免费文献传递   相关文献

骆驼蒿的化学成分(英文)



全 文 :






Chemical Constituents from the Aerial Part of
Peganum nigellastrum

YANG Fei1,2, CHEN Rong2, FENG Lin2, LI Hai-Dao2, ZHANG Hua2, LIANG Jing-Yu1*
1Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009;
2Jiangsu Simcere Pharmaceutical R&D Co., Ltd., Nanjing 210042, China
[ABSTRACT] AIM: To study the chemical constituents of Peganum nigellastrum Bge.. METHODS: The chemical
constituents were isolated by extraction, crystallization and chromatographic methods, and the chemical structures were
elucidated on the basis of spectral analysis. RESULTS: Six compounds were obtained, and their structures were identi-
fied as O-amino-N-formylbenzyamine(1), butyl 1H-imidazole-4-carboxylate (2), liriodendrin (3), trans-ferulic acid
β-D-glucopyranoside(4), (6S,7E,9R)-6,9-dihydroxymegastigma-4,7-dien-3-one-9-O-β-D-glucopyranoside (or roseoside)
(5) and (3S,5R,6R,7E,9S)-megastigman-7-ene-3,5,6,9-tetrol-3-O-β-D-glucopyranoside (6). CONCLUSION: Com-
pounds 1, 2 were isolated from natural resources, and compounds 3-6 were isolated from this genus for the first time.
[KEY WORDS] Peganum nigellastrum; Aerial part; Chemical constituents
[CLC Number] R284.1 [Document code] A [Article ID] 1672-3651(2010)03-0199-03
doi: 10.3724/SP. J. 1009.2010.00199
1 Introduction
Peganum nigellastrum Bge., family Zygophyllaceae,
is widely distributed over Asia and commonly found in
Xinjiang, Gansu, Inner Mongolia and Shanxi, China [1]. The
whole plants or seeds of P. nigellastrum have been used for
a long time in the treatment of rheumatism, irregular men-
struation, cough, asthma and so on. Since the inhibiting
activity of alkaloids from P. harmala L. on malignant tumor
of digestive tract was reported in 1975, considerable atten-
tion has been paid on the study of Peganum plants, mainly
P. harmala L. and P. multisectum Maxim [2]. The less repor-
ted plant P. nigellastrum were studied, and six compounds
were obtained, namely O-amino-N-formylbenzyamine(1),
butyl 1H-imidazole-4-carboxylate (2), liriodenrin (3),
trans-ferulic acid β-D-glucopyranoside (4), roseoside (5)
and (3S,5R,6R,7E,9S)-megastigman-7-ene-3,5,6,9-tetrol-3-
O-β-D-glucopyranoside (6). Compounds 1 and 2 were iso-
lated from natural resources, compounds 3-6 were isolated
from this genus for the first time.





[Received on] 26-Oct-2009
[*Corresponding author] LIANG Jing-Yu: Prof., Tel: 86-25-
83271415, E-mail: jyliang08@yahoo.com.cn
2 Experimental
2.1 General
Column chromatography (CC): Silica gel (200 – 300
mesh) and TLC was from Qingdao Marine Chemical Plant,
Qingdao, China; Sephadex LH-20 was purchased from GE
Healthcare Bio-Sciences AB; MCI gel was from Mitsubishi
Chemical Corporation, Tokyo, Japan. 1H-, 13C-, and
2D-NMR Spectra: Bruker-AV-500, 300 spectrometers; δ in
ppm rel. to Me4Si, J in Hz. MS: Agilent-1100-JC/MSD-
Trap (ESI-MS-MS) spectrometer; in m/z.
2.2 Plant material
P. nigellastrum aerial parts were collected from Min-
qin of Gansu province, China. A voucher specimen has
been deposited at the Herbarium of China Pharmaceutical
University, Nanjing, China.
2.3 Extraction and isolation
Dried aerial parts were extracted with 95% ethanol.
The concentrated extract (1 kg) was passed through a silica
gel column, eluted by petroleum, ethyl acetate, ethyl acetate
-methanol, and methanol in turn. The EtOAc fraction (230 g)
was subjected to repeated silica gel, Sephadex LH-20 and
MCI column chromatography, and further purified by re-
crystallization. At last, compounds 1 (12.3 mg), 2 (4.2 g), 3
(5.6 mg), 4 (10.6 mg), 5 (4.1 mg), and 6 (28.0 mg) were
isolated successfully.
3 Structural Identification
Compound 1 White amorphous powder, ESI-MS
m/z 151 [M + H]+, 185 [M + Cl]−, C8H10N2O. 1H NMR (500
MHz, CD3OD) δ:8.09 (1H, s, -CHO), 7.07 (1H, dd, J = 7.0,
2010 年 5 月 第 8 卷 第 3 期 Chin J Nat Med May 2010 Vol. 8 No. 3 199

YANG Fei, et al. /Chinese Journal of Natural Medicines 2010, 8(3): 199−201
200 Chin J Nat Med May 2010 Vol. 8 No. 3
1.0 Hz, H-6), 7.04 (1H, dt, J = 7.0, 1.0 Hz, H-4), 6.73 (1H,
dd, J = 7.0, 1.0 Hz, H-3), 6.65 (1H, dt, J = 7.0, 1.0 Hz, H-5),
4.81 (2H, s, H-7). 13C NMR(75 MHz, CD3OD) δ:163.7
(-CHO), 146.8 (C-2), 133.7 (C-1), 130.9 (C-4), 129.8 (C-6),
119.1 (C-5), 117.2 (C-3), 39.5 (C-7). Compound 1 was
characterized as O-amino-N-formylben-zyamine by com-
parison of the physical and spectral data with the reported
data [3], and it was isolated from natural resources for the
first time.
Compound 2 Pale yellow oil, C8H12N2O2. 1H NMR
(500 MHz, CDCl3) δ:7.71 (1H, dd, J = 5.0, 3.0 Hz, H-5),
7.52 (1H, dd, J = 5.0, 3.0 Hz, H-2), 4.30 (2H, t, J = 6.5 Hz,
H-7), 1.72 (2H, m, H-8), 1.44 (2H, m, H-9), 0.96 (3H, t, J =
7.0 Hz, H-10). 13C NMR (125 MHz, CDCl3) δ:167.7 (C-6),
132.3 (C-4), 130.8 (C-2), 128.8 (C-5), 65.5 (C-7), 30.5
(C-8), 19.1 (C-9), 13.6 (C-10). Compound 2 was character-
ized as butyl 1H-imidazole-4-carboxylate, and it was iso-
lated from natural resources for the first time.
Compound 3 White needle crystal, ESI-MS m/z 741
[M – H]−, 579 [M – glucose – H]−, 417 [M – 2glucose – H]−,
C34H46O18. 1H NMR (500 MHz, DMSO-d6) δ:6.66 (4H, s,
H-2, 2′, 6, 6′), 4.88 (2H, m, H-1), 4.67 (2H, d, J = 3.5 Hz,
H-7, 7′), 4.20 (2H, dd, J = 8.5, 6.5 Hz, Heq-9, Heq-9′), 3.83
(2H, d, J = 8.5, 3.0 Hz, Hax-9, Hax-9′), 3.10 (2H, m, H-8,
8′), 3.76 (6H, s, -OCH3). 13C NMR (125 MHz, DMSO-d6)
δ:152.6 (C-3, 3′, 5, 5′), 137.1 (C-4, 4′), 133.7 (C-1, 1′),
104.2(C-2, 2′, 6, 6′), 85.0 (C-7, 7′), 71.5 (C-9, 9′), 56.4
(-OCH3), 53.5 (C-8, 8′), 102.6 (C-1), 77.2 (C-5), 76.5
(C-3), 74.1 (C-2),70.1 (C-4), 60.9 (C-6). Compound 3
was characterized as liriodendrin by comparison of the
physical and spectral data with the reported data [4-5].
Compound 4 White powder, ESI-MS m/z 355 [M
–- H]−, 193 [M – glucose – H]−, C16H20O9. 1H NMR (500
MHz, CD3OD) δ:7.61 (1H, d, J = 16.0 Hz, H-7), 7.24 (1H,
d, J = 1.5 Hz, H-2), 7.16 (1H, dd, J = 7.5, 1.5 Hz, H-6),
7.13 (1H, d, J = 7.5, H-5), 6.38 (1H, d, J = 16.0 Hz, H-8),
3.90 (3H, s, -OCH3), 4.96 (1H, d, J = 7.0 Hz, H-1′), 3.86
(1H, m, H-6a′), 3.69 (1H, dd, J = 5.0, 11.5 Hz, H-6b′),
3.38-3.53 (4H, m, H-2′,3′,4′,5′). 13C NMR (125 MHz,
CD3OD) δ:170.8 (C-9), 151.0 (C-3), 149.9 (C-4), 145.8
(C-7), 130.7 (C-1), 123.3 (C-6), 118.1 (C-8), 117.5 (C-5),
112.5 (C-2), 102.3 (C-1′), 78.3 (C-5′), 77.8 (C-3′), 74.8
(C-2′), 71.3 (C-4′), 62.5 (C-6′), 56.8 (-OCH3). Compound 4
was characterized as trans-ferulic acid β-D-glucopyrano-
side by comparison of the physical and spectral data with
the reported data [6].
Compound 5 White powder, ESI-MS m/z 385 [M –
H]−, 223 [M – glucose – H]−, C19H30O8. 1H NMR (500 MHz,
CD3OD) δ:5.89 (1H, m, H-7), 5.86 (1H, m, H-8), 5.82 (1H,
br s, H-4), 4.42 (1H, m, H-9), 2.51 (1H, d, J = 17.0 Hz,
H-2a), 2.14(1H, d, J = 17.0 Hz, H-2b), 1.91 (3H, s, H-13),
1.28 (3H, d, J = 6.0 Hz, H-10), 1.03 (3H, s, H-12), 1.02 (3H,
s, H-11), 4.34 (1H, d, J = 7.8 Hz, H-1′), 3.84 (1H, dd, J =
11.5, 1.5 Hz, H -6a′), 3.62 (1H, dd, J = 11.5, 5.5 Hz, H-6b′),
3.16-3.34 (4H, H-2′, 3′, 4′, 5′). 13C NMR (125 MHz,
CD3OD) δ:201.2 (C-3), 167.5 (C-5), 135.3 (C-8), 131.5
(C-7), 127.2 (C-4), 80.5 (C-6), 77.3 (C-9), 50.7 (C-2), 42.5
(C-1), 24.7 (C-12), 23.4 (C-11), 21.2 (C-10), 19.5 (C-13),
102.7 (C-1′), 75.3 (C-2′), 78.0 (C-3′), 71.7 (C-4′), 78.1
(C-5′), 62.9 (C-6′). Compound 5 was characterized as
(6S,7E,9R)-6,9-dihydroxymegastigma-4,7-dien-3-one-9-O-
β-D-glucopyranoside (or roseoside) by comparison of the
physical and spectral data with the reported data [7].
Compound 6 White powder, ESI-MS m/z 441 [M +
Cl]−, C19H34O9. 1H NMR (500 MHz, CD3OD) δ:6.02 (1H,
dd, J = 15.5, 1.0 Hz, H-7), 5.75 (1H, dd, J = 15.5, 6.0 Hz,
H-8), 4.30 (1H, m, H-9), 4.16 (1H, m, H-3), 1.91 (1H, m,
H-4a), 1.68-1.75 (2H, m, H-2b, 4b), 1.54 (1H, m, H-2a),
1.23 (3H, d, J = 6.0 Hz, H-10), 1.17 (3H, s, H-13), 1.11 (3H,
s, H-11), 0.81 (3H, s, H-12), 4.37 (1H, d, J = 7.5 Hz, H-1′),
3.82 (1H, dd, J = 11.5, 2.0 Hz, H -6a′), 3.65 (1H, dd, J =
11.5, 5.0 Hz, H -6b′), 3.25-3.32 (3H, m, H-3′, 4′, 5′), 3.11
(1H, dd, H-2′). 13C NMR (125 MHz, CD3OD) δ:136.2
(C-8), 132.4 (C-7), 79.1 (C-6), 77.7 (C-5), 73.3 (C-3), 69.5
(C-9), 44.5 (C-2), 42.4 (C-4), 40.7 (C-1), 27.6 (C-11), 27.2
(C-13), 26.2 (C-12), 24.2 (C-10), 102.6 (C-1′), 75.1 (C-2′),
78.2 (C-3′), 71.7 (C-4′), 77.8 (C-5′), 62.8 (C-6′). Compound
6 was characterized as (3S,5R,6R,7E,9S)-megastigman-7
-ene-3,5, 6,9-tetrol-3-O-β-D-glucopyranoside by compari-
son of the physical and spectral data with the reported data [8].
References
[1] Wang CH, Liu J, Zheng LM, et al. An investigation on the
species, distribution, and ecotope of Peganum harmala in
Xinjiang [J]. Guangdong Trace Elem Sci, 2002, 9(3): 46-50.
[2] Xia CG, Li DH. Colour atlas of anticancer animal, plant &
mineral preparation and their application [M]. Tianjin:
Tianjin Science and Technology Translation and Publishing
Co., 2000. 34-35.
[3] Burdick BA, Benkovic PA, Benkovic SJ. Studies on models
for tetrahydrofolic acid. 8. Hydrolysis and methoxyaminoly-
sis of amidines [J]. J Am Chem Soc, 2002, 99(17):
5716-5725.
[4] Huang WW, Kong DY, Yang PM. Studies on lignan
constituents of Clematis armandii Franch. [J]. Chin J Nat
Med, 2003, 1(4): 199-203.
[5] Ratan KC, Otto S. New Iridoid glucosides and a lignan
diglucoside from Globularia alypum L. [J]. Helv Chim Acta,
1981, 1(64):3-15.
[6] Karin S, Jean-Paul V, Rene V, et al. The flavonoid herbacetin
diglucoside as a constituent of the lignan macromolecule
from flaxseed hulls [J]. Phytochemistry, 2007, 68(8):
1127-1135.
[7] Zhang LH, Yin ZQ, Fan CL, et al. Chemical constituents
from Lygodium japonicum [J]. Chin J Nat Med, 2006, 4(2):
154-155.
2010 年 5 月 第 8 卷 第 3 期

YANG Fei, et al. /Chinese Journal of Natural Medicines 2010, 8(3): 199−201
[8] Hideaki O, Eiji H, Takakazu S, et al. Stereochemistry of
megastigmane glucosides from Glochidion zeylanicum and
Alangium premnifolium [J]. Phytochemistry, 2003, 62(5):
763-768

骆驼蒿的化学成分
杨 飞1,2, 陈 荣2, 冯 林2, 李海岛2, 章 华2, 梁敬钰1*
1中国药科大学天然药物化学教研室, 南京 210009;
2江苏先声药物研究有限公司, 南京 210042
【摘 要】 目的:对骆驼蒿( Peganum nigellastrum Bge.)地上部分进行化学成分的研究。方法:运用萃取、结晶及各
种层析方法进行分离纯化, 并通过理化鉴别和波谱分析鉴定化合物结构。结果:从骆驼蒿中分离鉴定了 6 个化合物, 分别
为:O-amino-N-formylbenzyamine (1), butyl 1H-imidazole-4-carboxylate (2), liriodendrin (3), trans-Ferulic acid β-D-glucopy-
ranoside (4), (6S,7E,9R)-6,9-dihydroxymegastigma-4,7-dien-3-one-9-O-β-D-glucopyranoside (or roseoside) (5), (3S,5R,6R,7E,
9S)-megastigman-7-ene-3,5,6,9-tetrol-3-O-β-D-glucopyranoside (6)。结论:化合物 1, 2 为首次从自然界分离得到, 化合物 3-6
首次从骆驼蓬属中分得。
【关键词】 骆驼蒿; 地上部分; 化学成分


·会 讯·

新药研发学术研讨会

为总结我国新药研发的最近成果, 交流药物发现的经验, 新药研发学术研讨会将于 2010 年 6 月 10 日至 11 日
在北京召开。本次会议由中国药理学会主办和承办, 会议将邀请国内外著名药理学家和相关学科的专家作大会学术
报告, 欢迎中国药理学会会员以及从事新药研究和开发的科技工作者和研究生踊跃参会。现将有关会议组织与征文
事宜通知如下:
大会组委会:
主任委员:杜冠华
副主任委员:张永祥, 李学军
学术交流内容:新药研发及其相关领域的研究工作。
1. 大会报告, 报告时间 20-30 分钟。
2. 分会报告, 报告时间 15-20 分钟, 以本人的研究工作为主, 结合国内外研究进展。
时间和地点
时 间:2010 年 6 月 10 日至 11 日。
地 点:北京
征稿范围:
凡在 2010 年 6 月以前尚未发表的与新药研发相关的研究论文、综述、述评均可投稿。
投稿截止日期:2010 年 5 月 25 日
参会注册:
采用网上注册, 请登陆中国药理学会网站(http://www.cnphars.org)点击《新药研发学术研讨会》版块注册。
秘书处联系方式:
联系人:穆鑫 赵小丹
地 址:北京市宣武区先农坛街 1 号 中国药理学会办公室 邮 编:100050
电 话:010-63165211
E-mail:muxin@imm.ac.cn; zhxd@imm.ac.cn 网 址:http://www.cnphars.org




2010 年 5 月 第 8 卷 第 3 期 Chin J Nat Med May 2010 Vol. 8 No. 3 201