免费文献传递   相关文献

冷饭藤化学成分及其毒性评价的研究



全 文 :· 1296 · 药学学报 Acta Pharmaceutica Sinica 2014, 49 (9): 1296−1303



冷饭藤化学成分及其毒性评价的研究
张 进 1†, 王志明 2†, 刘可春 3, 何秋霞 3, 齐耀东 1, 张本刚 1, 刘海涛 1*, 肖培根 1
(1. 中国医学科学院、北京协和医学院药用植物研究所, 北京 100193; 2. 吉林农业大学中药材学院,
吉林 长春 130118; 3. 山东省科学院生物研究所, 山东 济南 250014)
摘要: 为研究民间药冷饭藤的化学成分, 采用硅胶、MCI HP20 凝胶、Sephadex LH-20 凝胶等柱色谱技术对
其藤茎的 70% 丙酮提取物进行分离和纯化, 得到 20 个化合物, 根据化合物的理化性质和波谱数据鉴定化学结构
为: heteroclitalignan A (1)、kadsulignan F (2)、kadoblongifolin C (3)、schizanrin F (4)、heteroclitalignan C (5)、
kadsurarin (6)、kadsulignan O (7)、eburicol (8)、meso-dihydroguaiaretic acid (9)、kadsufolin A (10)、tiegusanin M (11)、
heteroclitin B (12)、(7S) -parabenzlactone (13)、angeloylbinankadsurin B (14)、propinquain H (15)、quercetin (16)、
kadsulignan P (17)、schizanrin G (18)、micrandilactone C (19) 和 (−)-shikimic acid (20)。化合物 1、5、8、11~15、
18、20 为首次从冷饭藤中分离得到。本文应用斑马鱼模型对化合物 1~10 进行毒性评价, 观察其对斑马鱼胚胎
发育、心脏功能的影响, 发现经化合物 7、9 和 10 处理后, 斑马鱼胚胎出现水肿、心率明显下降, 说明化合物 7、
9 和 10 对斑马鱼心脏发育具有干扰作用。
关键词: 冷饭藤; 化学成分; 斑马鱼; 毒性评价
中图分类号: R284 文献标识码: A 文章编号: 0513-4870 (2014) 09-1296-08
Chemical constituents of Kadsura oblongifolia and
evaluation of their toxicity
ZHANG Jin1†, WANG Zhi-ming2†, LIU Ke-chun3, HE Qiu-xia3, QI Yao-dong1,
ZHANG Ben-gang1, LIU Hai-tao1*, XIAO Pei-gen1
(1. Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College,
Beijing 100193, China; 2. College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118,
China; 3. Biology Institute of Shandong Academy of Sciences, Jinan 250014, China) 

Abstract: To study the chemical constituents of K. oblongifolia, silica gel column chromatography, MCI
and Sephadex LH-20 were used to separate the 70% acetone extract of the stems of K. oblongifolia. The
structures of the isolated compounds have been established on the basis of physicochemical and NMR
spectroscopic evidence as well as ESI-MS in some cases. Twenty compounds were obtained and identified as
heteroclitalignan A (1), kadsulignan F (2), kadoblongifolin C (3), schizanrin F (4), heteroclitalignan C (5),
kadsurarin (6), kadsulignan O (7), eburicol (8), meso-dihydroguaiaretic acid (9), kadsufolin A (10), tiegusanin M
(11), heteroclitin B (12), (7S)-parabenzlactone (13), angeloylbinankadsurin B (14), propinquain H (15), quercetin
(16), kadsulignan P (17), schizanrin G (18), micrandilactone C (19) and (−)-shikimic acid (20). Compouds 1, 5,
8, 11−15, 18 and 20 were isolated from this plant for the first time. Toxicity of compounds 1−10 were evaluated
with zebrafish model to observe the effect on its embryonic development and heart function. The results
showed that compounds 7, 9 and 10 caused edema of zebrafish embryo and decreased the heart rate of zebrafish,

收稿日期: 2014-02-25; 修回日期: 2014-04-22.
基金项目: 国家自然科学基金资助项目 (81001609).
†为共同第一作者.
*通讯作者 Tel / Fax: 86-10-57833196, E-mail: htliu0718@126.com
张 进等: 冷饭藤化学成分及其毒性评价的研究 · 1297 ·

which exhibited interference effect on heart development of zebrafish.
Key words: Kadsura oblongifolia; chemical constituents; zebrafish; toxicity evaluation

冷饭藤 (Kadsura oblongifolia Merr.) 为五味子
科南五味子属植物, 又称吹风散、入地射香、水灯盏、
细风藤、饭团藤, 主要分布于中国海南、广东、广西
等省区, 具有祛风除湿、行气止痛的功效, 其藤茎和
根在民间常用于治疗感冒、风湿痹痛、跌打损伤、心
胃气痛及痛经等[1, 2]。已有的研究表明, 木脂素、三
萜和黄酮类化合物是冷饭藤的主要化学成分[3−6], 其
中部分木脂素类成分显示了一定的细胞毒活性[5, 6],
但其相关毒性评价的研究尚未报道。为更合理地开发
利用冷饭藤的药用价值, 进一步明确冷饭藤的物质
基础, 本实验对冷饭藤藤茎的 70% 丙酮冷浸提取物
进行了化学成分的研究, 分离鉴定了 20 个化合物,
它们是 heteroclitalignan A (1)、kadsulignan F (2)、
kadoblongifolin C (3)、schizanrin F (4)、heteroclitalignan
C (5)、kadsurarin (6)、kadsulignan O (7)、eburicol
(8)、meso-dihydroguaiaretic acid (9)、kadsufolin A
(10)、tiegusanin M (11)、heteroclitin B (12)、(7S)-
parabenzlactone (13)、angeloylbinankadsurin B (14)、
propinquain H (15)、quercetin (16)、kadsulignan P
(17)、schizanrin G (18)、micrandilactone C (19) 和
(−)-shikimic acid (20), 其中化合物 1、5、8、11~15、
18、20 首次从冷饭藤中分离得到。
近年来, 斑马鱼模型被逐渐用来进行药物的毒
性评价[7]。斑马鱼早期胚胎透明, 发育 24 h 时已出现
心跳, 发育 48 h 时已形成功能化的心脏[8], 借助显微
镜很方便地观察药物对斑马鱼胚胎发育和心脏功能
的影响。因此, 本实验应用斑马鱼模型, 观察冷饭藤
中部分化合物对斑马鱼胚胎发育、心脏功能的影响,
为应用斑马鱼模型进行天然产物的毒性评价提供参
考。

结果与讨论
1 结构鉴定
化合物 1 白色结晶 (氯仿), ESI-MS (+) m/z:
581.2 [M+H]+。1H NMR (600 MHz, CDCl3) δ: 1.31 (3H,
d, J = 7.2 Hz, 18-CH3), 1.39 (3H, s, 17-CH3), 1.63 (3H,
s, 2-CH3), 2.31 (1H, m, 8-H), 3.14 (3H, s, 2-OCH3),
3.57 (3H, s, 1-OCH3), 4.01 (3H, s, 3-OCH3), 5.50 (1H,
s, 14-OH), 5.73 (1H, s, 6-H), 6.00 (1H, d, J = 1.6 Hz,
-OCH2O-), 6.03 (1H, d, J = 1.2 Hz, -OCH2O-), 6.07
(1H, s, 9-H), 6.54 (1H, s, 11-H), 6.99 (1H, s, 4-H), 7.22
(2H, dd, J = 1.2, 8.4 Hz, 2-H, 6-H), 7.28 (2H, t, J = 8.4
Hz, 3-H, 5-H), 7.50 (1H, t, J = 8.4 Hz, 4-H)。13C NMR
(150 MHz, CDCl3) δ: 16.9 (C-18), 20.2 (C-2), 28.8
(C-17), 43.2 (C-8), 56.5 (3-OCH3), 60.8 (2-OCH3), 61.3
(1-OCH3), 73.9 (C-7), 84.0 (C-9), 84.8 (C-6), 102.0
(C-11), 102.1 (-OCH2O-), 112.9 (C-4), 118.1 (C-15),
120.4 (C-16), 128.7 (C-2), 128.7 (C-4, C-6), 129.2
(C-3, C-7), 131.7 (C-5), 133.7 (C-10), 133.8 (C-5),
135.4 (C-13), 137.2 (C-14), 142.3 (C-2), 148.7 (C-12),
150.0 (C-1), 152.9 (C-3), 165.1 (C-1), 169.6 (C-1)。以
上数据与文献 [9]报道基本一致, 故鉴定该化合物为
heteroclitalignan A。
化合物 2 白色固体 (氯仿), ESI-MS (+) m/z:
557.2 [M+H]+。1H NMR (600 MHz, CDCl3) δ: 1.23 (3H,
s, 17-CH3), 1.28 (3H, d, J = 7.2 Hz, 18-CH3), 1.35 (3H,
s, 2-CH3), 1.90 (1H, dd, J = 7.2, 1.2 Hz, 3-H), 1.92
(3H, s, 5-CH3), 2.01 (1H, q, J = 7.2 Hz, 8-H), 2.56 (1H,
s, 7-OH), 3.80 (3H, s, 1-OCH3), 3.91 (3H, s, 2-OCH3),
4.40 (1H, J = 9.0 Hz, 19-Ha), 4.46 (1H, J = 9.0 Hz,
19-Hb), 5.61 (1H, s, 9-H), 5.82 (1H, s, 6-H), 5.95 (1H,
d, J = 1.2 Hz, -OCH2O-), 5.97 (1H, d, J = 1.2 Hz,
-OCH2O-), 6.09 (1H, q, J = 7.2, 1.2 Hz, 3-H), 6.32 (1H,
s, 11-H), 6.55 (1H, s, 4-H)。13C NMR (150 MHz, CDCl3)
δ: 15.9 (C-4), 18.0 (C-18), 19.4 (C-5), 21.3 (2-CH3),
28.6 (C-17), 44.8 (C-8), 56.3 (C-16), 60.8 (2-OCH3),
61.8 (1-OCH3), 75.6 (C-7), 81.6 (C-6), 82.9 (C-9), 84.0
(C-19), 100.6 (C-11), 102.2 (-OCH2O-), 119.8 (C-15),
126.1 (C-2), 129.8 (C-13), 130.3 (C-10), 131.3 (C-4),
134.4 (C-5), 142.2 (C-3), 144.5 (C-14), 149.7 (C-2),
150.6 (C-12), 166.3 (C-1), 166.6 (C-1), 169.5 (C-1),
183.2 (C-3)。以上数据与文献[10]报道基本一致, 故鉴
定该化合物为 kadsulignan F。
化合物 3 白色结晶 (氯仿), ESI-MS (+) m/z:
431.2 [M+H]+。1H NMR (600 MHz, CDCl3) δ: 0.77 (3H,
d, J = 7.2 Hz, 9-CH3), 1.35 (3H, s, 9-CH3), 2.01 (1H, m,
8-H), 2.46 (1H, dd, J = 4.8, 15.6 Hz, 7-Ha), 3.00 (1H,
dd, J = 2.4, 14.4 Hz, 7-Hb), 3.51 (3H, s, 5-OCH3), 3.81
(3H, s, 5-OCH3), 3.84 (3H, s, 3-OCH3), 3.85 (3H, s,
4-OCH3), 5.99 (1H, d, J = 1.2 Hz, -OCH2O-), 6.01 (1H,
d, J = 1.2 Hz, -OCH2O-), 6.41 (1H, s, 2-H), 6.49 (1H,
s, 2-H)。13C NMR (150 MHz, CDCl3) δ: 14.4 (C-9),
23.1 (C-9), 34.2 (C-7), 43.1 (C-8), 56.0 (3-OCH3),
60.0 (5-OCH3), 60.7 (5-OCH3), 61.2 (4-OCH3), 80.5
(C-8), 100.3 (C-2), 101.6 (-OCH2O-), 111.6 (C-2), 118.5
· 1298 · 药学学报 Acta Pharmaceutica Sinica 2014, 49 (9): 1296−1303

(C-6), 122.2 (C-6), 131.4 (C-1), 135.0 (C-1), 137.3
(C-4), 140.9 (C-4), 141.8 (C-5), 148.6 (C-3), 152.2
(C-3), 152.3 (C-5), 209.5 (C-7)。以上数据与文献[3]报
道基本一致, 故鉴定该化合物为 kadoblongifolin C。
化合物 4 白色粉末 (氯仿), ESI-MS (+) m/z:
595.2 [M+H]+。1H NMR (600 MHz, CDCl3) δ: 1.31 (3H,
d, J = 7.2 Hz, 17-CH3), 1.39 (3H, s, 18-CH3), 1.60 (3H,
s, 2-CH3), 2.15 (1H, s, 7-OH), 2.30 (1H, m, 8-H), 3.32
(3H, s, 14-OCH3), 3.62 (3H, s, 1-OCH3), 3.87 (3H, s,
2-OCH3), 3.95 (3H, s, 3-OCH3), 5.64 (1H, d, J = 1.2 Hz,
-OCH2O-), 5.76 (1H, s, 9-H), 5.78 (1H, d, J = 1.2 Hz,
-OCH2O-), 5.88 (1H, s, 6-H), 6.52 (1H, s, 11-H), 6.84
(1H, s, 4-H), 7.31 (1H, t, J = 7.2 Hz, 4-H), 7.31 (1H, t,
J = 7.2 Hz, 6-H), 7.46 (1H, t, J = 7.2 Hz, 3-H), 7.46
(1H, t, J = 7.2 Hz, 7-H), 7.53 (1H, m, 5-H)。13C NMR
(150 MHz, CDCl3) δ: 17.3 (C-17), 18.4 (C-2), 29.0
(C-18), 43.4 (C-8), 56.2 (3-OCH3), 58.9 (14-OCH3),
60.7 (2-OCH3), 60.7 (1-OCH3), 74.2 (C-7), 83.6 (C-9),
85.4 (C-6), 101.0 (-OCH2O-), 101.9 (C-11), 110.5 (C-4),
120.4 (C-15), 122.1 (C-16), 128.0 (C-4, C-6), 129.6
(C-2), 129.8 (C-3, C-7), 129.9 (C-5), 132.8 (C-10),
133.1 (C-5), 135.7 (C-13), 140.7 (C-14), 141.4 (C-2),
149.0 (C-12), 151.6 (C-1), 152.1 (C-3), 164.9 (C-1),
169.0 (C-1)。以上数据与文献[11]报道基本一致, 故鉴
定该化合物为 schizanrin F。
化合物 5 白色粉末 (氯仿), ESI-MS (+) m/z:
571.2 [M+H]+。1H NMR (600 MHz, CDCl3) δ: 1.05 (3H,
t, J = 7.2 Hz, 3-CH3), 1.23 (3H, s, 17-CH3), 1.27 (3H,
d, J = 7.2 Hz, 18-CH3), 1.35 (3H, t, J = 1.2 Hz, 5-CH3),
1.90 (3H, dd, J = 1.8, 7.2 Hz, 4-CH3), 2.02 (1H, q, J =
7.2 Hz, 8-H), 2.15 (2H, m, 2-CH2), 2.60 (1H, s, 7-OH),
3.79 (3H, s, 2-OCH3), 3.89 (3H, s, 1-OCH3), 4.39 (1H,
d, J = 8.4 Hz, 19-Ha), 4.45 (1H, d, J = 8.4 Hz, 19-Hb),
5.63 (1H, s, 9-H), 5.81 (1H, s, 6-H), 5.95 (1H, d, J =
1.2 Hz, -OCH2O-), 5.97 (1H, d, J = 1.2 Hz, -OCH2O-),
6.09 (1H, q, J = 7.2 Hz, 2-H), 6.33 (1H, s, 11-H), 6.54
(1H, s, 4-H)。13C NMR (150 MHz, CDCl3) δ: 9.2
(3-CH3), 15.9 (4-CH3), 18.0 (18-CH3), 19.4 (5-CH3),
27.6 (2-CH2), 28.6 (17-CH3), 44.8 (C-8), 56.3 (C-16),
60.8 (2-OCH3), 61.8 (1-OCH3), 75.6 (C-7), 81.6 (C-6),
82.9 (C-9), 84.1 (C-19), 100.6 (C-11), 102.2 (-OCH2O-),
119.8 (C-15), 126.1 (C-2), 130.0 (C-13), 130.3 (C-10),
131.3 (C-4), 134.4 (C-5), 142.2 (C-3), 144.5 (C-14),
149.7 (C-2), 150.6 (C-12), 166.3 (C-1), 166.6 (C-1),
173.3 (C-1), 183.2 (C-3)。以上数据与文献[9]报道基本
一致, 故鉴定该化合物为 heteroclitalignan C。
化合物 6 白色粉末 (氯仿), ESI-MS (+) m/z:
573.6 [M+H]+。1H NMR (600 MHz, CDCl3) δ: 1.25 (3H,
t, J = 7.2 Hz, 18-CH3), 1.34 (3H, s, 17-CH3), 1.39 (3H,
t, J = 1.2 Hz, 5-CH3), 1.57 (3H, s, 2-CH3), 1.84 (3H,
dd, J = 1.8, 7.2 Hz, 4-CH3), 2.11 (1H, q, J = 7.2 Hz,
8-H), 3.61 (3H, s, 1-OCH3), 3.73 (3H, s, 14-OCH3),
3.87 (3H, s, 2-OCH3), 3.93 (3H, s, 3-OCH3), 5.66 (1H,
s, 6-H), 5.67 (1H, s, 9-H), 5.89 (1H, d, J = 1.2 Hz,
-OCH2O-), 5.91 (1H, d, J = 1.2 Hz, -OCH2O-), 5.98
(1H, q, J = 7.2 Hz, 2-H), 6.42 (1H, s, 11-H), 6.79 (1H,
s, 4-H)。13C NMR (150 MHz, CDCl3) δ: 15.8 (4-CH3),
17.3 (C-18), 18.4 (C-2), 20.0 (5-CH3), 29.0 (C-17),
43.4 (C-8), 56.2 (3-OCH3), 58.9 (14-OCH3), 60.7
(2-OCH3), 60.7 (1-OCH3), 74.2 (C-7), 83.6 (C-9), 85.0
(C-6), 101.0 (-OCH2O-), 102.2 (C-11), 110.4 (C-4),
120.6 (C-15), 122.0 (C-16), 127.2 (C-2), 130.3 (C-5),
132.9 (C-10), 135.8 (C-13), 140.0 (C-3), 141.0 (C-14),
141.3 (C-2), 148.9 (C-12), 151.4 (C-1), 152.1 (C-3),
165.9 (C-1), 169.0 (C-1)。以上数据与文献[12]报道基
本一致, 故鉴定该化合物为 kadsurarin。
化合物 7 微黄色针晶 (氯仿), ESI-MS (+) m/z:
627.2 [M+Na]+。1H NMR (600 MHz, CDCl3) δ: 1.23
(3H, s, 17-CH3), 1.29 (3H, d, J = 7.2 Hz, 18-CH3), 1.35
(3H, t, J = 1.2 Hz, 5-CH3), 1.80 (3H, s, 2-CH3), 2.03
(1H, q, J = 7.2 Hz, 8-H), 2.59 (1H, s, 7-OH), 3.56 (3H,
s, 2-OCH3), 3.81 (3H, s, 1-OCH3), 4.39 (1H, d, J = 9.0
Hz, 19-Ha), 4.52 (1H, d, J = 9.0 Hz, 19-Hb), 5.76 (1H,
s, 9-H), 5.77 (1H, s, 6-H), 5.98 (1H, d, J = 1.2 Hz,
-OCH2O-), 6.02 (1H, d, J = 1.2 Hz, -OCH2O-), 6.04
(1H, d, J = 15.6 Hz, 2-H), 6.38 (1H, s, 11-H), 6.55 (1H,
s, 4-H), 7.40 (1H, d, J = 2.0 Hz, 7-H), 7.41 (2H, t, J =
3.6 Hz, 6, 8-H), 7.55 (2H, t, J = 3.6 Hz, 5, 9-H), 7.64
(1H, d, J = 15.6 Hz, 3-H)。13C NMR (150 MHz, CDCl3)
δ: 17.8 (18-CH3), 20.4 (2-CH3), 28.5 (17-CH3), 44.7
(C-8), 56.2 (C-16), 60.3 (2-OCH3), 61.6 (1-OCH3), 75.4
(C-7), 81.6 (C-6), 82.4 (C-9), 84.1 (C-19), 100.5 (C-11),
102.3 (-OCH2O-), 116.4 (C-2), 120.3 (C-15), 129.0
(C-5, 8), 129.0 (C-6, 9), 130.1 (C-10, 13), 131.0 (C-4,
7), 134.0 (C-4), 134.5 (C-2), 144.2 (C-14), 147.8
(C-3), 149.7 (C-5), 150.5 (C-12), 165.9 (C-1), 166.1
(C-1), 169.8 (C-1), 183.5 (C-3)。以上数据与文献[4]
报道基本一致, 故鉴定该化合物为 kadsulignan O。
化合物 8 白色粉末 (氯仿), ESI-MS (+) m/z:
441.4 [M+H]+。1H NMR (600 MHz, CDCl3) δ: 0.70 (1H,
s, 18-H), 0.99 (1H, s, 19-H), 0.93 (3H, d, J = 6.6 Hz,
21-CH3), 1.02 (3H, d, J = 3.6 Hz, 26-CH3), 1.03 (3H, d,
J = 3.0 Hz, 27-CH3), 4.66 (2H, d, J = 0.8 Hz, 28-CH2),
1.00 (3H, s, 30-CH3), 0.81 (3H, s, 31-CH3)。13C NMR
(150 MHz, CDCl3) δ: 35.8 (C-1), 28.1 (C-2), 79.2 (C-3),
张 进等: 冷饭藤化学成分及其毒性评价的研究 · 1299 ·

39.1 (C-4), 50.6 (C-5), 18.5 (C-6), 26.7 (C-7), 134.63
(C-8), 134.61 (C-9), 37.2 (C-10), 21.2 (C-11), 31.2
(C-12), 44.7 (C-13), 50.0 (C-14), 31.1 (C-15), 28.4
(C-16), 50.6 (C-17), 16.0 (C-18), 19.3 (C-19), 36.7
(C-20), 18.9 (C-21), 35.2 (C-22), 31.5 (C-23), 157.1
(C-24), 34.0 (C-25), 22.1 (C-26), 22.2 (C-27), 106.1
(C-28), 28.2 (C-30), 15.6 (C-31), 24.5 (C-32)。以上数
据与文献 [13]报道基本一致 , 故鉴定该化合物为
eburicol。
化合物 9 无色针晶 (氯仿), ESI-MS (+) m/z:
331.2 [M+H]+。1H NMR (600 MHz, CDCl3) δ: 0.84 (6H,
d, J = 6.6 Hz, 9, 9-CH3), 1.75 (2H, m, 8, 8-H), 2.27
(2H, dd, J = 13.2, 9.0 Hz, 7α, 7α-H), 2.73 (2H, dd, J =
13.2, 4.8 Hz, 7β, 7β-H), 3.86 (6H, s, 4, 4-OCH3), 5.47
(2H, br s, 3, 3-OH), 6.61 (2H, d, J = 1.8 Hz, 2, 2-H),
6.65 (2H, dd, J = 7.8, 1.8 Hz, 6, 6-H), 6.82 (2H, d, J =
7.8 Hz, 5, 5-H)。13C NMR (150 MHz, CDCl3) δ: 134.0
(C-1, 1), 111.6 (C-2, 2), 146.5 (C-3, 3), 143.8 (C-4,
4), 56.1 (4, 4-OCH3), 114.1 (C-5, 5), 121.9 (C-6, 6),
39.1 (C-7, 7), 39.4 (C-8, 8), 16.4 (C-9, 9)。以上数据
与文献 [14]中基本一致 , 故鉴定化该合物为 meso-
dihydroguaiaretic acid。
化合物 10 无色针晶 (氯仿), ESI-MS (+) m/z:
515.3 [M+H]+。1H NMR (600 MHz, CDCl3) δ: 0.98
(3H, d, J = 6.6 Hz, 17-CH3), 1.11 (3H, d, J = 6.6 Hz,
18-CH3), 1.28 (3H, s, 4-CH3), 1.88 (3H, d, J = 7.2
Hz, 5-CH3), 2.59~2.64 (2H, m, 6-CH2), 3.49 (3H, s,
1-OCH3), 3.54 (3H, s, 14-OCH3), 3.83 (3H, s, 2-OCH3),
3.88 (3H, s, 3-OCH3), 3.89 (3H, s, 13-OCH3), 3.91 (3H,
s, 12-OCH3), 5.78 (1H, s, 9-H), 5.92 (1H, q, J = 7.2 Hz,
3-H), 6.55 (1H, s, 4-H), 6.58 (1H, s, 11-H)。13C NMR
(150 MHz, CDCl3) δ: 151.4 (C-1), 140.2 (C-2), 151.9
(C-3), 110.6 (C-4), 133.2 (C-5), 39.0 (C-6), 35.0 (C-7),
42.2 (C-8), 82.7 (C-9), 136.5 (C-10), 107.0 (C-11),
152.9 (C-12), 141.3 (C-13), 152.0 (C-14), 123.8 (C-15),
121.8 (C-16), 14.9 (C-17), 20.0 (C-18), 60.3 (1-OCH3),
60.8 (2-OCH3), 56.0 (3-OCH3), 56.3 (12-OCH3), 61.0
(13-OCH3), 60.7 (14-OCH3), 167.0 (C-1), 127.3 (C-2),
140.7 (C-3), 15.9 (C-4), 20.7 (C-5)。以上数据与文献
[5]报道基本一致, 故鉴定该化合物为 kadsufolin A。
化合物 11 褐色胶状物 (氯仿), ESI-MS (+) m/z:
469.1 [M+Na]+。1H NMR (600 MHz, CDCl3) δ: 0.81
(3H, d, J = 7.2 Hz, 17-CH3), 1.44 (3H, s, 18-CH3), 2.38
(1H, m, 7-H), 2.43 (1H, dd, J = 7.2, 14.4 Hz, 6-Ha),
3.12 (1H, dd, J = 2.4, 14.4 Hz, 6-Hb), 3.52 (3H, s,
1-OCH3), 3.83 (3H, s, 3-OCH3), 3.86 (3H, s, 2-OCH3),
3.88 (3H, s, 14-OCH3), 6.01 (1H, d, J = 1.2 Hz,
-OCH2O-), 6.03 (1H, d, J = 1.2 Hz, -OCH2O-), 6.42
(1H, s, 4-H), 6.66 (1H, s, 11-H)。13C NMR (150 MHz,
CDCl3) δ: 14.5 (C-17), 17.7 (C-18), 34.8 (C-6), 37.4
(C-7), 56.1 (3-OCH3), 60.0 (2-OCH3), 60.8 (1-OCH3),
61.3 (14-OCH3), 92.4 (C-8), 99.9 (C-11), 101.6
(-OCH2O-), 111.4 (C-4), 118.8 (C-15), 122.3 (C-16),
131.3 (C-5), 135.8 (C-10), 137.4 (C-13), 141.1 (C-14),
141.6 (C-2), 148.6 (C-12), 152.3 (C-1), 152.5 (C-3),
207.1 (C-9)。以上数据与文献[15]报道基本一致, 故鉴
定该化合物为 tiegusanin M。
化合物 12 白色粉末 (氯仿), ESI-MS (+) m/z:
499.2 [M+H]+。1H NMR (600 MHz, CDCl3) δ: 0.98
(3H, d, J = 7.2 Hz, 18-CH3), 1.08 (3H, d, J = 6.6 Hz,
17-CH3), 1.26 (3H, s, 5-CH3), 1.87 (3H, d, J = 7.2 Hz,
5-CH3), 2.08 (1H, m, 7-H), 2.09 (1H, m, 8-H), 2.64
(2H, d, J = 4.2 Hz, 6-Ha, 6-Hb), 3.47 (3H, s, 1-OCH3),
3.78 (3H, s, 14-OCH3), 3.83 (3H, s, 2-OCH3), 3.87 (3H,
s, 3-OCH3), 5.69 (1H, s, 9-H), 5.92 (1H, m, 3-H), 5.95
(1H, s, -OCH2O-), 5.98 (1H, s, -OCH2O-), 6.54 (1H, s,
11-H), 6.56 (1H, s, 4-H)。13C NMR (150 MHz, CDCl3)
δ: 151.4 (C-1), 140.1 (C-2), 151.9 (C-3), 110.8 (C-4),
133.3 (C-5), 39.0 (C-6), 34.9 (C-7), 42.1 (C-8), 82.7
(C-9), 135.3 (C-10), 103.1 (C-11), 148.9 (C-12), 136.3
(C-13), 141.5 (C-14), 121.0 (C-15), 123.5 (C-16), 19.8
(C-17), 15.0 (C-18), 101.3 (C-19), 56.2 (14-OCH3),
59.8 (1-OCH3), 60.3 (2-OCH3), 60.7 (3-OCH3), 167.0
(C-1), 127.3 (C-2), 140.9 (C-3), 15.8 (C-4), 20.7
(C-5)。以上数据与文献[16]报道基本一致, 故鉴定该
化合物为 heteroclitin B。
化合物 13 白色粉末 (氯仿), ESI-MS (+) m/z:
371.1 [M+H]+。1H NMR (600 MHz, CDCl3) δ: 2.57~
2.60 (1H, m, 8-H), 2.90~2.99 (3H, overlapped, 7-H,
8-H), 3.94 (2H, d, J = 7.2 Hz, 9-H), 4.61 (1H, d, J = 6.6
Hz, 7-H), 5.93 (2H, dd, J = 10.8, 1.2 Hz, 10-H), 5.97
(2H, dd, J = 7.8, 1.2 Hz, 10-H), 6.59 (1H, dd, J = 7.8,
1.2 Hz, 6-H), 6.63 (1H, d, J = 1.2 Hz, 2-H), 6.67~
6.74 (4H, overlapped, 5-H, 2-H, 5-H, 6-H)。13C NMR
(150 MHz, CDCl3) δ: 131.4 (C-1), 110.2 (C-2), 148.4
(C-3), 147.8 (C-4), 108.4 (C-5), 122.9 (C-6), 35.4 (C-7),
45.3 (C-8), 178.9 (C-9), 101.1 (C-10), 135.5 (C-1),
106.4 (C-2), 147.9 (C-3), 146.6 (C-4), 108.5 (C-5),
119.6 (C-6), 75.8 (C-7), 44.1 (C-8), 68.5 (C-9), 101.5
(C-10)。以上数据与文献[17]报道基本一致, 故鉴定该
化合物为 (7S)-parabenzlactone。
化合物 14 无色针晶 (氯仿), ESI-MS (+) m/z:
501.2 [M+H]+。1H NMR (600 MHz, CDCl3) δ: 0.96 (3H,
d, J = 6.6 Hz, 7-CH3), 1.14 (3H, d, J = 6.6 Hz, 8-CH3),
· 1300 · 药学学报 Acta Pharmaceutica Sinica 2014, 49 (9): 1296−1303

2.11 (1H, m, 8-H), 2.12 (1H, m, 7-H), 3.59~3.91 (3H,
s, 2 or 3 or 12 or 13 or 14-OCH3), 5.41 (1H, s, 1-OH),
6.60 (1H, s, 4-H), 6.38 (1H, s, 11-H)。13C NMR (150
MHz, CDCl3) δ: 147.0 (C-1), 134.1 (C-2), 150.8 (C-3),
107.3 (C-4), 133.5 (C-5), 38.8 (C-6), 35.1 (C-7), 42.1
(C-8), 82.7 (C-9), 137.5 (C-10), 107.1 (C-11), 153.2
(C-12), 141.2 (C-13), 151.8 (C-14), 120.1 (C-15), 117.5
(C-16), 20.1 (C-17), 14.9 (C-18), 56.0 (3-OCH3), 56.1
(12-OCH3), 60.7 (14-OCH3), 61.0 (2-OCH3), 61.0 (13-
OCH3), 167.1 (C-1), 139.8 (C-2), 127.3 (C-3), 15.9
(C-4), 20.6 (C-5)。以上数据与文献[18]报道基本一致,
故鉴定该化合物为 angeloylbinankadsurin B。
化合物 15 黄色粉末 (氯仿), ESI-MS (+) m/z:
441.2 [M+Na]+。 1H NMR (600 MHz, CDCl3) δ: 0.94
(3H, d, J = 7.8 Hz, 17-CH3), 1.16 (3H, d, J = 7.2 Hz,
18-CH3), 1.92 (1H, m, 8-H), 2.08 (1H, m, 7-H), 2.63
(1H, m, 2-H), 3.57 (3H, s, 14-OCH3), 3.67 (3H, s,
1-OCH3), 3.88 (3H, s, 3-OCH3), 3.89 (3H, s, 2-OCH3),
3.90 (3H, s, 13-OCH3), 4.62 (1H, s, 9-H), 6.48 (1H, s,
11-H), 6.58 (1H, s, 4-H)。13C NMR (150 MHz, CDCl3)
δ: 151.9 (C-1), 140.9 (C-2), 152.8 (C-3), 111.0 (C-4),
133.4 (C-5), 39.0 (C-6), 35.2 (C-7), 43.3 (C-8), 83.9
(C-9), 140.3 (C-10), 109.6 (C-11), 148.9 (C-12), 138.5
(C-13), 150.6 (C-14), 119.5 (C-15), 122.2 (C-16), 15.4
(C-17), 19.9 (C-18), 60.3 (1-OCH3), 61.0 (2-OCH3),
60.7 (3-OCH3), 61.2 (13-OCH3), 56.1 (14-OCH3)。以上
数据与文献 [19]报道基本一致 , 故鉴定该化合物为
propinquain H。
化合物 16 黄色针晶 (甲醇), ESI-MS (+) m/z:
305.1 [M+H]+。1H NMR (600 MHz, MeOD) δ: 6.18
(1H, d, J = 1.8 Hz, 6-H), 6.39 (1H, d, J = 1.8 Hz, 8-H),
6.89 (1H, d, J = 8.4 Hz, 5-H), 7.64 (1H, dd, J = 8.4, 2.4
Hz, 6-H), 7.74 (1H, d, J = 2.4 Hz, 2-H)。13C NMR (150
MHz, MeOD) δ: 148.2 (C-2), 137.4 (C-3), 177.6 (C-4),
158.5 (C-5), 99.5 (C-6), 165.8 (C-7), 94.6 (C-8), 162.7
(C-9), 104.7 (C-10), 124.4 (C-1), 116.2 (C-2), 146.4
(C-3), 149.0 (C-4), 116.4 (C-5), 121.9 (C-6)。以上数
据与文献 [20]报道基本一致 , 故鉴定该化合物为
quercetin。
化合物 17 微黄色针晶 (氯仿), ESI-MS (+) m/z:
627.2 [M+Na]+。1H NMR (600 MHz, CDCl3) δ: 1.23 (3H,
s, 7-CH3), 1.31 (3H, s, 8-CH3), 1.78 (3H, s, 2-CH3),
2.12 (1H, dd, J = 2.5, 14.5 Hz, 8-H), 3.59 (3H, br s, 2-
OCH3), 4.00 (3H, br s, 3-OCH3), 4.10 (1H, d, J = 9.0 Hz,
17-H), 4.75 (1H, d, J = 9.0 Hz, 17-H), 5.63 (1H, s, 6-H),
5.89 (1H, s, 9-H), 5.94 (-OCH2O-), 6.00 (-OCH2O-),
6.06 (1H, d, J = 16.0 Hz, 2-H), 6.41 (1H, s, 11-H), 6.43
(1H, s, 4-H), 7.38 (1H, d, J = 2.0 Hz, 7-H), 7.58 (1H,
d, J = 16.0 Hz, 3-H)。13C NMR (150 MHz, CDCl3) δ:
195.5 (C-1), 132.0 (C-2), 155.3 (C-3), 123.4 (C-4),
141.6 (C-5), 82.3 (C-6), 74.9 (C-7), 44.1 (C-8), 81.4
(C-9), 129.3 (C-10), 101.0 (C-11), 150.1 (C-12), 129.9
(C-13), 143.2 (C-14), 120.1 (C-15), 63.0 (C-16), 79.1
(C-17), 28.3 (7-CH3), 17.6 (8-CH3), 58.8 (2-OCH3), 59.0
(3-OCH3), 102.0 (-OCH2O-), 164.9 (-C=O, 9-OCin),
115.8 (C-2), 146.9 (C-3), 134.2 (C-4), 128.4 (C-5,
C-9), 128.7 (C-6, C-8), 130.5 (C-7), 169.8 (-C=O,
6-OAc), 20.3 (C-2)。以上数据与文献[4]报道基本一
致, 故鉴定该化合物为 kadsulignan P。
化合物 18 白色针晶 (氯仿), ESI-MS (+) m/z:
559.2 [M+H]+。1H NMR (600 MHz, CDCl3) δ: 1.27 (3H,
d, J = 7.2 Hz, 17-CH3), 1.38 (3H, s, 18-CH3), 2.19 (1H,
m, 8-H), 3.58 (3H, s, 14-OCH3), 3.91 (3H, s, 2-OCH3),
3.95 (3H, s, 3-OCH3), 5.58 (1H, s, 6-H), 5.67 (1H, s,
9-H), 5.93 (1H, d, J = 1.2 Hz, -OCH2O-), 6.00 (1H, d,
J = 1.2 Hz, -OCH2O-), 6.38 (1H, s, 11-H), 6.90 (1H, s,
4-H)。13C NMR (150 MHz, CDCl3) δ: 149.9 (C-1),
141.6 (C-2), 152.7 (C-3), 111.9 (C-4), 132.3 (C-5), 85.1
(C-6), 73.8 (C-7), 43.3 (C-8), 83.8 (C-9), 133.3 (C-10),
101.9 (C-11), 148.7 (C-12), 135.3 (C-13), 137.2 (C-14),
117.4 (C-15), 119.7 (C-16), 17.0 (C-17), 29.0 (C-18),
101.5 (-OCH2O-), 60.1 (2-OCH3), 56.3 (3-OCH3), 61.2
(14-OCH3), 166.1 (C-1), 126.8 (C-2), 140.0 (C-3),
21.1 (C-4), 15.8 (C-5), 168.8 (C-1), 20.7 (C-2)。以上
数据与文献 [11]报道基本一致 , 故鉴定该化合物为
schizanrin G。
化合物 19 白色针晶 (甲醇), ESI-MS (+) m/z:
535.3 [M+H]+。1H NMR (600 MHz, CDCl3) δ: 1.30 (3H,
s, 29-CH3), 1.89 (1H, m, 7-Hb), 2.13 (1H, m, 7-Ha),
2.46 (1H, d, J = 17.4 Hz, 2-Hb), 2.84 (1H, dd, J = 4.2,
17.4 Hz, 2-Ha), 3.74 (1H, dd, J = 2.4, 7.2 Hz, 22-H),
4.26 (1H, d, J = 4.8 Hz, 1-H), 5.14 (1H, d, J = 1.8 Hz,
23-H), 7.19 (1H, d, J = 1.8 Hz, 24-H)。13C NMR (150
MHz, CDCl3) δ: 83.2 (C-1), 37.5 (C-2), 177.8 (C-3),
86.5 (C-4), 60.4 (C-5), 29.5 (C-6), 24.9 (C-7), 57.1
(C-8), 73.5 (C-9), 101.3 (C-10), 38.7 (C-11), 39.9
(C-12), 46.5 (C-13), 87.9 (C-14), 77.4 (C-15), 36.3
(C-16), 54.9 (C-17), 18.5 (C-18), 47.3 (C-19), 38.5
(C-20), 18.4 (C-21), 74.0 (C-22), 83.9 (C-23), 151.1
(C-24), 131.6 (C-25), 177.2 (C-26), 10.8 (C-27), 30.3
(C-29), 23.7 (C-30)。以上数据与文献[21]报道基本一
致, 故鉴定该化合物为 micrandilactone C。
化合物 20 白色结晶 (甲醇), ESI-MS (+) m/z:
175.15 [M+H]+。1H NMR (600 MHz, CDCl3) δ: 2.19
张 进等: 冷饭藤化学成分及其毒性评价的研究 · 1301 ·

(1H, ddt, J = 18.0, 6.0, 1.2 Hz, 6-Hβ), 2.70 (1H, ddt,
J = 18.0, 5.4, 2.4 Hz, 6-Hα), 3.68 (1H, dd, J = 7.2, 4.8
Hz, 4-H), 3.99 (1H, dt, J = 7.5, 5.5 Hz, 5-H), 4.37 (1H,
ddd, J = 5.5, 4.0, 2.0 Hz, 3-H), 6.80 (1H, dt, J = 3.5, 2.0
Hz, 2-H)。13C NMR (150 MHz, CDCl3) δ: 131.0 (C-1),
139.0 (C-2), 67.5 (C-3), 68.6 (C-4), 73.0 (C-5), 31.9
(C-6), 170.3 (C=O)。以上数据与文献[22]报道基本一致,
故鉴定该化合物为 (−)-shikimic acid。
2 对斑马鱼胚胎发育的影响
观察 10 个供试化合物对斑马鱼胚胎发育的影
响, 发现斑马鱼胚胎发育至 2 天时, 化合物 9 (1.0
µg·mL−1) 处理组出现明显的卵黄囊水肿现象, 化合
物 7 (100 µg·mL−1) 和化合物 10 (100 µg·mL−1) 处理
组出现轻度的心包水肿和卵黄囊水肿 (图 1), 发生病
变的胚胎所占比率分别是 71.4%、90.5% 和 90.5%, 其
他各供试化合物组无明显的形态学变化。斑马鱼胚胎
发育至 5 天时 (图 2), 化合物 9 (1.0 µg·mL−1) 处理组
出现严重的心包水肿现象, 化合物 7 (100 µg·mL−1)
和化合物 10 (100 µg·mL−1) 处理组的斑马鱼出现死


Figure 1 Morphological figure of zebrafish embryo development
two days later. A: Control group; B: Compound 9 (1 µg·mL−1);
C: Compound 7 (100 µg·mL−1); D: Compound 10 (100 µg·mL−1)


Figure 2 Morphological figure of zebrafish development five
days later. A: Control group; B: Compound 9 (1 µg·mL−1); C:
Compound 7 (100 µg·mL−1); D: Compound 10 (100 µg·mL−1)
亡情况, 所占比率分别是 85.7%、95.2% 和 100.0%,
这说明化合物 7、9 和 10 对斑马鱼的胚胎发育具有
一定的毒性, 毒性靶器官可能是心脏。
3 对斑马鱼心脏功能的影响
在 10 个供试化合物中, 发现化合物 7、9 和 10
组出现心囊水肿、心跳减弱、全身血流减慢等毒性症
状 (图 3, 图 4), 其他各供试化合物组无明显的变化。
与对照组相比, 化合物 7、9 和 10 浓度分别为 100、
1.0、100 µg·mL−1 的处理组斑马鱼心率明显下降 (图
5), 说明化合物 7、9 和 10 对斑马鱼心脏发育具有干
扰作用。


Figure 3 Fluorescent figure of zebrafish fertilization two days
later. A: Control group; B: Compound 7 (100 µg·mL−1)


Figure 4 Morphological figure of the heart of zebrafish
fertilization two days later. A: Control group; B: Compound 10
(100 µg·mL−1)

结论
冷饭藤为我国南方的一种民间药, 常用于治疗
感冒、风湿痹痛、跌打损伤、心胃气痛及痛经等。已
有的研究表明冷饭藤的主要化学成分为木脂素、三
萜和黄酮类化合物, 其中部分木脂素类成分显示了
一定的细胞毒活性, 如: 化合物 10 和 12 对 A549、
DU145、KB 和 HCT-8 癌细胞株显示了细胞毒活性[5],
但有关化合物毒性评价的研究尚未报道。本文报道的
20 个化合物均曾从五味子科的其他植物中分离得到,
· 1302 · 药学学报 Acta Pharmaceutica Sinica 2014, 49 (9): 1296−1303


Figure 5 Effects of compounds 7, 9 and 10 on heart rate of
zebrafish after birth for 2 days. A: Control group; B: Compound
7 (100 µg·mL−1); C: Compound 9 (1.0 µg·mL−1); D: Compound
10 (100 µg·mL−1). *P < 0.05, **P < 0.01 vs control group

应用斑马鱼模型对其中 10 个化合物进行毒性评价,
发现化合物 7、9 和 10 对斑马鱼的胚胎发育和心脏功
能有干扰作用, 具有心脏发育毒性, 其中化合物 9 的
毒性较为明显, 这对合理、安全地利用这几种天然产
物具有警示作用, 同时为应用斑马鱼模型进行天然
产物的毒性评价提供了参考, 但对于民间药冷饭藤
是否具有发育毒性还有待于进一步研究。

实验部分
Bruker AV600 型核磁共振仪 (德国 Bruker 公
司); Applied Biosystem 3200 Q-Trap 质谱仪 (美国
Applied Biosystem 公司); 薄层色谱及柱色谱硅胶
(青岛海洋化工厂); Sephadex LH-20 柱色谱填料 (瑞
典 Pharmacia 公司); MCI HP20 柱色谱填料 (日本三
菱化学公司)。AB 系斑马鱼 (山东省科学院生物研
究所斑马鱼药物筛选平台), 其余试剂为化学纯或分
析纯。
冷饭藤藤茎于 2009 年 10 月采自海南省儋州南
丰镇 , 经中国医学科学院药用植物研究所张本刚
研究员鉴定为五味子科南五味子属植物冷饭藤 (K.
oblongifolia Merr.), 凭证标本保存于中国医学科学院
药用植物研究所资源研究与保护中心 (LFT 200910)。
实验所用斑马鱼为 AB 系野生型。雌雄斑马鱼分
开饲养, 光照周期为 14 h 光照/10 h 黑暗交替进行。
取健康性成熟的斑马鱼, 按雌雄比例 1/1 或 1/2 放入
交配缸内, 次日早晨光照开始 1 h 内获得受精卵。对
受精卵进行消毒和清洗后, 移入斑马鱼胚胎培养水
中, 28 ℃下控光培养。
1 提取分离
取冷饭藤的干燥藤茎 6.5 kg, 用 70% 丙酮室温
冷浸提取 3 次, 合并提取液, 减压浓缩干燥后得浸膏
294.2 g, 适量水混悬, 依次用等体积的石油醚、醋酸
乙酯、水饱和正丁醇萃取, 减压回收溶剂后分别得到
石油醚、醋酸乙酯、水饱和正丁醇 3 部分萃取物 70.7、
98.3 和 37.7 g。
石油醚部分 (65.2 g) 经硅胶柱色谱, 石油醚−醋
酸乙酯 (1∶0 → 1∶1) 梯度洗脱, 得到 5 个馏分 Fr1~
Fr5。馏分 Fr2~Fr5 再经反复硅胶柱色谱和 Sephadex
LH-20 柱色谱 (甲醇−氯仿 3∶2) 分离纯化后, 得到
化合物 1 (18.4 mg)、2 (24.6 mg)、3 (169.2 mg)、4
(236.0 mg)、5 (30.4 mg)、6 (80.2 mg)、7 (46.8 mg)、8
(31.7 mg)、9 (170.5 mg)、10 (207.7 mg)、11 (5 mg)。
醋酸乙酯萃取部分 (85.6 g) 经MCI柱色谱, 依次
用 50%、70%、90%、100% 甲醇冲洗, 收集得到 4 个
馏分 Fr1~Fr4。Fr2~Fr4 再利用硅胶柱色谱, 以石油
醚−醋酸乙酯、氯仿−丙酮梯度洗脱, 然后经 Sephadex
LH-20 柱色谱分离纯化, 得到化合物 12 (5 mg)、13
(13.7 mg)、14 (66.7 mg)、15 (135 mg)、16 (5 mg)、17
(12.7 mg)、18 (37.9 mg)、19 (11.3 mg)、20 (46 mg)。
2 毒性评价
2.1 供试品溶液的配制 取化合物 1~10 适量, 以
二甲基亚砜为助溶剂, 然后用斑马鱼胚胎培养水 (含
5 mmol·L−1 NaCl、0.17 mmol·L−1 KCl、0.4 mmol·L−1
CaCl2、0.16 mmol·L−1 MgSO4) 稀释至实验浓度, 二
甲基亚砜的浓度不超过 0.1%。
2.2 对斑马鱼胚胎发育和心脏功能的影响 根据预
实验的结果, 设定不同浓度的供试化合物组和对照
组 (含 0.1% 二甲基亚砜), 将配制的供试品溶液移入
24 孔板, 每孔 1 mL。取受精后 2 h 左右的斑马鱼胚
胎, 移入 24 孔板中, 每孔 7 个胚胎, 每组 3 个复孔。
发育至受精后 48 h 在显微镜下记录斑马鱼的形态和
心率。
2.3 数据统计 利用数据统计分析软件 (SPSS16) 处
理供试化合物各浓度组和对照组的实验数据, 并进
行方差分析 (ANOVA) 和 Turkey 检验分析。
References
[1] Editorial Committee of Chinese Materia Medica. Chinese
Materia Medica (中华本草) (Volume VI) [M]. Shanghai:
Shanghai Science and Technology Press, 1999, 6: 901.
[2] The Chinese Academy of Sciences. Flora of China (中国植
物志) [M]. Beijing: Science Press, 1996, 30: 242.
[3] Liu HT, Xu LJ, Peng Y, et al. Complete assignments of
1H and 13C NMR data for new dibenzocyclooctadiene lignans
from Kadsura oblongifolia [J]. Magn Reson Chem, 2009,
47: 609−612.
张 进等: 冷饭藤化学成分及其毒性评价的研究 · 1303 ·

[4] Liu HT, Zhang BG, Peng Y, et al. New spirobenzofuranoid
dibenzocyclooctadiene lignans from Kadsura oblongifolia [J].
Fitoterapia, 2011, 82: 731−734.
[5] Huang ZH, Lu Y, Liu YN, et al. Kadsufolins A−D and related
cytotoxic lignans from Kadsura oblongifolia [J]. Helv Chim
Acta, 2011, 94: 519−527.
[6] Liu KL, Tian RH, Shen XL, et al. Chemical constituents of
Kadsura oblongifolia and their in vitro anticancer activities [J].
J Guangzhou Univ Tradit Chin Med (广州中医药大学学报),
2013, 30: 843−848.
[7] Han LW, Yuan YQ, He QX, et al. Adaptability of zebrafish
model in activity screening of Chinese materia medica [J].
Chin Tradit Herb Drugs (中草药), 2011, 42: 2037−2041.
[8] Wang SF, Liu KC, Wang XM, et al. Preliminary study on
cardiotoxicity of celastrol to zebrafish embryo [J]. Chin
Pharm Bull (中国药理学通报), 2009, 25: 634−635.
[9] Wang W, Liu JZ, Liu RX, et al. Four new lignans from
the stems of Kadsura heteroclita [J]. Planta Med, 2006, 72:
284−288.
[10] Liu JS, Huang MF. Kadsulignans E−G from Kadsura
longipedunculata [J]. Phytochemistry, 1992, 31: 957−960.
[11] Wu MD, Huang RL, Yang LM, et al. The anti-HBsAg
(human type B hepatitis, surface antigen) and anti-HBeAg
(human type B hepatitis, e antigen) C18 dibenzocyclooctadiene
lignans from Kadsura matsudai and Schizandra arisanensis
[J]. Chem Pharm Bull, 2003, 51: 1233−1236.
[12] Chen YP, Liu R, Hu HY. The structures and conformations of
two new lignans, kadsurin and kadsurarin [J]. Tetrahedron
Lett, 1973, 43: 4257−4260.
[13] Noboru S, Hideyuki T, Kazuo U, et al. Sterol analysis of
DMI-resistant and sensitive strains of Venturia inaequalis [J].
Phytochemistry, 1996, 41: 1301−1308.
[14] Wang N, Li Z, Liu XQ, et al. Chemical constituents from
the roots of Kadsura coccinea (II) [J]. Chin J Med Chem
(中国药物化学杂志), 2012, 22: 305−309.
[15] Li XN, Pu JX, Du X, et al. Lignans with anti-HIV activity
from Schisandra propinqua var. sinensis. [J]. J Nat Prod,
2009, 72: 1133−1141.
[16] Chen DF, Xu GJ, Yang XW. Dibenzocyclooctadiene lignans
from Kadsura heteroclita [J]. Phytochemistry, 1992, 31:
629−632.
[17] Cabanillas BJ, Lamer AL, Castillo D. Caffeic acid esters and
lignans from Piper sanguineispicum [J]. J Nat Prod, 2010,
73: 1884−1890.
[18] Noriyuki O, Yukinobu I, Sugama K, et al. Dibenzocyclooc-
tadiene lignans from Kadsura japonica [J]. Phytochemistry,
1995, 39: 1187−1191.
[19] Jin MN, Yao Z, Yoshihisa T, et al. Lignans from Schisandra
propinqua with inhibitory effects on lymphocyte proliferation
[J]. Planta Med, 2012, 78: 807−813.
[20] Sun LR, He MZ, Fen YL, et al. Chemical constituents of
Chimonanthus nitens [J]. Chin Tradit Herb Drugs (中草药),
2009, 40: 121−1216.
[21] Li RT, Han QB, Zheng YT, et al. Structure and anti-HIV
activity of micrandilactones B and C, new nortriterpenoids
possessing a unique skeleton from Schisandra micrantha [J].
Chem Commun, 2005, 23: 2936−2938.
[22] Zhang YJ, DeWitt DL, Murugesan S, et al. Novel lipid
peroxidation and cyclooxygenase inhibitory tannins from
Picrorhiza kurroa seeds [J]. Chem Biodiv, 2004, 1: 426−441.