免费文献传递   相关文献

Induced Pib Expression and Resistance to Magnaporthe grisea are Compromised by Cytosine Demethylation at Critical Promoter Regions in Rice


Pib is a well-characterized rice blast-resistance gene belonging to the nucleotide binding site (NBS) and leucine-rich repeat (LRR) superfamily. Expression of Pib was low under non-challenged conditions, but strongly induced by the blast-causing fungal pathogen Magnaporthe grisea, thereby conferring resistance to the pathogen. It is generally established that cytosine methylation of the promoter-region often plays a repressive role in modulating expression of the gene in question. We report here that two critical regions of the Pib promoter were heavily CG cytosine-methylated in both cultivars studied. Surprisingly, induced expression of Pib by M. grisea infection did not entail its promoter demethylation, and partial demethylation by 5-azacytidine-treatment actually reduced Pib expression relative to wild-type plants. Accordingly, the blast disease-resistance was compromised in the 5′-azaC-treated plants relative to wild-type. In contrast, the disease susceptibility was not affected by the 5′-azaC treatment in another two rice cultivars that did not contain the Pib gene, ruling out effects of other R genes and non-specific genotoxic effects by the drug-treatment as a cause for the compromised Pib-conditioned blast-resistance. Taken together, our results suggest that promoter DNA methylation plays a novel enhancing role in conditioning high-level of induced expression of the Pib gene in times of M. grisea infection, and its conferred resistance to the pathogen.

Keywords: DNA methylation; Magnaporthe grisea; blast-resistance; induced Pib expression.

Li Y, Xia Q, Kou H, Wang D, Lin X, Wu Y, Xu C, Xing S and Liu B (2011) Induced Pib expression and resistance to Magnaporthe grisea are compromised by cytosine demethylation at critical promoter regions in rice. J. Integr. Plant Biol. 53(10), 814-823.