Adenophora Fisch. (Campanulaceae)is a medium-sized and diverse genus, which occurs mainly in eastern Asia, particularly in China. Although several taxonomic systems have been proposed, there is still much debate on the delimitation and systematic arrangement of the species within the genus, due mainly to high variation in morphology, habitats, phenotypic plasticity, and potential hybridization. A. lobophylla Hong is a rare perennial endemic to several counties of Sichuan, China. Since this species was recognized, much work has been done on its taxonomic status, including morphology, crossing experiment and allozymes. However, evidence available is not concordance so far, and its relationship with other species within the genus remains largely uncertain. In the present paper, the internal transcribed spacer(ITS) region of 18s~26s nuclear ribosomal DNA was sequenced in 10 representatives of Adenophora and two outgroup species of Campanula to assess its utility for phylogenetic reconstruction in Adenophora, in addition to reevaluation of the taxonomic status of A. lobophylla. The results indicate that there exist high sequence alignability and length conservation among ITS sequences, with informative sites being 3.9% and length ranging from 539 to 541 bp and G + C content varying from 57% to 60%. Phylogenetic analyses using Fitch parsimony show that A. lobophylla is closely related to A. himalayana instead of A. potaninii or A. stenanthina as revealed by previous morphological work and crossing experiment. The ITS phylogeny is generally congruent with other evidence in that A. lobophylla should be removed from the A. potaninii complex or even subsect. Microdiscus. Its appropriate placement, however, should be further explored. In pairwise comparisons at unambiguously aligned sites, sequence divergence was relatively low among Adenophora species with the values ranging from 0.0 to 3.9% in spite of the fact that the species surveyed covered all of the sections and subsections of the genus. In contrast, high sequence divergence is found among Adenophora and Campanula species with the values from 17.8 % to 19.2 %. The low divergence among Adenophora species is justified considering its recent origin, and also suggests that ITS sequence would provide a promising source of nuclear phylogenetic markers to reconstruct the phylogeny within Campanulaceae on the tribe and family levels.