.2
mg),14 (4.2 mg)和 17 (4.2 mg)。
3 结构鉴定
化合物 1 黄色粉末;[α]25 D 8 (c 0.05, MeOH);ESI-MS m/z 285 [M – H]−。1H-NMR (CDCl3,
500 MHz) δ:2.78 (1H, dd, J = 17.1, 3.1 Hz, H-3eq), 3.09 (1H, dd, J =17.1, 13.2 Hz, H-3ax), 3.80
(3H, s, 7-OCH3), 5.35 (1H, m, H-2), 6.04 (1H, d, J = 2.1 Hz, H-8), 6.07 (1H, d, J = 2.1 Hz, H-6),
6.88 (2H, d, J = 8.2 Hz, H-3′, H-5′), 7.32 (2H, d, J = 8.2 Hz, H-2′, H-6′), 12.02 (1H, s, 5-OH);
13C-NMR (CDCl3, 125 MHz) δ:43.3 (C-3), 55.8 (-OCH3), 79.1 (C-2), 94.4 (C-6), 95.3 (C-8),
103.3 (C-10), 115.8 (C-3′, C-5′), 128.1 (C-2′, C-6′), 130.6 (C-1′), 156.4 (C-4′), 163.1 (C-5), 164.2
(C-9), 168.2 (C-7), 196.3 (C-4)。以上数据与文献[6]对比,鉴定化合物 1 为 sakuranetin。
化合物 2 黄色粉末;[α]25 D 13 (c 0.12, MeOH);ESI-MS m/z 315 [M – H]−。1H-NMR
(CDCl3, 500 MHz) δ:2.79 (1H, dd, J = 17.2, 3.1 Hz, H-3eq), 3.08 (1H, dd, J =17.2, 12.9 Hz,
H-3ax), 3.81 (3H, s, 7-OCH3), 3.92 (3H, s, 4′-OCH3), 5.33 (1H, dd, J = 12.9, 3.1 Hz, H-2), 6.05
(1H, d, J = 2.1 Hz, H-8), 6.07 (1H, d, J = 2.1 Hz, H-6), 6.88 (1H, d, J = 8.2 Hz, H-5′), 6.93 (1H,
dd, J = 8.2, 2.1 Hz, H-6′), 7.05 (1H, d, J = 2.1 Hz, H-2′), 12.02 (1H, s, 5-OH);13C-NMR (CDCl3,
125 MHz) δ:43.4 (C-3), 55.8 (7-OCH3), 56.2 (4′-OCH3), 79.1 (C-2), 94.4 (C-6), 95.3 (C-8), 103.3
(C-10), 110.8 (C-5′), 112.8 (C-2′), 118.3 (C-6′), 131.7 (C-1′), 146.1 (C-3′), 147.1 (C-4′), 163.0
(C-9), 164.3 (C-5), 168.1 (C-7), 196.3 (C-4)。以上数据与文献[7]对比,鉴定化合物 2 为
eriodictyol-7,4′-dimethyl ether。
化合物 3 黄色粉末;[α]25 D 44 (c 0.20, MeOH);ESI-MS m/z 285 [M – H]−。1H-NMR
(CDCl3, 500 MHz) δ:2.77 (1H, dd, J = 17.0, 2.9 Hz, H-3eq), 3.08 (1H, m, H-3ax), 3.82 (3H, s,
4′-OCH3), 5.32 (1H, dd, J = 12.6, 2.9 Hz, H-2), 5.97 (1H, s, J = 2.1 Hz, H-8), 6.07 (1H, d, J = 2.1
Hz, H-6), 6.88 (2H, d, J = 8.2 Hz, H-3′, H-5′), 7.32 (2H, d, J = 8.2 Hz, H-2′, H-6′), 12.02 (1H, s,
5-OH);13C-NMR (CDCl3, 125 MHz) δ:43.3 (C-3), 55.8 (-OCH3), 79.1 (C-2), 94.4 (C-6), 95.3
(C-8), 103.3 (C-10), 115.8 (C-3′ and C-5′), 128.1 (C-2′ and C-6′), 130.6 (C-1′), 156.4 (C-4′), 163.1
(C-5), 164.2 (C-9), 168.2 (C-7), 196.3 (C-4)。以上数据与文献[8]对比,鉴定化合物 3 为
isosakuranetin。
化合物 4 黄色粉末;[α]25 D 28 (c 0.05, MeOH);ESI-MS m/z 299 [M – H]−。1H-NMR
(CDCl3, 500 MHz) δ:2.79 (1H, dd, J = 17.2, 2.9 Hz, H-3eq), 3.11 (1H, dd, J = 17.2, 13.4 Hz,
H-3ax), 3.81 (3H, s, 7-OCH3), 3.84 (3H, s, 4′-OCH3), 5.37 (1H, dd, J = 13.4, 2.9 Hz, H-2), 6.05
(1H, d, J = 2.1 Hz, H-8), 6.07 (1H, d, J = 2.1 Hz, H-6), 6.96 (2H, d, J = 8.6 Hz, H-3′, H-5′), 7.38
(2H, d, J = 8.6 Hz, H-2′, H-6′), 12.03 (1H, s, OH-5);13C-NMR (CDCl3, 125 MHz) δ:43.2 (C-3),
55.4 (4′-OCH3), 55.7 (7-OCH3), 79.0 (C-2), 94.3 (C-6), 95.1 (C-8), 103.3 (C-10), 114.2 (C-3′, 5′),
128.5 (C-2′, 6′), 130.4 (C-1′), 160.1 (C-4′), 162.9 (C-5), 164.2 (C-9), 168.0 (C-7), 196.1 (C-4)。以
上数据与文献[9]对比,鉴定化合物 4 为 5-hydroxy-7,4′-dimethoxyflavanone。
化合物 5 黄色粉末;[α]25 D 12 (c 0.13, MeOH);ESI-MS m/z 301 [M – H]−。1H-NMR
(CD3COCD3, 500 MHz) δ:2.76 (1H, dd, J = 17.2, 3.0 Hz, H-3eq), 3.16 (1H, dd, J = 17.2, 12.6 Hz,
H-3ax), 3.85 (3H, s, -OCH3), 5.42 (1H, dd, J = 12.6, 3.0 Hz, H-2), 6.03 (1H, d, J = 2.3 Hz, H-8),
6.05 (1H, d, J = 2.3 Hz, H-6), 6.87 (2H, s, H-5′, H-6′), 7.04 (1H, s, H-2′), 12.13 (1H, s, -OH);
13C-NMR (CD3COCD3, 125 MHz) δ:43.6 (C-3), 56.2 (-OCH3), 80.1 (C-2), 94.6 (C-8), 95.4 (C-6),
103.8 (C-10), 114.8 (C-2′), 116.1 (C-5′), 119.3 (C-6′), 131.5 (C-1′), 146.0 (C-3′), 146.4 (C-4′),
164.2 (C-9), 165.0 (C-5), 169.0 (C-7), 197.6 (C-4)。以上数据与文献[10]对比,鉴定化合物 5 为
eriodictyol-7-methyl ether。
化合物 6 黄色粉末,ESI-MS m/z 285 [M – H]−。1H-NMR (CDCl3, 500 MHz) δ:2.85 (3H,
s, 8-CH3), 3.87 (3H, s, 3-OCH3), 3.89 (3H, s, 6-OCH3), 6.30 (1H, d, J = 2.1 Hz, H-2), 6.33 (1H, d,
J = 2.1 Hz, H-4), 6.66 (1H, d, J = 2.1 Hz, H-7), 6.68 (1H, d, J = 2.1 Hz, H-5), 13.38 (1H, s, 1-OH);
13C-NMR (CDCl3, 125 MHz) δ:23.6 (8-CH3), 55.8 (3-OCH3), 55.8 (6-OCH3), 92.2 (C-4), 96.9
(C-2), 98.8 (C-5), 104.3 (C-9a), 113.1 (C-8a), 115.6 (C-7), 143.6 (C-8), 157.1 (C-4a), 159.6
(C-10a), 163.9 (C-1), 163.9 (C-6), 165.9 (C-3), 182.5 (C-9)。以上数据与文献[11]对比,鉴定化
合物 6 为 lichexanthone。
化合物 7 白色粉末,ESI-MS m/z 236 [M – H]−。1H-NMR (CDCl3, 500 MHz) δ:3.85 (3H,
s, 7-OCH3), 3.92 (3H, s, 6-OCH3), 4.02 (3H, s, 5-OCH3), 6.23 (1H, d, J = 9.6 Hz, H-3), 6.61 (1H,
s, H-8), 7.92 (1H, d, J = 9.6 Hz, H-4);13C-NMR (CDCl3, 125 MHz) δ:56.5 (6-OCH3), 61.4
(7-OCH3), 62.0 (5-OCH3), 95.7 (C-8), 107.14 (C-10), 112.6 (C-3), 138.3 (C-6), 139.0 (C-4), 149.4
(C-9), 151.6 (C-5), 157.3 (C-7), 161.4 (C-2)。以上数据与文献[12]对比,鉴定化合物 7 为
5,6,7-trimethoxycoumarin。
化合物 8 白色粉末,ESI-MS m/z 221 [M – H]−。1H-NMR (CDCl3, 500 MHz) δ:3.90 (3H,
s, 6-OCH3), 3.92 (3H, s, 8-OCH3), 6.22 (1H, d, J = 9.6 Hz, H-3), 6.45 (1H, s, H-7), 7.96 (1H, d, J
= 9.6 Hz, H-4);13C-NMR (CDCl3, 125 MHz) δ:56.4 (8-OCH3), 61.5 (6-OCH3), 92.5 (C-7), 102.7
(C-10), 111.9 (C-3), 131.7 (C-6), 138.7 (C-4), 145.8 (C-5), 151.9 (C-9), 155.8 (C-8), 161.6 (C-2)。
以上数据与文献[13]对比,鉴定化合物 8 为 5-hydroxy-6,8-dimethoxycoumarin。
化合物 9 棕色粉末,ESI-MS m/z 261 [M – H]−。1H-NMR (CDCl3, 500 MHz) δ:0.90 (3H,
t, J = 6.8 Hz, H-5′), 1.35 (4 H, m, H-3′, 4′), 1.68 (2 H, m, H-2′), 2.48 (2 H, t, J= 7.6 Hz, H-1′), 3.86
(3 H, s, 6-OCH3), 6.17 (1 H, s, H-4), 6.30 (1 H, d, J = 2.3 Hz, H-7), 6.45 (1 H, d, J = 2.3 Hz, H-5),
11.12 (1 H, s, 8-OH);13C-NMR (CDCl3, 125 MHz) δ:14.1 (C-5′), 22.5 (C-4′), 26.6 (C-2′), 31.3
(C-3′), 33.4 (C-1′), 55.8 (6-OCH3), 100.1 (C-8a), 100.3 (C-5), 101.2 (C-7), 104.0 (C-4), 139.6
(C-4a), 158.2 (C-3), 163.8 (C-8), 166.6 (C-6), 166.9 (C-1)。以上数据与文献[14]对比,鉴定化合
物 9 为 8-hydroxy-6-methoxy-3-n-pentylisocoumarin。
化合物 10 白色粉末,ESI-MS m/z 207 [M – H]−。1H-NMR (CDCl3, 500 MHz) δ:1.33 (3H,
t, J = 7.0 Hz, H-11), 4.25 (2H, q, J = 7.0 Hz, H-10), 5.68 (1H, br s, -OH), 6.26 (1H, d, J = 16.0 Hz,
H-8), 6.87 (1H, d, J = 8.3 Hz, H-5), 7.01 (1H, d, J = 8.3 Hz, H-6), 7.08 (1H, s, H-2), 7.57 (1H, d, J
= 16.0 Hz, H-7);13C-NMR (CDCl3, 125 MHz) δ:14.5 (C-11), 60.7 (C-10), 114.5 (C-2), 115.7
(C-5), 116.1 (C-8), 122.6 (C-6), 127.9 (C-1), 143.9 (C-3), 144.7 (C-7), 146.2 (C-4), 167.7 (C-9)。
以上数据与文献[15]对比,鉴定化合物 10 为 ethyl caffeate。
化合物 11 棕色粉末,ESI-MS m/z 251 [M – H]−。1H-NMR (CDCl3, 500 MHz) δ:1.33 (3H,
t, J = 7.0 Hz, H-11), 3.91 (6H, s, 3-OCH3,5-OCH3), 4.26 (2H, q, J = 7.0 Hz, H-10), 6.30 (1H, d, J
= 15.8 Hz, H-8), 6.77 (2H, s, H-2, H-6), 7.59 (1H, d, J = 15.8 Hz, H-7);13C-NMR (CDCl3, 125
MHz) δ:14.5 (C-11), 56.5 (3-OCH3,5-OCH3), 60.5 (C-10), 105.2 (C-2, C-6), 116.2 (C-8), 126.1
(C-1), 137.2 (C-4), 145.0 (C-7), 147.3 (C-3, C-5), 167.3 (C-9)。以上数据与文献[16]对比,故鉴
定化合物 11 为 4-hydroxy-3,5-dimethoxycinnamic acid ethyl ester。
化合物 12 黄色粉末,ESI-MS m/z 261 [M – H]−。1H-NMR (CDCl3, 500 MHz) δ:1.81 (3H,
s, H-5′), 3.41 (2H, d, J = 7.4 Hz, H-1′), 3.79 (3H, s, -OCH3), 4.08 (2H, s, H-4′), 5.26 (1H, br s,
-OH), 5.61 (1H, t, J = 7.4 Hz, H-2′), 6.29 (1H, d, J = 15.9 Hz, H-8), 6.78 (1H, d, J = 8.5 Hz, H-5),
7.30 (2H, m, H-2, H-6), 7.62 (1H, d, J = 15.9 Hz, H-7);13C-NMR (CDCl3, 125 MHz) δ:14.0
(C-5′), 28.8 (C-1′), 51.7 (-OCH3), 68.6 (C-4′), 115.4 (C-8), 116.2 (C-5), 122.5 (C-2′), 127.4 (C-3),
127.6 (C-1), 128.0 (C-6), 130.3 (C-2), 137.6 (C-3′), 144.8 (C-7), 156.1 (C-4), 167.9 (C-9)。以上数
据与文献[17]对比,鉴定化合物 12 为 methyl 3-(5′-hydroxyprenyl)-coumarate。
化合物 13 棕色粉末,ESI-MS m/z 179 [M – H]−。1H-NMR (CDCl3, 500 MHz) δ:3.88 (3H,
s, -OCH3), 4.29 (2H, d, J = 5.8 Hz, H-9), 6.21 (1H, dt, J = 15.8, 5.8 Hz, H-8), 6.52 (1H, d, J =
15.8 Hz, H-7), 6.85 (1H, d, J = 8.5 Hz, H-5), 6.88 (1H, d, J = 8.5 Hz, H-6), 6.90 (1H, s, H-2);
13C-NMR (CDCl3, 125 MHz) δ:56.0 (-OCH3), 63.9 (C-9), 108.4 (C-2), 114.6 (C-5), 120.4 (C-6),
126.2 (C-8), 129.3 (C-1), 131.5 (C-7), 145.7 (C-4), 146.8 (C-3)。以上数据与文献[18]对比,鉴定
化合物 13 为(E)-coniferol。
化合物 14 黄色粉末,ESI-MS m/z 195 [M – H]−。1H-NMR (CD3COCD3, 500 MHz) δ:
3.15 (2H, t, J = 6.2 Hz, H-8), 3.91 (3H, s, -OCH3), 3.92 (2H, t, J = 6.2 Hz, H-9), 6.92 (1H, d, J =
8.2 Hz, H-5), 7.56 (1H, d, J = 2.0 Hz, H-2), 7.59 (1H, dd, J = 8.2, 2.0 Hz, H-6);13C-NMR
(CD3COCD3, 125 MHz) δ:41.6 (C-8), 56.3 (-OCH3), 58.7 (C-9), 111.6 (C-2), 115.4 (C-5), 124.0
(C-6), 130.7 (C-1), 148.4 (C-3), 152.4 (C-4), 198.2 (C-7)。以上数据与文献[19]对比,鉴定化合
物 14 为 β-hydroxypropiovanillone。
化合物 15 黄色油状物;[α]25 D 61 (c 0.28, MeOH);ESI-MS m/z 205 [M – H]−。1H-NMR
(CDCl3, 500 MHz) δ:1.13 (3H, s, H-11) , 1.19 (3H, s, H-12), 1.45 (1H, t, J = 12.0 Hz, Hax-2), 1.84
(1H, d, J = 12.0 Hz, Heq-2), 1.97 (3H, s, H-13), 2.09 (1H, m, Hax-4), 2.39 (3H, s, CH3-9), 2.48 (1H,
m, Heq-4), 3.99 (1H, m, H-3);13C-NMR (CDCl3, 125 MHz) δ:23.0 (C-13), 28.8 (C-11), 30.3
(C-12), 33.0 (C-10), 36.6 (C-1), 41.8 (C-4), 46.5 (C-2), 64.5 (C-3), 90.2 (C-7), 93.9 (C-8), 122.4
(C-6), 146.7 (C-5), 184.7 (C-9)。以上数据与文献 [20]对比,故鉴定化合物 15 为
3-hydroxy-7,8-didehydro-β-ionone。
化合物 16 淡黄色油状物;[α]25 D 45 (c 0.85, MeOH);ESI-MS m/z 223 [M – H]−。1H-NMR
(CDCl3, 500 MHz) δ:0.96 (3H, s, H-12), 1.18 (6H, s, H-11, H-13), 1.27 (1H, m, H-2eq), 1.64 (2H,
m, H-2ax, H-4ax), 2.27 (3H, s, H-10), 2.38 (1H, dd, J = 14.4, 5.1 Hz, H-4eq), 3.90 (1H, m, H-3),
6.28 (1H, d, J = 15.5 Hz, H-8), 7.02 (1H, d, J = 15.5 Hz, H-7);13C-NMR (CDCl3, 125 MHz) δ:
20.0 (C-13), 25.1 (C-12), 28.4 (C-10), 29.5 (C-11), 35.3 (C-1), 40.7 (C-2), 46.8 (C-4), 64.1 (C-3),
67.4 (C-5), 69.6 (C-6), 132.7 (C-8), 142.6 (C-7), 197.6 (C-9)。以上数据与文献[21]对比,故鉴定
化合物 16 为 3β-hydroxy-5α, 6α-epoxy-7-megastigmen-9-one。
化合物 17 黄色油状物;[α]25 D 15 (c 1.10, MeOH);ESI-MS m/z 223 [M – H]−。1H-NMR
(CDCl3, 500 MHz) δ:1.14 (3H, s, H-11), 1.36 (3H, s, H-12), 1.41 (3H, s, H-13), 2.17 (3H, s,
H-10), 1.35 和 1.97 (2H, m, H-2), 1.41 和 2.28 (2H, m, H-4), 4.32 (1H, m, H-3), 5.83 (1H, s, H-8);
13C-NMR (CDCl3, 125 MHz) δ:26.5 (C-10), 29.2 (C-12), 31.0 (C-13), 31.8 (C-11), 36.2 (C-1),
48.8 C-4), 49.0 (C-2), 63.9 (C-3), 72.4 (C-5), 100.9 (C-8), 118.8 (C-6), 198.7 (C-9), 209.8 (C-7)。
以上数据与文献[22]对比,鉴定化合物 17 为 grasshopper ketone。
化合物 18 白色粉末,ESI-MS m/z 181 [M – H]−。1H-NMR (CDCl3, 500 MHz) δ:3.96 (6H,
s, -OCH3 × 2), 7.14 (2H, s, H-2, H-6), 9.80 (1H, s, -CHO);13C-NMR (CDCl3, 125 MHz) δ:56.6
(-OCH3 × 2), 106.8 (C-2, C-6), 128.5 (C-1), 141.0 (C-4), 147.5 (C-3, C-5), 190.9 (-CHO)。以上数
据与文献[23]对比,鉴定化合物 18 为 4-hydroxy-3,5-dimethoxybenzaldehyde。
4 讨论
近年来,国内外对豆叶九里香的研究较多,但都主要集中于咔唑生物碱类成分的研究,
对其他类成分研究较少。本研究从豆叶九里香 95%乙醇提取物的二氯甲烷部位分离得到 18
个化合物,其中 16 个化合物均为首次从九里香属植物中分离得到。上述研究结果为系统阐
明豆叶九里香的化学组成及生物活性研究提供了参考和物质基础。

[参考文献]
[1] 中国科学院中国植物志编辑委员会. 中国植物志 [M]. 第 43(2)卷. 北京: 科学出版社, 1997: 149.
[2] 纪晓多, 濮全龙, 杨桂芝. 豆叶九里香挥发油化学成分的研究 [J]. 药学学报, 1983, 17(5): 626.
[3] Wu T S, Wang M L, Wu P L, et al. Carbazole alkaloids from the leaves of Murraya euchrestifolia [J].
Phytochemistry, 1996, 41(5): 1433.
[4] Wu T S, Wang M L, Wu P L, et al. Two carbazole alkaloids from leaves of Murraya euchrestifolia [J]. 
Phytochemistry, 1995, 40(6): 1817.
[5] Ito C, Okahana N, Wu T S, et al. New carbazole alkaloids from Murraya euchrestifolia [J]. Chem Pharm Bull,
1992, 40(1): 230.
[6] Jerz G, Waibel R, Achenbach H. Cyclohexanoid protoflavanones from the stem-bark and roots of Ongokea
gore [J]. Phytochemistry, 2005, 66(14): 1698.
[7] Vasconcelos, J M J, Silva A M S, Cavaleiro J A S. Chromones and flavanones from Artemisia campestris subsp.
Maritime [J]. Phytochemistry, 1998, 49(5): 1421.
[8] Hattori H, Okuda K, Murase T, et al. Isolation, identification, and biological evaluation of HIF-1-modulating
compounds from Brazilian green propolis [J]. Bioorg Med Chem, 2011, 19(18): 5392.
[9] Gu J Q, Park E J, Vigo J S, et al. Activity-guided isolation of constituents of Renealmia nicolaioides with the
potential to induce the phase II enzyme quinone reductase [J]. J Nat Prod, 2002, 65(11): 1616.
[10] Vasconcelos J M J, Silva A M S, Cavaleiro J A S. Chromones and flavanones from Artemisia campestris
subsp. maritime [J]. Phytochemistry, 1998, 49(5): 1421.
[11]  Brandao L F G, Alcantara G B, Matos M de F C, et al. Cytotoxic evaluation of phenolic compounds from
lichens against melanoma cells [J]. Chem Pharm Bull, 2013, 61(2): 176.
[12] Saeed M A, Sabir A W. Irritant and cytotoxic coumarins from Angelica glauca Edgew roots [J]. J Asian Nat
Prod Res, 2008, 10(1): 49.
[13] Kim K S, Lee S, Shin J S, et al. Arteminin, a new coumarin from Artemisia apiacea [J]. Fitoterapia, 2002,
73(3): 266.
[14] Kijjoa A, Gonzalez M J T G, Pinto M M M, et al. Constituents of Knema laurina and Knema tenuinervia ssp.
Setosa [J]. Planta Med, 1991, 57(6): 575.
[15] Li J R, Bai, Y J, Wang B, et al. A monoterpene glycoside from Echinacea purpurea [J]. J Chin Pharm Sci
2003, 12(4): 181.
[16] Sathish Kumar B, Singh A, Kumar A, et al. Synthesis of neolignans as microtubule stabilisers [J]. Bioorg Med
Chem, 2014, 22(4): 1342.
[17] Jakupovic J, Tan R X, Bohlmann F, et al. Prenylated coumarates from Artemisia xanthochroa [J].
Phytochemistry, 1990, 29(11): 3683.
[18] Gangar M, Ittuveetil A, Goyal S, et al. Anti selective glycolate aldol reactions of
(S)-4-isopropyl-1-[(R)-1-phenylethyl]imidazolidin-2-one: application towards the asymmetric synthesis of
8-4′-oxyneolignans [J]. RSC Adv, 2016, 6(104): 102116.
[19] Lancefield C S, Ojo O. S, Tran F, et al. Isolation of functionalized phenolic monomers through selective
oxidation and CO bond cleavage of the β-O-4 linkages in lignin [J]. Angew Chem Int Edit, 2015, 54(1): 258.
[20] Yamano Y, Watanabe Y, Watanabe N, et al. Stereocontrolled synthesis of glucosidic damascenone precursors
[J]. J Chem Soc Perkin Trans 1, 2002, (24): 2833.
[21] D′Abrosca B, DellaGreca M, Fiorentino A, et al. Structure elucidation and phytotoxicity of C13
nor-isoprenoids from Cestrum parqui [J]. Phytochemistry, 2004, 65(4): 497.
[22] Della Greca M, Di Marino C, Zarrelli A, et al. Isolation and phytotoxicity of apocarotenoids from
Chenopodium album [J]. J Nat Prod, 2004, 67(9): 1492.
[23] Shirali A, Sriram M, Hall J J, et al. Development of synthetic methodology suitable for the radiosynthesis of
combretastatin A-1 (CA1) and its corresponding prodrug CA1P [J]. J Nat Prod, 2009, 72(3): 414.