免费文献传递   相关文献

Research progress of alginolytic bacteria

海藻酸分解菌研究进展



全 文 :第24卷 第5期
2012年5月
Vol. 24, No. 5
May, 2012
生命科学
Chinese Bulletin of Life Sciences
文章编号:1004-0374(2012)05-0475-08
海藻酸分解菌研究进展
张 绪1,赵 琳1,钱 龙1,黄庶识2,伊日布斯1*
(1 昆明理工大学生命科学与技术学院生物转化实验室,昆明 650500;2 广西科学院,南宁 530007)
摘 要:海藻酸分解菌是一类能够自身合成海藻酸裂解酶,能够降解并同化海藻酸的微生物。海藻酸分解
菌是海藻酸裂解酶的重要来源,其产生的海藻酸裂解酶具有种类多、 反应条件温和、酶活高和易于大规模
生产等优点,并且在生物、医疗、化工等领域有重要的应用价值。在过去的几十年里,海藻酸分解菌一直
作为海藻酸裂解酶生产者的角色被研究和应用。但随着近年来能源危机的加剧,以海藻酸等海藻生物质为
原料转化生物能源成为解决能源危机的潜在途径,因此,海藻酸分解菌又有了崭新的研究领域,即海藻酸
分解菌利用海藻酸发酵生产生物能源。本文从海藻酸分解菌及其海藻酸裂解酶的种类和特性、海藻酸分解
菌的代谢以及海藻酸分解菌基因工程等方面,介绍海藻酸分解菌的研究现状,并展望未来的发展趋势。
关键词:海藻酸分解菌;海藻酸裂解酶;海藻酸代谢;基因工程
中图分类号:Q557 文献标志码:A
Research progress of alginolytic bacteria
ZHANG Xu1, ZHAO Lin1, QIAN Long1, HUANG Shu-Shi2, Chagan Irbsi1*
(1 Laboratory of Bioconvertion, Faculty of Life Science and Technology, Kunming University of Science and Technology,
Kunming 650500, China; 2 Guangxi Academy of Sciences, Nanning 530007, China)
Abstract: Alginolytic bacterium is a kind of microorganism, which can synthesize alginate lyase as well as degrade
and assimilate alginate. Alginolytic bacterium is one of the important sources of alginate lyase, the alginate lyases
that produced by alginolytic bacteria have many advantages, such as they have many varieties, mild reaction
conditions, high activity and are easy for large-scale production. In addition, it has important application value in
biological, pharmaceutical, chemical fields and other fields. In the past few decades, alginolytic bacteria, considered
as the producer of alginate lyase, have been always studied and applied. However, with the aggravation of energy
crisis in recent years, the biofuel converted from seaweed biomass has become a potential way to solve the energy
crisis. Therefore, the research on alginolytic bacteria has been further developed. In this review, we introduced the
research status of the types and characteristics of alginolytic bacteria and alginate lyase as well as the metabolism
and gene engineering of alginolytic bacteria. Furthermore, we also prospected the future development trends of the
research on alginolytic bacteria.
Key words: alginolytic bacteria; alginate lyase; alginate metabolism; genetic engineering
收稿日期:2012-03-03; 修回日期:2012-04-08
基金项目:广西自然科学基金重点项目(2010GXN-
SFD013029)
*通信作者:E-mail: irbisc@gmail.com; Tel:0871-
5920211
海藻酸,又称褐藻胶或褐藻酸,是由 β-D-甘
露糖醛酸 (M) 和它的 C5位立体异构体 α-L-古罗糖
醛酸 (G)通过 α-1,4-糖苷键无规则地连接而成的线
性多糖。海藻酸分子中的糖单体 M和 G有三种排
列方式:M连续排列形成聚甘露糖醛酸 (polyM),
G连续排列形成聚古罗糖醛酸 (polyG),以及M和
G随机交替连接形成聚古罗糖醛酸 -甘露糖醛酸
(polyMG)[1]。来自不同生物的海藻酸所含 M和 G
的相对比例也不相同 [2-3]。海藻酸是最丰富的海洋
生物多糖,也是世界上仅次于纤维素的最丰富的生
物高分子聚合物。海藻酸存在于海藻的细胞壁和
生命科学 第24卷476
细胞间质,在褐藻中的含量尤为丰富,泡叶藻
(Ascophyllum)、公牛藻 (Durvillaea)、昆布海藻 (Laminaria)、
巨藻 (Macrocystis)、马尾藻 (Sargassum)和喇叭藻
(Turbinaria ornata)是海藻酸主要的商业来源。海藻
酸也是一些细菌的胞外多糖,细菌海藻酸主要由在
D-甘露糖醛酸的 2和 (或 )3碳上带有 O-乙酰基的
聚甘露糖醛酸组成 [4]。1966年,Linker和 Jones[5]
首次确认了革兰氏阴性海洋细菌铜绿假单胞菌
(Pseudomonas aeruginosa)具有合成海藻酸并将其作
为胞外多糖分泌到细胞外的现象。具有代表性的合
成海藻酸的微生物除铜绿假单胞菌外,还有棕色固
氮菌 (Azotobacter vinelandii)[6]。细菌海藻酸对细菌
细胞具有附着、保护等功能,如黏液状铜绿假单胞
菌产生的海藻酸能使其附着在气管的上皮细胞和呼
吸系统的黏蛋白上,并保护细菌不被吞噬细胞吞噬
以及阻止抗生素的伤害 [7]。铜绿假单胞菌的海藻酸
也是囊性纤维化疾病的主要致病因子 [8]。由于海藻
酸具有在水介质中形成黏性溶液和凝胶的能力以及
对生物无毒性的优点,因此被广泛应用于医药、化
妆品、食品和生物技术等行业。根据海藻酸相对分
子质量和黏度的不同,其应用范围也不同,低黏度
的海藻酸用于造纸和果业,高黏度海藻酸通常用于
食品和化妆品 [9]。近年来,随着气候变化和化石能
源危机的加剧,生物能源越来越受到重视。而且,
由于海藻酸储量丰富,生产技术成熟,生产成本低
廉等优势,海藻酸很可能作为第三代生物能源的原
料加以利用。
1987年,Gacesa[10]提出了海藻酸的酶解机理。
海藻酸裂解酶通过 β消去反应裂解海藻酸的 4-O-
糖基键,同时在 C-4和 C-5之间形成双键,在产生
的寡糖的非还原端产生 4-deoxy-L-erythro-hex-4-ene
pyranosyluronate,其在 230~240 nm有强吸收峰。
按底物的特异性,海藻酸裂解酶分为三种:第一种
是聚甘露糖醛酸裂解酶 poly(β-D-mannuronate) lyase
[EC 4.2.2.3],对 polyM有特异性;第二种是聚古罗
糖醛酸裂解酶 poly(α-L-guluronate) lyase [EC 4.2.2.11],
对 polyG有特异性;第三种是对 polyM和 polyG两
种底物均有活性的聚古罗糖醛酸和聚甘露糖醛酸裂
解酶 [11]。按作用方式又可分为内切海藻酸裂解酶和
外切海藻酸裂解酶。根据氨基酸序列的相似性,海
藻酸裂解酶分属于七个多糖裂解酶 (PL)家族,即
家族 5、6、7、14、15、17和 18[12]。海藻酸裂解酶
的来源广泛,主要有三大类:第一类是微生物,如
海洋细菌、土壤细菌、真菌等 [13-15];第二类是海洋
软体动物和棘皮动物,如海螺、海参、鲍鱼等 [16-17];
第三类是植物,如巨藻、泡叶藻、海带等 [18]。
海藻酸裂解酶可用来制备海藻的原生质体 [19],
被广泛运用于藻类的细胞工程、基因工程等领域。
另外,由于海藻酸裂解酶能够降解铜绿假单胞菌的
生物膜中的海藻酸成分,因此,它协助抗生素抑制
铜绿假单胞菌的生长 [20]。此外,海藻酸裂解酶还能
够将海藻酸裂解为具有生物活性的低聚海藻酸和海
藻寡糖,有关不同相对分子质量海藻酸的生理活性
的研究已有较多报道,尤其在免疫赋活作用 [21-22]和
对癌细胞形态变化的影响 [23]等方面引人注目。如
平均相对分子质量 2 000的低聚海藻酸能促进人的
内皮细胞增长 [24],特定相对分子质量的海藻酸寡
糖能刺激人类巨噬细胞分泌毒性细胞因子 [25];海
藻酸的降解产物还能够提高植物萌芽效率和幼芽的
伸长 [26]。
海藻酸分解菌是一类能够自身合成海藻酸裂解
酶,能够降解并同化海藻酸的微生物。海藻酸分解
菌作为海藻酸裂解酶的重要来源之一,其产生的海
藻酸裂解酶具有种类多、反应条件温和、酶活高和
易于大规模生产等优点。因此,对于海藻酸分解菌
的研究有着深远的理论意义和广泛的应用前景。
2 海藻酸分解菌的研究现状
2.1 海藻酸分解菌及其海藻酸裂解酶的种类和特性
目前,国内外所发现的海藻酸分解菌的种类众
多 (表 1),主要分布于海洋细菌、土壤细菌和真菌等,
还有一些属于病原微生物,如大肠杆菌、肺炎克里
伯氏菌、铜绿假单胞菌。其中鞘氨醇单胞菌属中的
Sphingomonas sp. A1、铜绿假单胞菌 P. aeruginosa
和克里伯氏菌 Klebsiella sp.是研究较多,备受关注
的明星菌株。而曲霉 (Aspergillus oryzae)和苍白杆
菌 (Ochrobactrum sp.)[49]研究很少。随着新的海藻
酸分解菌的发现,其种类还将不断增加。
由于海藻酸分解菌的种类众多,因此其海藻
酸裂解酶的类型多样,如棕色固氮菌产生的胞内海
藻酸裂解酶可断裂 M-M和M-G 间的 1, 4-糖苷键,
能够降解 alginate、polyM、polyMG 和乙酰化的
polyM[31]。克里伯氏菌 K. pneumoniae 能够产生胞外
聚古罗糖醛酸海藻酸裂解酶 [37]。铜绿假单胞菌 P.
aeruginosa 产生的是胞内聚甘露糖醛酸裂解酶 [39]。
鞘氨酸单胞菌 Sphingomonas sp. A1能产生一种胞内
外切寡聚海藻酸裂解酶 [42]。解海藻酸弧菌 Vibrio
alginolyticus AL-9来源的海藻酸裂解酶既具有甘露
张 绪,等:海藻酸分解菌研究进展第5期 477

1









































pH



































(k
D
a)

( ℃
)

(U
/m
g)

(U
/m
g)
Ag
ar
iv
or
an
s s
p.
JA
M
-A
1
A
1m

3
1
30

10
.0



0.
14
2


10
8.
5
ex
tra
ce
llu
lar

alg
in
ate
, p
ol
yM
G

[2
7]








po
ly
G
, p
ol
yM

Ag
ro
ba
cte
riu
m
tu
m
efa
cie
ns
C
58

A
tu
30
25

8
8
30

7
.3



0.
06
5


1
3.
1
ex
tra
ce
llu
lar

po
ly
M
, p
ol
yG
,
[2
8]







en
do
ty
pe

po
ly
M
G
Al
gi
no
vib
rio
a
qu
at
ili
s
al
gi
na
te
ly
as
e
11
0
25

8
.0



0.
93



5
7.
0
ex
tra
ce
llu
lar

alg
in
ate

[2
9]







ex
ot
yp
e
Al
te
ro
m
on
as
sp
. 2
72

al
gi
na
te
ly
as
e
3
3.
9
30

7
.5



8.
3

1
12
2.
8
ex
tra
ce
llu
lar

po
ly
M
, p
ol
yG

[3
0]







en
do
ty
pe
As
pe
rg
ill
us
o
ry
za
e
al
gi
na
te
ly
as
e
9
5
35

6
.5



0.
48



6
7.
24

ex
tra
ce
llu
lar

alg
in
ate

[1
2]
Az
ot
ob
ac
te
ch
ro
oc
oc
cu
m
4
A
1M

al
gi
na
te
ly
as
e
2
4
60

6
.0



1.
93



3
2.
4
ex
tra
ce
llu
ar

po
ly
M

[3
1]
Az
ot
ob
ac
te
r v
in
el
an
di
i N
C
IB
87
89

al
gi
na
se
s
3
9
30

6
.8



0.
53





in
tra
ce
llu
lar

po
ly
M
,
[3
2]








po
ly
M
G
, a
lg
in
ate
,








O
-a
ce
ty
l-p
ol
yM
Ba
cil
lu
s s
p.
A
TB
-1
01
5
al
gi
na
te
ly
as
e
4
1
37

7
.5



2.
0


5
1.
3
ex
tra
ce
llu
ar

po
ly
G
, p
ol
yM

[3
3]







en
do
ty
pe
C
or
yn
eb
ac
te
ri
um
sp
. S
tra
in
A
LY
-1

A
lg
PG

2
7
55

7
.0



3.
8


5
7
ex
tra
ce
llu
ar

po
ly
G

[3
4]
En
ter
ob
ac
ter
cl
oa
ca
e M
-1

al
gi
na
te
ly
as
e
3
8
30

7
.8



0.
00
17



3
5.
0
ex
tra
ce
llu
ar

po
ly
G

[3
5]







en
do
ty
pe
Fl
av
ob
ac
ter
ru
m
m
ul
tw
ol
um
K
-1
1
al
gi
na
te
ly
as
e
3
3
40

7
.5



1.
07



3
2.
3
ex
tra
ce
llu
ar

po
ly
M
, p
ol
yG

[3
6]
K
le
bs
ie
lla
p
ne
um
on
ia

A
ly
A

3
1.
4
35

7
.6



0.
07
8




ex
tra
ce
llu
ar

po
ly
G

[3
7]
Ps
eu
do
al
ter
om
on
as
sp
. S
M
05
24

A
ly
-S
J0
2
3
2
50

8
.5


6
5.
4

4
80
2.
7
ex
tra
ce
llu
ar

po
ly
M
, p
ol
yG

[3
8]
Ps
eu
do
m
on
as
a
er
ug
in
os
a
W
cM
#2

A
LG

4
3
37

9
.0


5
6.
0

1
38
6.
4
in
tra
ce
llu
la
r
po
ly
M

[3
9]
Sp
hi
ng
om
on
as
sp
. A
1
A
1-
I
6
3
45

8
.0



6.
55



7
3.
1
in
tra
ce
llu
lar

po
ly
G
, p
ol
yM

[4
0]







en
do
ty
pe

A
1-
II
2
5
70

8
.0



4.
27



10
9
in
tra
ce
llu
lar

po
ly
G

[4
0]







en
do
ty
pe

A
1-
III

4
0
30

8
.0



9.
20



4
5.
0
in
tra
ce
llu
la
r
po
ly
M
, p
ol
yM
G

[4
1]







en
do
ty
pe
Sp
hi
ng
om
on
as
sp
. A
1
ol
ig
oa
lg
in
ate
ly
as
e
8
5
37

8
.0



0.
07
1



2
.8
9
in
tra
ce
llu
la
r
ol
ig
oa
lg
in
at
e
[4
2]







ex
ol
yt
ic
St
re
pt
om
yc
es
sp
. A
5
alg
in
ate
ly
as
e
3
2
37

7
.5

71
80

10
16
00

ex
tra
ce
llu
la
r
po
ly
G
, p
ol
yM
,
[4
3]








al
gi
na
te
Vi
br
io
a
lg
in
ol
yti
cu
s A
L-
9
alg
in
ate
ly
as
e
2
5
37

9
.0



0.
01
4



2
.8
3
ex
tra
ce
llu
la
r
po
ly
G

[4
4]



al
gi
na
te
ly
as
e
3
0
37

8
.0




po
ly
M
Vi
br
io
h
ar
ve
yi
A
L-
12
8
alg
in
ate
ly
as
e
5
7
37

7
.8



0.
02
6



1
.8
9
ex
tra
ce
llu
ar

po
ly
G

[4
5 -
46
]
Vi
br
io
sp
. Y
K
W
-3
4
alg
in
ate
ly
as
e
6
0
40

7
.0



2.
22



5
5.
93

ex
tra
ce
llu
la
r
po
ly
G
, p
ol
yM
,
[4
7]








po
ly
M
G
Vi
br
io
sp
. Q
Y
10
2
alg
in
ate
ly
as
e
2
8.
5
40

7
.1


1
6


25
4
ex
tra
ce
llu
lar

po
ly
M

[4
8]
生命科学 第24卷478
图中粗箭头表示海藻酸裂解酶的裂解位点,虚线框部分为假想反应。
图1 Sphingomonas A1胞内海藻酸代谢途径[51]
糖醛酸裂解酶活性,又具有古罗糖醛酸裂解酶活
性 [44]。海藻酸分解菌的海藻酸裂解酶的反应条件比
较温和,pH值范围主要为 6~12,温度在 20~70 ℃
之间。1976年,Stevens和 Levin[29]发现的 Alginovibrio
aquatilis的胞外海藻酸裂解酶的最适温度为 25 ℃。
而 2000年,Yoon等 [40]表达并纯化了 Sphingomonas
sp. A1的海藻酸裂解酶 A1-II,其最适温度为 70 ℃。
1996年,Haraguchi和 Kodama[32]发现的 Azotobacte
chroococcum 4A1M的海藻酸裂解酶的最适 pH为
6.0;而 2009年, Kobayashi等 [27]发现的 Agarivorans
sp. JAM-A1的海藻酸裂解酶最适 pH为 10.0。另外,
海藻酸分解菌产生的海藻酸裂解酶还具有酶活高的
特点,2011年,Li等 [38]纯化并研究了Pseudoalteromonas
sp. SM0524的海藻酸裂解酶 Aly-SJ02,其酶活高达
65.4 U/mg。
2.3 海藻酸分解菌的代谢途径研究
虽然对海藻酸分解菌的研究已经有几十年的历
史,但是海藻酸分解菌的海藻酸代谢研究进展缓
慢。1962年,Preiss和 Ashwell[50]研究了假单胞菌
的海藻酸代谢,发现了海藻酸裂解酶降解海藻酸
的机制,海藻酸裂解酶将海藻酸裂解为寡糖,寡
糖的非还原端带有不饱和糖醛酸糖残基,然后进一
步将不饱和糖醛酸裂解为 4-deoxy-n-erythro-hexoseulose
uranic acid。但是直到 2010年,Takase等 [51]首次在
Sphingomonas A1菌株细胞中发现了不饱和糖醛酸
还原酶 A1-R,从而提高了对 Sphingomonas A1的海
藻酸代谢途径的认识。Sphingomonas A1在细胞表
面形成具有“superchannel”的海藻素摄入系统,能
够直接将高分子海藻酸摄入细胞质,相对分子质量
较大的海藻酸在细胞质中被进一步代谢。如图 1所
示,首先相对分子质量较大的的海藻素被内切海藻
酸裂解酶 A1-I、A1-II和 A1-III解聚为二糖、三糖
和四糖,这些寡糖再被细胞质中的内切海藻酸裂
解酶 A1-IV进一步降解为单糖,经非酶促反应转变
为4-deoxy-L-erythro-5-hexoseulose uronic acid (DEH),
DEH被 DEH还原酶 A1-R还原为 2-酮 -3-脱氧 -D-
葡糖酸 (2-keto-3-deoxy-D-gluconic acid, KDG)。另
外,Takase等 [51]推测可能存在 2-酮 -3-脱氧葡糖
酸激酶 A1-K将 KDG磷酸化,生成 2-酮 -3-脱氧 -6-
磷酸 -葡糖酸 (2-keto-3-deoxy-6-phosphogluconic acid,
KDPG),然后 KDPG被醛缩酶 A1-A催化分解为 D-
甘油醛 -3-磷酸 (D- glyceraldehdye-3-phosphate)和丙
酮酸 (pyruvate)。
2.4 海藻酸分解菌基因工程研究
海藻酸分解菌的基因工程研究主要集中于海藻
酸裂解酶基因的克隆和表达。目前,已有二十多种
海藻酸分解菌的海藻酸裂解酶基因被克隆,而且其
中大部分基因已成功地进行了异源表达 (表 2)。重
组海藻酸裂解酶的表达量均高于野生菌株。1993年,
Maki等 [54]在大肠杆菌中表达了 Pseudomonas sp.
OS-ALG-9的海藻酸裂解酶,其表达量约是野生型
菌株的 53倍。此外,岳明等 [55]以铜绿假单胞菌 (P.
aeruginosa)基因组 DNA 为模板,克隆出约 1.0 kb
的海藻酸裂解酶基因 algL,并将其插入巴斯德毕赤
酵母表达载体 pPIC9K中,获得重组质粒 pPIC9K-
algL。重组质粒线性化后用聚乙二醇 (PEG)法导入
张 绪,等:海藻酸分解菌研究进展第5期 479
毕赤酵母菌株 GS115中表达。用甲醇诱导培养基进
行摇瓶发酵,表达得到了相对分子质量为 40 000的
重组海藻酸裂解酶,酶活力可达 540 U/mL。
Sphingomonas A1的代谢工程研究也有新的突
破。2011年,Takeda等 [67]利用新发现的强启动子
sph2987在 Sphingomonas A1中过表达运动发酵单
胞菌 Zymomonas mobilis的丙酮酸脱羧酶基因 pdc
和乙醇脱氢酶基因 adhB,使重组后的 A1能够生产
乙醇,同时还破坏了乳酸脱氢酶基因 ldh,阻断乳
酸的代谢途径,提高了重组菌株 A1的乙醇产量。
经过代谢工程改造,重组菌株 A1以海藻酸作为唯
一碳源三天累计生产乙醇达 13.0 g/L。此研究开创
了海藻酸分解菌利用海藻酸生产生物乙醇的先河。
3 展望
目前,海藻酸分解菌的研究主要集中于海藻酸
分解菌的筛选、鉴定和海藻酸裂解酶的克隆与表达。
对于海藻酸分解菌的代谢工程方面的研究还相对薄
弱,不能发挥海藻酸分解菌的应用潜力。因此,未
来海藻酸分解菌的研究将在分离、鉴定新菌种的同
时,优选海藻酸裂解酶产量高、分解海藻酸能力强
的菌株,并对其进行深入的研究,阐明海藻酸及糖
醛酸在细胞内的代谢途径,发现并研究有应用价值
的代谢产物。
另外,海藻酸分解菌的基因工程必将成为今后
的研究热点。首先是海藻酸裂解酶基因的异源表达,
筛选并克隆海藻酸裂解酶的基因,将其导入酵母、
大肠杆菌等工程菌,高效表达海藻酸裂解酶,这方
面的研究如上所述已经取得了一些成果。但是,以
海藻酸为底物进行发酵的研究极为少见,原因是酵
母、大肠杆菌等常用的发酵菌株不能直接利用海藻
酸酶解产物糖醛酸。因此,阐明糖醛酸在海藻酸分
解菌细胞内的代谢途径,并将糖醛酸代谢途径的关
键酶基因一同导入工程菌,才能使其利用海藻酸生
产有价值的生物制品。其次是海藻酸分解菌代谢的
改造,将外源基因导入海藻酸分解菌,如丙酮酸脱
羧酶 pdc和乙醇脱氢酶 adhB基因;或者使用分子
生物学手段对其代谢途径进行改造,使其能够利用
海藻生物质生产生物能源等具有应用价值的产品。
目前,这方面的研究还仅有 Takeda等对 Sphingo-
表2 海藻酸分解菌基因工程研究
海藻酸裂解酶基因 原始菌株 表达载体 表达菌株 重组酶活性 参考文献
aly Klebsiella pneumoniae pHG327 E. coli JM107 3.82 U/mg [52]
algL Pseudomonas aeruginosa FRD1 pKK223-3 E. coli JM109 145.83 U/mg [53]
aly Pseudomonas sp. OS-ALG-9 pUC18 E. coli JM109 117 U/ml [54]
alyA Klebsiella aerogenes pBluescript SK- E. coli —— [56]
algL Azotobacter vinelandii pTrc99A E. coli JM109 1.25 U/mg [14]
algL Azotobacter chroococcum pET3a E. coli BL-21(DE3) 9.25 U/mg [57]
alyPG Corynebacterium sp. ALY- 1 pBluescript II SK- E. coli XL-l blue MRF’ —— [58]
alyVG1 Vibrio halioticoli IAM 14596T pUC18 E. coli DH5α —— [59]
alyVG2 Vibrio halioticoli IAM 14596T pUC18 E. coli DH5α —— [59]
alyVG3 Vibrio halioticoli IAM 14596T pUC18 E. coli DH5α —— [59]
A1-I Sphingomonas sp. A1 pET3a E. coli BL21(DE3)pLysE 6.55 U/mg [40]
A1-II Sphingomonas sp. A1 pET17b E. coli BL21(DE3)pLysE 4.27 U/mg [40]
A1-III Sphingomonas sp. A1 pET3a E. coli HMS174(DE3) 9.20 U/mg [40]
alyPEEC Pseudoalteromonas elyakoii pUC18 E. coli JM109 7.37×10−6 U/OD280 [60]
IAM14594(Alteromonas sp. H4)
AALyase Pseudoalteromonas sp. 272
(Alteromonas sp. 272) pCR™ 2.1 E. coli INVαF9’ —— [61]
A1-IV Sphingomonas sp. A1 pET3a E. coli HMS174(DE3) 8.6 U/L [62]
A1-IV’ Sphingomonas sp. A1 pET21b E. coli BL21(DE3)pLysE 89.0 U/L [63]
Atu3025 Agrobacterium tumefaciens C58 pET21b E. coli HMS174(DE3) 5.9 U/mg [28]
alyVOA Vibrio sp. O2 pT7Blue E. coli DH5α —— [64]
alyVOB Vibrio sp. O2 pBluescript II SK+ E. coli DH5α —— [64]
Alg-5 Streptomyces sp. ALG-5 pColdI E. coli BL21(DE3) —— [65]
a lyA Pseudoalteromonas atlantica AR06 pNIT6012 E. coli DH5α —— [66]
生命科学 第24卷480
monas A1的改造 [67]。
至今报道的海藻酸分解菌仅局限在好氧菌,未
见有关厌氧海藻酸分解菌的报道。厌氧海藻酸分解
菌进行厌氧呼吸,与好氧菌相比,无需将底物彻底
氧化即可获得自身生命活动所需的能量,而且通过
发酵代谢产生乙醇等有价值的代谢产物并再生细胞
内的还原力,厌氧海藻酸分解菌更适合用于利用海
藻生物质生产生物能源。本研究室已筛选到两株厌
氧海藻酸分解菌,并正在对其海藻酸裂解酶、代谢
产物和代谢途径等方面进行研究,从而为利用厌氧
海藻酸分解菌进行海藻生物质转化提供技术支持和
理论依据。
随着海藻酸分解菌研究不断深入,海藻酸分解
菌自身所具有的巨大应用潜力将不断显现,从而对
能源、医药、化工等领域产生重要影响。
[参 考 文 献]
[1] Gacesa P. Alginates. Carbohydrate Polymers, 1988, 8:161-
82
[2] Tako M, Yoza E, Tohma S. Chemical characterization of
acetyl fucoidan and alginate from commercially cultured
Cladosiphon okamuranus. Bot Mar, 2000, 43: 393-8
[3] Tako M, Kiyuna S, Uechi S, et al. Isolation and characteriza-
tion of alginic acid from commercially cultured Nema-
cystus decipiens (Itomozuku). Biosci Biotechnol Biochem,
2001, 65: 654-7
[4] Skjak-Bræk G, Grasdalen H, Larsen B. Monomer sequ-
ence and acetylation pattern in some bacterial alginates.
Carbohydrate Res, 1986, 154: 239-50
[5] Linker A, Jones RS. A new polysaccharide resembling
alginic acid isolated from Pseudomonads. J Biol Chem,
1966, 241: 3845-51
[6] Sabra W, Zeng AP, Deckwer WD. Bacterial alginate:
physiology, product quality and process aspects. Appl
Microbiol Biotechnol, 2001, 56: 315-25
[7] Nichols WW, Evans MJ, Slack MPE, et al. The penetration
of antibiotics into aggregates of mucoid and non-mucoid
Pseudomonas aeruginosa. J Gen Microbiol, 1989, 135:
1291-303
[8] Boyd A, Chakrabarty AM. Role of alginate lyase in cell
detachment of Pseudomonas aeruginosa. Appl Environ
Microbiol, 1994, 60: 2355-9
[9] Hernandez-Carmona G, McHugh DJ, Lopez-Gutierrez F.
Pilot plant scale extraction of alginates from Macrocystis
pyrifera.2. Studies on extraction conditions and methods
of separating the alkaline-insoluble residues. J Appl
Phycol, 2000, 11: 493-502
[10] Gacesa P. Alginate-modifying enzymes: a proposed
unified mechanism of action for the lyases and epimerases.
FEBS Lett, 1987, 212: 199-202
[11] Haugen F, Kortner F, Larsen B. Kinetics and specificity of
alginate lyases: Part I, a case study. Carbohydrate Res,
1990, 198: 101-9
[12] Singh RP, Gupta V, Kumari P, et al. Purification and partial
characterization of an extracellular alginate lyase from
Aspergillus oryzae isolated from brown seaweed. J Appl
Phycol, 23(4): 755-62
[13] Sawabe T, Sugimura I, Ohtsuka M, et al. Vibrio halioticoli
sp. nov., a non-motile alginolytic marine bacterium
isolated from the gut of the abalone Haliotis discus
hannai. Int J Syst Bacteriol, 1998, 48: 573-80
[14] Ertesvåg H, Erlien F, Skjåk-Bræk G, et al. Biochemical
properties and substrate specificities of a recombinantly
produced Azotobacter vinelandii alginate lyase. J Bacterol,
1998, 180(15): 3779-84
[15] Schaumann K, Weide G. Efficiency of uronic acid uptake
in marine alginate-degrading fungi. Helgoländer
meeresunters, 1995, 49: 159-67
[16] 朱仁华. 三种海螺解壁酶组分的比较研究. 中国水产科
学, 1983, 5: 513-8
[17] Boyen C, Kloareg B, Polne-Fuller M, et al. Preparation of
alginate lyases from marine molluscs for protoplast
isolation in brown algae. Phycologia, 1990, 29(2): 173-81
[18] Lin TY, Hass WZ. Pathway of alginic acid synthesis in the
marine brown alga, Fucus gardneri Silva. J Biol Chem,
1966, 241: 5284-97
[19] Boyen C, Bertheau Y, Barbeyron T, et al. Preparation of
guluronate lyase from Pseudomonas alginovora for
protoplast isolation in Laminaria. Enzyme Microb
Technol, 1990, 12: 885-90
[20] Alkawash MA, Soothill JS, Schiller NL. Alginate lyase
enhances antibiotic killing of mucoid Pseudomonas
aeruginosa in biofilms. APMIS, 2006, 114: 131-8
[21] Otterlei M, Sandan A, Skjåk-Braek G, et al. Induction of
cytokine production from human monocytes stimulated
with alginate. J Immunother, 1991, 10: 286-91
[22] Otterlei M, Sundan A, Skjåk-Braek G, et al. Similar
mechanisms of action of defined polysaccharides and lipo
polysaccharides:characterization of binding and tumor
necrosis factor α induction. Infect Immun, 1993, 61: 1917-
25
[23] Stevan FR, Oliveira MBM, Noseda MD, et al. Cytotoxic
effects against HeLa cells of polysaccharides from
seaweeds. J Submicrosc Cytol Pathol, 2001, 33: 477-84
[24] Kawada A, Hiura N, Tajima S, et al. Alginate oligosac-
charides stimulate VEGF-mediated growth and migration
of human endothelial cells. Arch Dermatol Res, 1999,
291: 542-7
[25] Iwamoto M, Kurachi M, Nakashima T, et al. Structure–
activity relationship of alginate oligosaccharides in the
induction of cytokine production from RAW264.7 cells.
FEBS Lett, 2005, 579: 4423-9
[26] Yonemoto Y, Tanaka H, Yamashita T, et al. Promotion of
germination and shoot elongation of some plants by
alginate oligomers prepared with bacterial alginate lyase. J
Ferment Bioeng, 1993, 75: 68-70
[27] Kobayashi T, Uchimura K, Miyazaki M, et al. A new high-
alkaline alginate lyase from a deep-sea bacterium
Agarivorans sp. Extremophiles, 2009, 13: 121-9
张 绪,等:海藻酸分解菌研究进展第5期 481
[28] Ochiai A, Hashimoto W, Murata K. A biosystem for
alginate metabolism in Agrobacterium tumefaciens strain
C58: Molecular identification of Atu3025 as an exotype
family PL-15 alginate lyase. Res Microb, 2006, 157: 642-
9
[29] Stevens RA, Levin RE. Purification and characteristics of
an alginase from Alginovibrio aquatilis. Appl Environ
Microbiol, 1977, 3: 1156-61
[30] Iwamoto Y, Araki R, Iriyama K, et al. Purification and
characterization of bifunction alginate lyase from
Alteromonas sp. strain No. 272 and its action on saturated
oligomeric substrates. Biosci Biotechnol Biochem, 2001,
65(1): 133-42
[31] Kennedy L, Mcdowell K, Sutherland IW. Alginases from
Azotobacter species. J Gen Microb, 1992, 138: 2465-71
[32] Haraguchi K, Kodama T. Purification and properties of
poly (β-D-mannuronate) lyase from Azotobacter
chroococcum. Appl Microbiol Biotechnol, 1996, 44: 576-
81
[33] Nakagawa A, Ozaki T, Chubachi K, et al. An effective
method for isolating alginate lyase-producing Bacillus sp.
ATB-1015 strain and purification and characterization of
the lyase. J Appl Microbiol, 1998, 84: 328-35
[34] Matsubara Y, Kawada R, Iwasaki KI, et al. Extracellular
poly(α-L-guluronate)lyase from Corynebacterium sp.:
purification, characteristics, and conformational proper-
ties. Protein Chem, 1998, 17(1): 31-6
[35] Nibu Y, Satoh T, Nishi Y, et al. Purification and
characterization of extracellular alginate lyase from
Enterobacter cloacae M-1. Biosci Biotechnol Biochem,
1995, 59(4): 632-7
[36] Takeuchi T, Nibu Y, Murata K, et al. Characterization of a
novel alginate lyase from Flavobacterium multivolum
K-11. Food Sci Technol, 1997, 3(4): 388-92
[37] Dyrset N, Lystad KQ, Levine DW. Development of a
fermentation process for production of an alginate G-lyase
from Klebsiella pneumonia. Appl Microbiol Biotechnol,
1994, 41: 523-30
[38] Li JW, Dong S, Song J, et al. Purification and characteriza-
tion of a bifunctional alginate lyase from Pseudoal-
teromonas sp. SM0524. Mar Drugs, 2011, 9(1): 109-23
[39] Eftekhar F, Schille NL. Partial purification and characteriza-
tion of a mannuronan-specific alginate lyase from
Pseudomonas aeruginosa. Curr Microbiol, 1994, (29): 37-
42
[40] Yoon HJ, Hashimoto W, Miyake O, et al. Overexpression
in Escherichia coli, purification, and characterization of
Sphingomonas sp. A1 alginate lyases. Protein Expr Purif,
2000, 19: 84-90
[41] Hashimoto W, Okamoto M, Hisano T, et al. Sphingomonas
sp. A1 lyase active on both poly-β-d-mannuronate and
heteropolymeric regions in alginate. Ferment Bioengin,
1998, 86(2): 236-8
[42] Hashimoto W, Miyake O, Momma K, et al. Molecular
identification of oligoalginate lyase of Sphingomonas sp.
strain A1 as one of the enzymes required for complete
depolymerization of alginate. J Bacteriol, 2000, 182(16):
4572-7
[43] Cao LX, Xie LJ, Xue XL, et al. Purification and charac-
terization of alginate lyase from Streptomyces species
strain A5 isolated from banana rhizosphere. J Agri Food
Chem, 2007, 55: 5113-7
[44] Tseng CH, Kuniko Y, Kitamikado M. Two types of
alginate lyase from a marine bacterium Vibrio sp. AL-9.
Nippon Suisan Gakkaishi, 1992, 58(4): 743-9
[45] Tseng CH, Kuniko Y, Kitamikado M. Isolation and some
properties of alginate lyase from a marine bacterium
Vibrio sp. AL-128. Nippon Suisan Gakkaishi, 1992, 58(3):
533-8
[46] Kitamikado M, Tseng CH, Kuniko Y, et al. Two types of
bacterial alginate lyases. Appl Environ Microbiol,1992(8):
2474-8
[47] Fu XT, Lin H, Kim SM. Purification and characterization
of a Na+/K+ dependent alginate lyase from turban shell gut
Vibrio sp. YKW-34. Enzyme Microb Technol, 2007, 41:
828-34
[48] 李京宝, 于文功, 韩峰, 等. 从海洋中分离的弧菌YQ102
褐藻胶裂解酶的纯化和性质研究. 微生物学报, 2003,
43(6): 753-7
[49] Zhou MH, Han FF, Li J, et al. Isolation and identification
of a novel alginate-degrading bacterium, Ochrobactrum
sp. Songklanakarin J Sci Technol, 2008, 30 (2): 135-40
[50] Preiss J, Ashwell G. Alginic acid metabolism in bacteria: I.
enzymatic formation of unsaturated oligosaccharides and
4-deoxy-L-erythro-5-hexoseulose uronic acid. J Biol
Chem, 1962, 237: 309-16
[51] Takase R, Ochiai A, Mikami B, et al. Molecular identifica-
tion of unsaturated uronate reductase prerequisite for
alginate metabolism in Sphingomonas sp. A1. Biochim
Biophys Acta, 2010, 1804: 1925-36
[52] Gacesa P, Caswell RC. Control and heterologous expres-
sion in Escherichia coli of the Klebsiella pneumoniae
gene encoding alginate lyase. Hydrobiologia, 1990,
204/205(1): 661-5
[53] Schiller N, Monday S, Boyd C, et al. Characterization
of the Pseudomonas aeruginosa alginate lyase gene
(algL): cloning, sequencing, and expression in Escheri-
chia coli. J Bacteriol, 1993, 175(15): 4780-9
[54] Maki H, Mori A, Fujiyama K, et al. Cloning, sequence
analysis and expression in Escherichia coli of a gene
encoding an alginate lyase from Pseudomonas sp. OS-
ALG-9. Microbiology, 1993, 139: 987-93
[55] 岳明, 丁宏标, 乔宇. 铜绿假单胞菌algL基因在毕赤酵
母中的表达及其性质研究 . 中国农业科学 , 2008 ,
41(4): 1192-8
[56] Baron AJ, Wong TY, Hicks SJ, et al. Alginate lyase from
Klebsiella pneumonia subsp. aerogenes: gene cloning,
sequence analysis and high-level production in
Escherichia coli. Gene, 1994, 143: 61-6
[57] Peciña A, Pascual A, Paneque A. Cloning and expression
of the algL gene, encoding the Azotobacter chroococcum
alginate lyase: purification and characterization of the
enzyme. J Bacteriol, 1999, 181(5): 1409-14
[58] Matsubara Y, Kawada R, Iwasaki K, et al. Cloning and
生命科学 第24卷482
sequence analysis of a gene(alyPG)encoding poly(a-L-
guluronate) lyase from Corynebacterium sp. strain ALY-1.
J Biosci Bioeng, 2000, 89(2): 199-202
[59] Sugimura I, Sawabe T, Ezura Y. Cloning and sequence
analysis of Vibrio halioticoli genes encoding three types
of polyguluronate lyase. Mar Biotechnol, 2000, 2: 65-73
[60] Sawabe T, Takahashi H, Ezura Y, et al. Cloning, sequence
analysis and expression of Pseudoalteromonas elyakoii
IAM 14594 gene (alyPEEC) encoding the extracellular
alginate lyase. Carbohydrate Res, 2001, 335: 11-21
[61] Iwamoto Y, Iriyama K, Osatomi K, et al. Primary structure
and chemical modification of some amino acid residues of
bifunctional alginate lyase from a marine bacterium
Pseudoalteromonas Sp. strain No. 272. Protein Chem,
2002, 21(7): 455-63
[62] Miyake O, Hashimoto W, Murata K. An exotype alginate
lyase in Sphingomonas sp. A1: overexpression in
Escherichia coli, purification, and characterization of
alginate lyase IV (A1-IV). Protein Expr Purif, 2003, 29:
33-41
[63] Hashimoto W, Miyake O, Ochiai A, et al. Molecular
identification of Sphingomonas sp. A1 alginate lyase (A1-
IV’) as a member of novel polysaccharide lyase family 15
and implications in alginate lyase evolution. Biosci
Bioeng, 2005, 99(1): 48-54
[64] Kawamoto H, Horibe A, Miki Y, et al. Cloning and
sequencing analysis of alginate lyase genes from the
marine bacterium Vibrio sp. O2. Mar Biotechnol, 2006,
8(5): 481-90
[65] Kim DE, Lee EY, Kim HS. Cloning and characterization
of alginate lyase from a marine bacterium Streptomyces
sp. ALG-5. Mar Biotechnol, 2009, 11: 10-6
[66] Matsushima R, Danno H, Uchida M, et al. Analysis of
extracellular alginate lyase and its gene from a marine
bacterial strain, Pseudoalteromonas atlantica AR06. Appl
Microb Biotechnol, 2010, 86: 567-76
[67] Takeda H, Yoneyama F, Kawai S, et al. Bioethanol
production from marine biomass alginate by metabolically
engineered bacteria. Energy Environ Sci, 2011, 4: 2575-81