红树林是连接陆地和海洋的重要生态系统,由于潮汐活动,氧化还原条件表现出明显的昼夜间的交替,这一生态体系中不但有大量的动植物种类,同时还有数量极高的不同种类的细菌,包括好氧和厌氧类型,厌养的硫酸(盐)还原菌已证实在降解多环芳烃有机物方面有其独特的生化优势,但从红树林中分离出的此类纯细菌还很少,在降解方面,已初步确定萘的厌氧降解途径异于好氧细菌,厌氧降解时的一系列代谢中间产物也有明显的专一性,羰基化反应是开始的一个重要步骤,而后的每步生化反应还有待进一步验证.从现有的结果可以看出,红树林中厌养的硫酸还原菌应在降解多环芳烃有机物中起到非常重要的作用.
Mangroves are vulnerable habitats to pollution and accumulation of polycyclic aromatic hydrocarbons (PAHs).Many studies have reported the aerobic biochemical pathways of PAH degradation by bacteria and fungi but little is known about the anaerobic ones.In this paper,naphthalene was used as a model compound for PAHs demonstrating the possible anaerobic degradation pathways in mangrove environments.Oxidation of naphthalene was firstly found under anaerobic conditions in sediment columns and subsequently under strict anaerobic conditions and the processes were proved to be sulfate-reducing dependent by testing with sodium molybdate,a specific inhibitor of sulfate reduction.Further detailed studies isolated and identified several intermediates such as 2-naphthoate,5,6,7,8-tetrahydro-2-NA and decalin-2-carboxylate during the transformation processes of naphthalene.In these studies,different initial steps (hydroxylation or carboxylation) were proposed for naphthalene degradation.However,specific transformation steps for naphthalene will need further investigation to elucidate if degradation pathway of benzoate is involved.
全 文 :生态科学20(B年05月第22卷第2期 ECOIGICSCIENCEMay2003222
红树林厌氧环境对多环芳烃类有毒物的降解预测
梁佩芝,顾继东(香港大学生态及生物多样性学系环境毒理实验室香港薄扶林道)
【摘要】 红树林是连接陆地和海洋的重要生态系统.由于潮汐活动,氧化还原条什表现}}{明显的昼夜问的变薛ji
—q态伴系中不但有大量的动植物种类,同时还有数量极高的不同种类的细菌.包括好氧和厌氧类型,状养的硫雌盐,
还麒菌[二证实在降解多环芳烃有机物方面有其独特的生化优势,但从红甜林中分离出的此类纯细菌还很少.n.辟斛^
而,已初步确定荣的厌氧降解途径异于好氧细菌,厌氧降解时的系列代谢中间产物也有驯屁的号一十牛,羰基化瓜Jo
是开始的一个重要步骤,而后的每步生化反应还有待进一步验证。从现有的结果可以看出,}坤H林中厥养的硫酸逊n
卣直在降解多环芳烃有机物中起到非常重要的作用。
关键词:红料林:厌养的硫酸还原菌;多环芳烯i降帑途径
中图分类号:xl3I3 文献标识码:A 文章编号:1008—8873(2003j 02— 97,08
PotentialDegradationofPolyaromaticHydrocarbonsUnderAnaerobicConditionsofMangroveEcosystem/LlAN(;
Pet-ZhifladGUJi—Dongr LaboratoryofEnvironmentalToxicology,DcpartmentofEcology&Biodiversity,ThcUniversitv
ofHoneKong,PokfulamRoad,HongKongSARl
AbstractMangrovesarevulnerablehabitatstopollutionandaccumulationofpolycyclicaromatichydrocafhoas【PAtl~
ManysludieshavereportedheaerobicochcmicalpathwaysofPAHdegradationbybacteriaandfungibut[inleiskIlowll
aboultheanaerobicrles.Inthispaper,naphthalenewasuseda8amodelcompoundfurPAilsdemonstrathl2thepossibl
anaerobicdegradationpathwaysinmangrc)veen ironmentsOxidationofnaphthalenewasfirstlyfoundundmanaerobi
t:ondifum,sinsedimentcolul/lilsandsubsequentlyu derstrictanaerobiccondilionsandtheprocesseswereproved1i1bL‘
sulfate—reducingdepe dentbytestingwithsodiummolybdate.asp cificinhibitotofsulfatereductionFunherd tailedstu ic、
isolatedanidentifiedseveralintermediatessuchas2-naphthoate,5.6.7.8一tetrahydro一2*NAandecalin 一carboxylatedurin?
thetr£mslormationprocessesofnaphthalene.Inthesetudies.differentinitialsteps(hydroxylafionOl-c rb xylationtn’en
proposedfornaphthalenedegradation.However,specifictrailsformatfunst∞sfornaphthalenewiIIne dfurtherinvesdgallon【.1
elucidateifd gradationp hwayfbenzoateisinvolved
Keywords:Mangrove;Pathway;PoiyaromaticardrocarbonsWAlls);Sulfate—reducingbaetefia
Introduction
Mangrovesarecoastal一marineecosystemforfood
productitm:medicines,fuel,wood,andconstruction
materials
tJ
J,Mangroveshavenotonlyhighfinancial
valuebulalsohighecologicaljmportanee,Theyserveas
ahu仃erzonebetween山eopen.oceanandthein—land
telTeStrialenvironment.Thesoftmudb dofmangroves
servesasasedimenttrapperrichinorganicmatterandart
ecologicalnichefordiversecommunityof nfauna.They
a[soprotectshorelinesfromstormdaIllagend
lire.threateningerosion.Inaddition,mangrovesserveas
nurseryandfeedinggroundsforadiversityofanimals
includingfish,prawns,crabsandmollusksandnesting
birds”⋯.Asmangrovesaretheinterstitialenvironments
betweenthe1andandopen-ocean,water-bornepollutants
areoftendetectedantheconcentrationofpersistent
organicchemicalsareincreasingaspollutionintensifies.
It isimportanIthatmangroveecosystemcanbeself
sustainedbyfilteringoutmostofthetoxicpollutantsa d
contaminantssothatheaccumulationandthreatsto血e
marineecosystemnanbeprevented.
Polycyclicaromatichydrocarbons(PAHs)alea
classol’hazardousorganicchemicalsshowing
recalcitranceinthellvironments.Theyarederivedfrom
benzenebyfusionofadditionalsix-memberedbenz noid
rings“1(Figure1).PAHsxhibittoxicpropertiesatv ry
】owconcentrationsndmanyoftheirnlenlbcrshave
beenlistedas prioritypollutantsforenvironnlental
m itoring.Theyaremostlyresultedfrom10ssi;ruel
combustion.jndustrialprocessingandeooking⋯“、.
Theycanenterthewate卜sotlsystemviaeft]uent
discharge.fromcokeandpetroleumr finerylndustries,
accidentalspil sandleakages.ratnwaterru offronl
highwaysndroadways¨⋯.Eventually.PAHswill
accumulateinestuaryeassuchasmangroves.Tht:lOW
watersolubilityofPAHsmakesthemeasilyadsorpedto
sedimentandpersistedinthenvironmentfora[,roger
pertodoftime_【1,t4,31,35.37I.
Mangrovesar vulnerablehabitatstoPAH
contamination1’’”.SincePAHsarehighlypersistentand
mutagenic,bothflorandfaunalivingin this
environmentmayconsequentlysuffernegativelyfrom
PAHSthroughtheactivitiesofindigenouschronic
exposureandincreasingtoxicityandmutations/zi。Ifis
importantthamangrovesmighthavetheimportant
abilityto successthllydegradeor transiorm
基金项“=荇蘑In·坝日
9通信联系凡emaikjdgu@hkttcchkuhk
作者摘赍粱佩芝(19_89-,,女,研究山向为外求经人物种
2003.05435收稿,2003.5.20接受
万方数据
生态科学
◎◎ 簸
Naphthalene Anthracene
Benzfa】anth吼cenePyrene
Phenanthrenc
Chrysene
Benzofa】pyrene Dibenz[a,h]anthracene
Fig1 Selectivechemicalstructuresofpolyaromatichydrocarbonsofenvironmentali portance
microorganismssothatallowingrecoveryfrompollution
andpreventingPAHsfromaccumuladngin the
ecosystem.Thispaperistoillustratetheconceptual
pathwayfordegradationofPAHsbyanaerobic
microorganisms.Witha betterunderstandingofthe
degradalionofPAHsinmangroves.predictionsofshoR—
andlong—termInteraetionsbetweencontaminated
compoundsa microorganismsCallbepredictedand
betterbioremediationtechn logiesmayb developedfor
preservingandmanagingma roves.
Mangrovesasanenvironmentfordegradationof
PAHs
Mangrovesedimentsarecharacteristicallyhighin
sulfate—reducingba teria(SRBs).nledominatedSRBs
areresponsibleforparticipatingin hebiogeochemical
cyclesofcarbona dothernu耐ents.如thenatural
environmentofmangroves,bacteriainsedimentare
impogantin thebreakdownofillangrorelitters
includingmangaltreeleavesanddeadanimals.
Mmangrovelitterinthemangrovebedsformsapoolof
particulateandissolvedorganiccarbonfDOC).The
DoCisamajorfoodsourceforbacteriaandreleased
nutrientsbecomeavailableforplanttogrow.Cyclingof
DOCmaytakeplacewithinthebacterialcommunity,
constitulingacarbon—sinkinmangrovespal.Apartf om
thenaturalm ngrovelitter,pollutantstendto ccumulate
in mangrovt!sduetotheincreasedurbanizationnd
pollutionalongthecoastallines.Thesepollutants
becomepapofdieDoCorparticulatesposing
decompositionpressurefor,thesedimentbacterial
community,mainlytheSRBsduetotheirtoxicity.Itis
thereforeimportanttok owthedegradationcapabilityof"
SRBssothatoxicityassessmentcanbemadeforthe
long—termexposureofpersistentorganiccompounds.
SRBs.alsokn wnassulfidogens.arestrict
a aerobesutilizingor anicsubstratessa SOLIIceof
carbona denergyandsulfateaselectronacceptor
[11.12.30】.111aerob≤degradations,oxy譬enisu edas—the
terminalelectronacceptor,andalsoasareactantforthe
oxygenaseenzymebecauseit isincorporatedinth
productsOn血eotherhand.anaerobicdegradationsuse
i organicele tronacceptorse.g,SOd”whichisreduced
toS。.Thepathwayofanaerobicdegradationofal matic
h drocarbonsisalsoclearlydistinctfromtheaerobic
o。nes【13,19】.
’
TheabilityofSRBsifl degradinga ,matic
compoundswasnotrecognizeduntijf980sWI(妣I
confirmedthata numberofsulfate—reducerscould
completelyd gradearomaticcompounds,including
Desuf南COCCUSmultivorans.Desulfosarcinavariabilis,
andDesulfonemamagnumforbenzoate;D.niacmifor
nicotinate.Desulfobacteriumphenolicumforphenol1’⋯
nmdolicumforjndole.andD.carecholicumfor
catech01.Recently,newtypesofSRBscapableof
deeradingaromatichydrocarbonshavealsobeenisolated
forutilizationoft lueneiztl.andforo-xylene.m—xylene
ndhomologousalkylbenzenes⋯1UnidentifiedSRBs
werefoundresponsibleforthedegradationofindoleand
3,mec}lylindole”⋯.Thediscoveryof anaerobic
deeradanonofaromaticcompoundsinsulfate—reducing
environmentdrawsscientists’attentiontoinvestigatethe
万方数据
2期 梁佩芝,等:红树林跃氧环境埘gr4,芳烃类有毒物的降解预测
feasibilityof remediatingPAHscontaminated
environmentusingindigenousSRBs.
PAlls:IbxicityandPersistence
PAHsaretoxicevenatlowconcen”atjonsand
theyareals(,highlypersistentinthe nvironmentt14,34].
Theyarecommonlyfoundin
[6,331_:Asmentionedbefore.
mangroveenvironments
theyareanthropogenic
chemicaisandtendtoaDpearintheboundarybetween
terrestrialandmarineenvironments.particularly血e
mangrovesTheyarehighlyh drophobicand,with
increasingnumberofaromaticr ngs,theybecofm,deI
increasinglypersistentinthemangrovessediment”⋯.
Oncetheybecomeassociatedwiththemangrove
sedimenta dagedovertime,aerobicdegradationis
unlikelytobethedominantprocessesinthestrictIY
anaerobicconditionsa dhighlysulfate—reducing
environluentundertidalwateristhecontrollingfactor
fortheproliferationofappropriatem croorganisms.
AnaerobicbiodegradationofPAHswasinitially
believedtobeunitkelyduetothelackofring
substitutionsuchasthemethylgrouD120,24.28,29].However
MichelcicandLuthydemonstratedthedegradationof
PAHsundervariousredoxconditionsj423’“’Intheir
experiment.PAHwasdegradedun erdenttritying
conditionsbutbecamerefractoryundersulfate—reducing
conditions.Unfil1990’s.oxidationofPAHsunder
sulfate-reducingconditionswas substantiated
is,9,10.233s 9l
—
EvidenceshowingPAHdegradationinsulfare-
reducingenvironment
Naphthaleneisoftenusedasamodelcompoundin
studyingde radationofPAHs.Itconsistsof wofused
benzeneringsandisthesimpleststructureofPAHs
Langenhoff-Aletteeta1.showedthathebehaviourof
di船rentaromaticcompounds.suchastoluene.benzene
andnaphthaleneunderdifierentanaerobicconditionsin
sedimentcolumnsizzl.Inthexperiment.chemicalswere
providedwithdifferentelectronaceeDtorslikenitrate.
sulfate,bicarbonateandselectivemetal—ionsfor
initiationofarangeofincubafionconditions.Thisstudy
wasprobablythefirstonetoshowthatdegradationof
naphthalenecouldbeachievedin sulfate—reducing
sedimentCpatesta1.werethefirstgroupof
researchersprovingthesulfate,reducingdepe dentof
PAHsdegradation“⋯Samplescontainingnaphthalene
andphenanfllreaefromthesedimentofSanDiegoBay
wereoxidizedtocarbondioxideundersulfate.reducing
conditions.TheyflushedtllesampleswitllN2-C02to
removeoxygen,ensuringstrictanaerobicconditionsto
beestablishedforchromatographicmeasurements.The
highlyreducingconditionwasmaimainedwithsofficleat
sulfatemendedtotheculturem diumDegradanonof
nanhthalenendph nan血renewasobservedandamuch
higherrateofdegradationwasdetectedinthesamples
takenfromaheavilycontaminatedsiteThercsearchers
funherprovedthesulfate-reducingdependenceofth
degradationproCessbyaddingmolybdate,aspecific
inhibitorofsulfatereductionothesamples dbnems
DegradationD1.ocessesw reinhibitedbytheadditlonof
theinhibitor,furtherconfirmingthatsulfate—redaction,
notFe(III)orMnOV)reduction,washepredominant
lectron—acceptingprocessduringde-,radationofPAHs.
Thedifferencesi therateofdegradationindicat(一dthat
long—termexposureofPAHsmaybenecessarybeforea
PAH.degr¨dingcorrmmnitycarlbeestablished1⋯.
C()alesetat.furtherinvestigatedtherangeof
PAHsthatcouldbedegradedwithsedimentofSan
DiegoHarbourasanjnoculum””oMorePAHssuchas
methylnaphthalene.fluorene,andfluoraeth ncwere
foundto behipdegradableundersulfate—retiuclng
conditions.Althoughtheab vestudiessuggestthat
SRBswereinvolvedinthedegradationofPAHs.no
directevidencewasavailableshowingthatSRBs
metabolizedPAHs.Unfortunately,thepathwayalldt
intermediatesofth degradationprucesseswerenot
investigatednCpates’studies.
AfterthestudiesofCpatesela1.1 ⋯.Bedeshemet
a1.[sjperformedallexperinlentusi gsedimenttiomwo
sulfate—rich.coaltar-contaminatedaquifersoestablish
sulfate.reducinglaboratorymicrocosms.Transformation
ofnaphthalenewasmonitoredin themicocosm
enrichmentovera 3-yearperiod.Aseri{、sof
sediment.freeen ichmentculturesw remaintaine{1with
naphthalenesthesolesourceofcarbonandenergyl"or
over2lmonths.Traesformationofnaphthaleneoccurred
buttheinitiationofdegradationeventvariedgreatly
from1 weektoabout5 monthsNonaphthalene
transformationw sdetectedintheabioticCtmtrols
Naphthalenewasfoundtoberapidlybiotransformed,
eveni microcosmswitheslowestini ialdegra:]ation
rates,subsequentadditionsofnaphthalenedisappearedat
ratescomparabletoth fastestnaphthalene—de2Iading
microcosms.Byaddingsodiummolybdate,stdfate*
reductionwasinhibitedanresultedina45%reduction
innaphthalenedegradationinthenrichmentcu]tures
Thisprovidedfurtherconvincingevidencesshowingthe
sulfate-reducingdependenceof naphthalene
transformation
Inmicrocosmsofenrichmentculturesshowing
naph【11alenetrailsforlnation.naphthalenolwasdetected
consistentlybyGas.Chromatography—MassSpectroscopy
(GC/MS)analysis。。“.Naphthalenolw sonlydetectable
duringthetransformationofnaphthalene,butneitherof
thempriortoare—spikingnoratiernaphthalenehaibe n
depletedfromtheculturemicrocosms.Attheameime,
theabioticCOBtrOlmediumdidLotcontainany
naphthaien01.Bedessemeta1.ther fore,concludedthat
tllehydroxylatedproduct.naphthalen01.wasonlyIbrined
inmicrocosmsthatdegradednaphthaleneiJi.1twasthen
uggestedthathydroxylationmightbe heinitialstepin
万方数据
万方数据
2期 粱佩芏,等:}T树林厌氧环境对多环芳烃类存毒物的降解穗测
identifiedt.1’lThishowedthathydrogenationmightnot
necessanlyoccurontheunsubstitutedringaswhat
Zhangeta1.hadpredictedl。⋯.Meckenstocke a1.
disprovedth possibility血atnaphthalenedegradation
mightfollowthepathwayofbenzoate.becausenoring
fissiona alogoust thebenzoyl—CoApathwayas
detected‘”oTheculturesintheirstudywereableto
growonthereducedsubstrates,cycIohexanecarbodylic
acidandcyclohex-l—ene-carboxylicacid.whichcouldbe
theoreticallyderivedfromadecahydro一2一naphthoicacid.
However、thesewosubstratesr notspecificto
naphthalenedegradationbutarc ommoniathegrowth
ofmostSRBs.MeckenstocktallastlypointedOutIlat
thereduced2.naphthoicac derivativescouldbethe
dead.endmetabolitesin thetrailsformationof
naphthalene
123j
ConceptualpathwaysforPAilsdegradation
Theabover viewedinformationprovidesstrong
evidencefortheabilityofsulfatereducerstodegrade
PAHs.Theconsensusfortheresearchesisthat血estudy
model01、PAHs.thenaphthalene.istransformable.and
2-naphthoicac dis theprominentintermediate
Naph山aleneis alsobiodegradableorcompletely
mineralizedasC02evolved
la,aal
Bedessemeta1.
suggestedthathydroxylationmightbetheinitialstepin
degradationofnaphthalene,asnaphthalenolwasdetected
consistentlybvGC,MSanalysisofmicrocosmsthat
exhibitednaphthalenetra sformationint}leirstudyfFig
2a、”J.However,carboxylation.whichtransf rmed
naphthaleneto2. aphthoicac d.wastheinitialstepin
naphthalenedegradation[23,38,39】(Fig.2b).
。
Theapproachthatcarboxylationtobetheinitial
stePforPAHdegradationseemstobemorer asonable.
asinthebicarbonatetestthattheutilizationofC02to
transformnaphthaleneto 2一naphthoicacidwas
confirmed”⋯.Inaddition.tlleenfichmentculturesof
ZhangandYoung[381andofMeckenstocketal1d1could
notgrowonnaphthalen01.Naphthalenolwasnot
detectedintheabovetwostudies.
Althoughthesuggestedpathwaysfordegradation
ofPAHsunderstrictanaerobicandsulfater ducing
condidonsremainambiguous,thepa wayforanaerobic
degradationofPAHsi distinctfromthatoftheaerobic
ones.Duringaerobicdegradation,theoxidationoccursat
thexpenseofmolecularoxygenas廿leterminalelectroil
aeceptorandthedegradationintermediatesare
naph血alenecis.1‘2.dihydrodiolfromnaphthaleneby
nanh血alenedioxygenase.1.2-dihydroxynaphthaleneby
naphthalenedihydrodiolehvdrogenase,2-hydroxy—
chromene一2。carboxylicacid(HCCA)bydihydroxy—
naphthalenedioxygenase.trans.o-hydroxybenzyfidene-
p2,ruvicacid(tHBPA)by HCCAisomerase.
sa“cvlaldehvdebvtHBPAhydratase—aldolase.and
salicyclicac dbvsaIicvlaldehvdedehy rogenaseWig.
2a).Oxygennoto lyservesasthelectronacceptorbut
alsoservesasareactantasitisalsoincomoratedimohe
productsThisiswhyoxygenisthelimitingfacrorln
aerobicdegradationprocesses.Foranaerobicdegradation
inthesulfatereducinge vironmentsofmangroves,
sulfateisa undanta dservesasthelectronaccept?r
duringthedegradationprocess,inwhichSt-)l—ls
reducedtoS。.Incomparison.sulfateisnotincorp{1rated
int}lestructureofthetransformedp oductsasthe
oxYgendoes,butsimplySerVeStOacceptthelectrons
duringthedegradationprocesses.Becauseofthis. ulfate
reductionis a dissimulatoryprocessforanaerobic
degradationofPAHsOtheranaerobicconditionssucha
nitrate—reducingthatcanprovideothersufficient
inorganicele tronacceptors,nitratecanalsos rveto
anaerobicallydegradePAHs
Anaerobic,sulfatereducingmangrove
environmentsprovidedistinctpa hwaysfordegratlation
ofPAHsfromtheaerobiconeThe2-ringPAH.
naphthalene,canbeusedasaninvestigativemo,tellO
illustratetheditlerences.Theinitialstepsi12volve
dioxygenationandehydrogenationfollowedbyfurther
dioxygenationthatcleavagesth ring“”.Themitial
productfromaerobicdegradationofnaphthaleneis
naphthalene(+)一cis-(1R.2S)一l,2-dihydro一1,2一diolthatis
dehvdrogenatcdto1.2- ehydroxynaphthaleneandthen
degradedtosalicylateandcatech01.Fig.2bSunlnlArizes
a suggestedpathwayforanaerobic,sulfate—reducing
degradationofnaphthalene.Thepathwayjnvolved
transformationofnaphthaleneto naohthalenolby
hydroxylation.i l_ws similartothatoccurredn the
aerobicone”1.However,thepathway:;lessconvincing
andthefateofthenaphthalenolisu known.Another
pathwaysuggestedbyZhangetalismorecompleteand
includesmoreintermediates.inwhich2一 aphthoate.
5,6.7.8一tetrahydro一2-NAanddecafin一2-carboxylate
weredetectedandidentifiedin血eirstudy‘”o.whilet e
dihydro一2一NA.hexallydro,2一NAan octahydro一2一NA
werededucedintermediates.In thispathway,
carboxylation.nothydroxylation、istheinitiaitepof
degradingnaphthalene.Furtherreduc ivehyd ogenations
canoccurafterthenaphthaleneiscarboxylated.Since
investigationsof napththalenedegradationnder
anaerobic,sulfate.reducingconditionhaveo lybegun
recently,thereisveryrareinformationontheisolated
pureculture
o”1 It appearst11atdegradationof
naphtllaleneby sulfate-reducingbacteriafollows
naphthoicacid,5,6,7,8一tetrahydro-2一naphthoicacid,
octahydro.2.naphthoicacidwithuncertainpositior’!ofa
doublebond,decahydro一2-naphthoicacid, ydroxy—
decahydro一2一naphthoicacid, 8一OXO—decNlydro一
2-naphthoicacid, C1IHl604一diaeid(cis/uaflS
c nfigurationnoconfirmed),andcis一2一carboxycycio
hexy矗ceticac d121.
万方数据
万方数据
2期 梁佩芝,等:红树林厌氧环境对多环芳烃类有毒物的降解预测
Ref电心nces
l】 AlexanderM1999日训馏Ⅲ出咖月a材口fo坩榭d缸,矗删M
2们e(】New、brk:AcademicPress
21 AnneweikrE.MichaelisWaIldMeckenstOckRU.2002
IdenlIcalnngcleava2eproductsdu—n2anaerobic
degfadati‘’nof n印h血alene,2-rne血vin即hmaIene,aIld
£c【ralinj dicaten wmetabolicpa血way【J]App^Pd口脚
砌wmHmPHmfmi、,D6lDf∞M68:852—858
31Band盯anavakeWM.1998Tradidonala11dmedicinaluses
ofmangToves【J】^如ngmv∞4nd曲n^fⅡm^Ps,2(3):
133一14S
f4lBauerJ EartdCa叩neDG.1985.D蚀rada“0n锄d
mjnera¨zadonofLhep01”yclicamma石chydrDcarbons
antfHaceneandnaDh山aleneini te—d出m耐nesedimentslJ】
^ppf删目nd£hvfm卅舵n埘¨Ⅲ彻占血』D卫“50:8l-90
f5】 BedesScmME.Swobod和ColbergNG.andColbergPJS.
1997Na口hthmeneIIline阳lizadoncoupledto虬dfate
rcductionn {lqu诜r-de^veden畦chfⅡemsfJl,1EMS
M掂m6fD如Pvk№坩.152:213-218
16l BemardD,Pasc鲥ineH鲫dJer咖ieJj.1996,Dis研bution
ando五ginofhvdroc盯b叽sinsedirnentsfromla900nswitll
缸ngmgmangrovecommunidcs[_『1.^I嘧r加P,)。““ff口n
£m以P,fn.32:734—739
【7J CenllgIiaCE 1992Biodive商tyofp01ycyclicaromaⅡc
hydn岫rbons【J】口fo如gm出咖H,3:351—368
f81c。atcsJD.AndersonRT2000Eme画“gtechniquesfor
anacn)bicbioremodjadonof∞n洲∞£ednvironments【J】.7删jm占抽地c^nD』D譬v,18:408—412.
f9lCoatcsJD,AndersonRT柚dLovleyDR1996.0xid撕on
ofpol”vclicaromadch州mcarbonsundcrsulfate—rodudn置
condmonst|1AP烈ied口砌Envi册卅舯H姐zMic曲}。logM621
1099一l101.
110ICoatcs】D,woodward】,AllenJ,etal 1997An删obic
degradation“polycyclicaroma廿h dID arbonsandalk8nes
inpe∞leuⅡpcontar|linatedmarineharbourscdimen也【J】
A即“副dnd舶vfmn小enm¨坷缸m6f口zD窖M63:3589—3593.
fll】DaancLl,.HarjonoI,Zyg曲GJ,eta1 2001IsoIadonarId
charactc订za廿onOf pOlycycIicammatic
hvmEarbon—degradin2bact耐associatedwithmc
rhizosp}坨reof salt眦shpl粕ts【日.APPjf副d耐
Dlv∞卅眦^埘¨小fm6抽』DPv,67:2683—2691
Ⅱ21DelauneRD,H锄bdckGA柚dP栅ckwH 1980
Degradaticmofhyd∞carbonsinoxidized柚dfedllced
sedimentsIJl^缸一ne.pD?mfj。月肌№“n11:103—106
1131EvanswC1977BiocheIIlistryoftIlebact酣alcatabolism
ofa】omaticcompoundsirIanaerobicenviIDnememsfJ】.
^kf“州270:17—22.
f14】FrallcisBM1994.7hfcS埘撕衄榔抽确P£nvf,删mfnf【M】
NeWYork:wilev.360.
【15IG“ushkoA,MinzD,ScMnkB.etaI.1999.Anaerobic
degrada廿onofnaphtllaleIlebyap 聆cul叫eofanovel帅e
ofma—nesulphale—redcuin2ba te—umfJI.』mvfmn删缸Z
肘缸m^如如Py,l:415—420.
『161GuJD,F矗nYandS11iH2002ReIations}lipbecw。en
str【lct毗esOfsubs6tutcdindoHccomDoundsa me打
degrada“彻bym—nean神robjc枷汀Do卿括msfJ】.^缸砌P
PottH“onBⅡtt“in.45:319-384.
f17JH鲫nsG,zenglerK,Rabus,R,eta1 1999Anaerobic
oxjdalionof o—xylene,用-xv王ene.arIdhomologous
址kylben雅nesbynewtypeofsulf船-educi“gbact猷a【J1
Appf矗,ddnd卧vf,鲫删mf肘把,口6如妇y,65:999-1004
【181Hog矾hPJ.1999.豫e口lD蛔射0,_|lfdn譬,D他虹M】.NewYbrk
0xfordUnive俗itvPress.USA128一129
J19lJuhaszALandNaiduR.2【)()0Bioremediation(11、hiRh
molecuIarwej曲tpolycvclicaromauchvdrI,姻rh¨兀s:8
1tviewofthemicmbialde盯甜ationofhenznfalp”cner』1
|nkmntLoMtB|。delerI。mtioR&8io础RmdⅡlIon。45:"一踞
120IKanhikevallR andBhandariA 200】 AnHerobic
biotr’ansfoImauDnufaromaticandDolvcvclicanlmatic
h”r(1carbonsinsoilr11icrocosms:areviewIJI Jn“,n“,or
Hn似i耐o“jS“扫s抽ncPR出Pd砌.3’1*13
【2l】脚ek()ws“EJ,C()H℃dorJE,Morel】JM,ctaI 1994
Petr0【eumpolludon粕dmutadoninm{111舯ve叫1.”d,fHP
PD口“ffon占“f把fm,28。166.169.
122lLangenhoffAAM,zehnderAJBandSchraaG. 1996
Behaviouroftolucne.benzeneandnaDtl】山aIeneu der
卸aerobic∞ndi£ionsjn跹蛆imenccojumnsⅣ】
肼口d∞m出ffⅢ,7:267—274
『231MeckenstockRU,AnnweilerE,Michae№W.etaI 2000
A【l扯mbicnaphmalenedegrada“onbyas叫faIe—rcduc】n2
锄^chmentcⅡlturelJlA阳№d d,耐 凸zvzmn,n甜lf耐
Mlcm6joj∞v,66:2743—2747
【24】MicheIcicJ RaildLuthyRG 1988Degrddationof
P01ycyclicammatichydfocarbon∞mpoundsunderv“ous
redoxcondidonsin soil.watersystems【J1.^ppfj“,ⅡHd
砌pfm舢"n船¨坷掂m占fDf叩v54:1182一ll87.
1251MunozD,DounlenqP’Guil诅咖M,ctm. 】997New
aPProachtostudyofspilledcnldeoilsu莳“g拼g}1res汕儿J0n
(K—MS(SIM)arIdmetanablereactionmon“Dnng
GC·MS—MS『J1如缸H加,45:l—12.
【26】Neils()nAHarIdA1lardAS.1998:Microbialmccabolzsmof
PAHs卸d het口oa咒neSfA].In: 弛P mnd6c,础Dr
砌“mn蜥明船f(M删缸fnfClvol3(eds:Neilson,气H)
Spdnge卜Verla昌G跚n粕X1—80
f”】RabusR.N础ausR,Lud、Ⅳigw,e【a1993.co【npIeIe
oxjdadonofcojueneu dersc—c“yanoxiccon击cjonsbva
newsulfate-reducingbad嘶umfJlAppf耙d”d
西tvfmm眦nl讲Mlcm6fOfDgMS9:t444一1451.
【28】RockneKJandS昀ndSE.1998.Biode可adationofblcvcllc
andpol”ycIjcaromadchydrocarbonsin a acrobic
en^chrnenLs『J1西lvf阳n鹏^血Z&PncPd月d7≥c^卅如2H32:
3962—3967
【291RueterP,RabusR,WilkesH,et甜1994.Ana?robic
OxidationOfhydrocarbOnsincrudeoilbvncwtyrcs()f
Sulphalc—rcducingbact—a【J】.№mM,”2:455—57.
【301SinglctonR,Jr1993.TheSulfate-ReducjngBacte^d:舳
overviewIAlIn:ol如仉JMa11dSin剖eton,RJl The
sul‰e—ReducingBacte—a:ContemporaryP盯specuvcsfCi
NewY0rk:S研n譬盯-V醐a2N洲Y0rkInc,USA,289
【31】SchwmzenbachRPGschw衄PM,andImbodenDM2003
Envimnmen同Or昌龃icChe商s廿yfMl2⋯ed.NewY0rk
WiIev1313
口2】Sou山erl锄dJB,RafjiFKh锄A,etal 1995Mechailisms
ofpol”yclicaromatichydmcarbondegr8da廿onIAJ InLL
YoungandCECemiglia∞ds).Micmbiaj伽nsfornIacjon
a11dD89radadonofT xicor窖anicco“1pounds【cjNew
York:Wilev269-306
133l’ramNFY,KeL,№窖XH,etal 2【瑚.ContamjnatIonof
pOlycydicarom矗dchydrocarboninsu—kcsediemen【sof
m姐野ovesw帅p3iUEnvi舶nmenlmPo盯"{iDn.4:
255.263
跚】VanAgfe诧nMH.1998P0lyamlnaⅡchydrocarbons【AJ In:
MHv∞A2tefcn,SKeunin窑andDBJanssen.c(1s.
H粕db00konBiodcgradadonndBi logicalTreatmentof
Hazardousrg,micompoundsfC】Dordrecht,The
NethenarIds:Kjuwe—Acad州cPress287—349
(下转第126页)
万方数据
生态科学
化分化成颗粒细胞从而引起细胞数量的减少;颗粒细
胞则考要起吞噬作用.在接受刺激一段时间后细胞数
量明显增多。也有学者认为,透明细胞在虾类的免疫
中利用其光滑表面的强烈附着和扩散能力起吞噬功
能.小颗粘细胞脱粒后也具有吞噬功能,是防御反应
中的关键细胞,大颗粒细胞受到小颗粒细胞刺激后释
放颗粒巾的酚氧化酶原,对细胞的免疫反应起作用。
罗氏沼虾在注射光合细菌后其血细胞组成的变
化,应与各种细胞的功能密切相关。根据本文试验结
果.罗氏潲虾在注射光合细菌24h时,透明细胞在全
部循环j】)I细胞中所占比例有轻微下降,F降警60%左
右;36h左右所占比例急剧下降到30%左右,达到最
低点:48h左右开始逐步回升:60h恢复至55%。颗
粒细胞比例增加的原因可能是因为对光合细菌的免
疫,因此我们的结果支持颗粒细胞为识别和吞噬细胞。
在实验过程中还发现,刺激后的血细胞形态多样
性增大.有伪足的细胞明显增多,伪足长度也较正常
状态长,细胞大小向分布曲线的两端发展。这样的变
化是否由光合细菌的“入侵”专一性引起,或者是罗
【上接第103页)
【35】VanAgterenMH1998.Polyaromatichydrocarbons[A].In:
MHvanAgteren.SKeunlnga dDBJanssan,eds.
HandbookonBiodegradationandB olc}西calTreatmentof
Hazm-dousOrganicCompounds[C】DordrechLThe
Netherlands:KIuwer/AcademicPress,287-349.
【36】VilaJ.L6pezZ,Sabat6J,etid2001Identificationofa
novelmetabolitein tIledegradationof pyreneby
MycobazteriumspstrainAPl:actionsoftheisolateontwo—
andthree—ringpotycyclicaromatichydrocarbonsfJ].Appl括d
andEnvironmentalicrobiology,67:5497-5505
【37】WiddelE1988.Microbiologyandecologyofsulfate-and
sulfur.reducingba teria[A]In:ZehnderAJB.Biologyof
AnaerobicMicroorganisms[C】.NewYork:JohnWtiey,
氏沼虾m细胞对所有类似刺激都产生的反应还有待丁
进一步的研究。
参考文献
1】杨景Jlj乇编1990医学细胞化学与细胞生物技术【M】北
京:北京医科大学、中国协和医科大学联合出版社.
21.26
【2】陈平,黄槐.池信才,等1998四种对虾血细胞组
成及超微结构【J]水生生物学报,22(’):158.163
【3J李光有.王青.1995中国对虾血细胞及其免疫研究⋯.
海洋与湖沼,26(6),591-597
【41徐海圣,徐步进2001甲壳动物细胞及体液免疫机理的
研究进展[J_大连水产学院学报,16(1).49—56
【51周永灿,王世锋,陈雪芬,等2002南美白对虾感染
WSSV后的血相变化.虾类养殖研究IMI北京:海洋出
版社.134—138.
161廖永岩,周友广,叶富良2000.斑节耐虾与黑斑¨虾蛄
血相的比较研究⋯中山大学学报(自然科学版j,39(增
刊):271.277
17】MatsWJ,PiaKKallayaS,eta1.20{30Crustacean
haemocytesandanmatopoiesis[J].Aquaculture,191:45·52.
【8】BrianJ t999CellularresponsetO injuryin spiny
lobsters[A]In:InternationalSympos umOilLobsterH altll
ManagementlC]
469—586.
138】YoungLY andCernigliaC E. 1995.Microbiaf
TransfromationandDegradationof Toxlct)rganic
ChemicalslMl-NewYork:Wiley—Liss,654.
【39】ZhangXandYoungLY1997Carboxylationasan nitial
reactionintheanaorobicmetabolismofnaphtimleJreand
phenanthrenebysulfidogenicco sorda[J1.Appliedand
EnvironmentalMicrobiology,63:4759--4764
【40】ZhangX,SullivanER ndYoungLY2000Evidencefor
aromadcringreductioninthebiodegradationp hwayof
carbox:ationllaphthaleneby a sul妇括 rezlucing
consortium[J1.Biodegradation.11:117—124
万方数据
红树林厌氧环境对多环芳烃类有毒物的降解预测
作者: 梁佩芝, 顾继东
作者单位: 香港大学,生态及生物多样性学系,环境毒理实验室,香港薄扶林道
刊名: 生态科学
英文刊名: ECOLOGIC SCIENCE
年,卷(期): 2003,22(2)
被引用次数: 4次
参考文献(40条)
1.Coates J D;Anderson R T;Lovley D R Oxidation of polycyclic aromatic hydrocarbons under sulfate-
reducing conditions[外文期刊] 1996
2.Coates J D;Anderson R T Emerging techniques for anaerobic bioremediation of contaminated
environments[外文期刊] 2000(10)
3.Cerniglia C E Biodiversity of polycyclic aromatic hydrocarbons[外文期刊] 1992
4.Anneweiler E;Michaelis W;Meckenstock RU Identical ring cleavage products during anaerobic
degradation of naphthalene, 2-methylnaphthalene, and tetralin indicate a new metabolic pathway[外文
期刊] 2002
5.Juhasz A L;Naidu R Bioremediation of high molecular weight polycyclic aromatic hydrocarbons:
areview of the microbial degradation of benzopyrene 2000
6.Hogarth P J The Biology of Mangroves 1999
7.Harms G;Zengler K;Rabus R Anaerobic Oxidation of o-xylene, m-xylene, and homologous alkylbenzenes
by new type of sulfate-reducing bacteria 1999
8.Van Agteren M H Polyaromatic hydrocarbons[Al 1998
9.TAM N F Y;Ke L;Wang X H Contamination of polycyclic aromatic hydrocarbon in surface sediements of
mangrove swamps[外文期刊] 2000(2)
10.Southerland J B;Rafii F;Khan A A Mechanisms of polycyclic aromatic hydrocarbon degradation 1995
11.Schwarzenbach R P;Gschwen P M;Imboden D M Environmental Organic Chemistry 2003
12.Singleton R Jr The Sulfate-Reducing Bacteria: An Overview 1993
13.Bandaranayake W M Traditional and medicinal uses of mangroves[外文期刊] 1998(03)
14.Klekowski E J;Corredor J E;Morell J M Petroleum pollution and mutation in mangroves[外文期刊]
1994
15.Karthikeyan R;Bhandari A Anaerobic biotransformation of aromatic and polycyclic aromatic
hydrocarbons in soil microcosms: a review 2001(03)
16.Bernard D;Pascaline H;Jeremie J J Distribution and origin of hydrocarbons in sediments from
lagoons with fringing mangrove communities[外文期刊] 1996
17.Bedessem M E;Swoboda-Colberg N G;Colberg P J S Naphthalene mineralization coupled to sulfate
reduction in aquifer-derived enrichments[外文期刊] 1997(2)
18.Zhang X;Sullivan E R;Young L Y Evidence for aromatic ring reduction in the biodegradation pathway
of carboxylation naphthalene by a sulfate reducing consortium[外文期刊] 2000
19.Bauer J E;Capone D G Degradation and mineralization of the polycyclic aromatic hydrocarbons
anthracene and naphthalene in intertidal marine sediments 1985
20.Zhang X;Young L Y Carboxylation as an initial reaction in the anaerobic metabolism of naphthalene
and phenanthrene by sulfidogenic consortia[外文期刊] 1997
21.Young L Y;Cerniglia C E Microbial Transfromation and Degradation of Toxic Organic Chemicals 1995
22.Widdel F Microbiology and ecology of sulfate- and sulfur-reducing bacteria 1988
23.Vila J;López Z;Sabaté J Identification of a novel metabolite in the degradation of pyrene by
Mycobacterium sp. strain AP1: actions of the isolate on twoand three-ring polycyclic aromatic
hydrocarbons 2001
24.Van Agteren M H Polyaromatic hydrocarbons 1998
25.Alexander M Biodegradation and Bioremediation.2nd ed 1999
26.Rueter P;Rabus R;Wilkes H Anaerobic oxidation of hydrocarbons in crude oil by new types of
sulphate-reducing bacteria[外文期刊] 1994
27.Rockne K J;Strand S E Biode,gradation of bicyclic and polycyclic aromatic hydrocarbons in
anaerobic enrichments[外文期刊] 1998(24)
28.Rabus R;Nordhaus R;Ludwig W Complete oxidation of toluene under strictly anoxic conditions by a
new sulfate-reducing bacterium 1993
29.Neilson A H;Allard A S Microbial metabolism of PAHs and heteroarenes 1998
30.MUNOZ D;Doumenq P;Guiliano M New approach to study of spilled crude oils using high resolution
GC-MS (SIM) and metastable reaction monitoring GC-MS-MS[外文期刊] 1997(1)
31.Michelcic J R;Luthy R G Degradation of polycyclic aromatic hydrocarbon compounds under various
redox conditions in soil-water systems 1988
32.Meckenstock R U;Annweiler E;Michaelis W Anaerobic naphthalene degradation by a sulfate-reducing
enrichment culture[外文期刊] 2000(7)
33.Langenhoff A A M;Zehnder A J B;Schraa G Behaviour of toluene, benzene and napththalene under
anaerobic conditions in sediment columns[外文期刊] 1996
34.Gu J D;Fan Y;Shi H Relationship between structures of substituted indolic compounds and their
degradation by marine anaerobic microorganisms[外文期刊] 2002
35.Galushko A;Minz D;Schink B Anaerobic degradation of naphthalene by a pure culture of a novel type
of marine sulphate-redcuing bacterium[外文期刊] 1999
36.Francis B M Toxic Susbstances in the Environment 1994
37.Evans W C Biochemistry of the bacterial catabolism of aromatic compounds in anaerobic
environements[外文期刊] 1977
38.DELAUNE R D;Hambrick G A;Patrick W H Degradation of hydrocarbons in oxidized and reduced
sediments[外文期刊] 1980
39.Daane L L;Harjono I;Zystra G. J Isolation and characterization of polycyclic aromatic
hydrocarbon-degrading bacteria associated with the rhizosphere of salt marsh plants[外文期刊]
2001(6)
40.Coates J D;Woodward J;Allen J Anaerobic degradation of polycyclic aromatic hydrocarbons and
alkanes in petroleum- contaminated marine harbour sediments[外文期刊] 1997(9)
本文读者也读过(10条)
1. 孙娟.郑文教.陈文田.SUN Juan.ZHENG Wenjiao.CHEN Wentian 红树林湿地多环芳烃污染研究进展[期刊论文]-
生态学杂志2005,24(10)
2. 王鹏.林钦.柯常亮.李娟.WANG Peng.LIN Qin.KE Chang-liang.LI Juan 大亚湾大鹏澳表层沉积物中PAHs特征及
生态风险[期刊论文]-贵州农业科学2010,38(12)
3. 张军晓.卢伙胜 多环芳烃在红树林生态系统污染研究现状及展望[期刊论文]-海洋与渔业2008(5)
4. 王岩 近海沉积物中几种多环芳烃的生物降解研究[学位论文]2011
5. 程静.张超杰.谢丽.周琪.CHENG Jing.ZHANG Chao-jie.XIE Li.ZHOU Qi 典型芳烃类物质在好氧条件下的降解去
除研究[期刊论文]-净水技术2009,28(2)
6. 王智慧.张朝晖.李建华.WANG Zhi-hui.ZHANG Zhao-hui.LI Jian-hua 石灰华扇(Tufa Fan)沉积物中的微型生物
多样性[期刊论文]-沉积学报2008,26(4)
7. 田蕴.郑天凌.骆苑蓉.Khalid Maskaou 多环芳烃在近海海水中的共代谢降解[会议论文]-
8. 王鹏 大鹏澳海域沉积物中多环芳烃的分布、来源及生态风险[学位论文]2010
9. 王成文.Nina Christensen 厌氧降解两种苯二甲酸酯的试验研究[期刊论文]-环境污染与防治2004,26(4)
10. 金若菲.陈琛.周集体 Escherichia coli厌氧降解TNT的研究[会议论文]-2008
引证文献(4条)
1.张军晓.卢伙胜 多环芳烃在红树林生态系统污染研究现状及展望[期刊论文]-海洋与渔业 2008(5)
2.王伟伟.吴宏海.郭杏妹 土壤和沉积物中多环芳烃的界面吸附研究进展[期刊论文]-生态学杂志 2007(8)
3.杨发忠.颜阳.张泽志.苏永庆 多环芳烃研究进展[期刊论文]-云南化工 2005(2)
4.杨发忠 微波能在多环芳烃降解中的应用研究[学位论文]硕士 2005
本文链接:http://d.g.wanfangdata.com.cn/Periodical_stkx200302001.aspx