Abstract:The characteristics of the cell and organ structures of Populus euphratica Oliv. in relation to salt and osmotic tolerance were compared with those of P. tomentosa Cart. in vitro under the electron and light microscopic observation. P. euphratica exhibited characteristic structure which was associated with salt stress. It had well-developed epidermis and exodermis in the root tip and poorly developed conducting tissue in leaf. Root hairs were formed closer to the root tips. AsP. euphratica were stressed with salt and PEG, more abundance of chondriosomes and plastids in the cytoplasm and more containing substance in the plastid were observed and the osmophilic substance was obviously displayed in the cytoplasm and in the posterior margin of the vacuole. The filamentous structure, bigger nucleus and nucleolus were visualized in the stressed suspension-cultured cells of P. euphratica. The meristemic cells in the root tip of P. euphratica could maintain their structure when the plant was subjected to 8 g/L NaCl stress. It was also demonstrated that the cell wall and plasmalemma of P. euphratica were tightly combined as a dentate form, explaining why the cell could endure severe salt or osmotic stress and resist to plasmolysis indicating that P. euphratica possesses a solid structure base as a defense to salt stress.