Abstract:The present study is aimed to investigate the mechanism of the biochemical genetic in short-seasoned cotton (Gossypium hirsutum L.) (SSC). Ten cultivars from two types of SSC were selected, five SSC with no premature senescence crossed with five SSC with premature senescence. The parents, F1, and F2 from the reciprocal crosses were field tested in replication in 2001 and 2002. The results indicated that the activities of protective enzymes of the antioxidant system, such as catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD), were higher in the early maturing SSC with premature senescence compared with activities in the SSC parental cultivars that showed premature senescence, whereas the malondialdehyde (MDA) content in former group was lower than that in latter group. Various genetic variances and heritabilities for these biochemical traits and auxin (IAA), abscisic acid (ABA), and chlorophyll (Chl a+b) contents were also estimated. Significant additive variance for CAT, POD, ABA, and IAA existed, whereas CAT specific activity and SOD activity were largely controlled by dominant effects. Both maternal and dominant variances played equally predominant roles in the specific activity of POD and SOD, MDA, and soluble portents. The relative contribution of the various genetic components to the phenotypic variation varied in the boll-setting period.