免费文献传递   相关文献

Distribution patterns of woody plants in a secondary forest in the montane region of eastern Liaoning Province, China

辽东山区次生林木本植物空间分布



全 文 :第 35 卷第 1 期
2015年 1月
生 态 学 报
ACTA ECOLOGICA SINICA
Vol.35,No.1
Jan.,2015
http: / / www.ecologica.cn
基金项目:国家科技支撑计划专题(2012BAD22B040206); 国家自然科学青年基金项目(31300378)
收稿日期:2014鄄05鄄17; 摇 摇 修订日期:2014鄄11鄄10
*通讯作者 Corresponding author.E鄄mail: yyzyb@ 163.com
DOI: 10.5846 / stxb201405171012
白雪娇,邓莉萍,李露露,牛沙沙,韩美娜,秦胜金,周永斌.辽东山区次生林木本植物空间分布.生态学报,2015,35(1):0098鄄0105.
Bai X J, Dend L P, Li L L, Niu S S, Han M N, Qin S J, Zhou Y B.Distribution patterns of woody plants in a secondary forest in the montane region of
eastern Liaoning Province, China.Acta Ecologica Sinica,2015,35(1):0098鄄0105.
辽东山区次生林木本植物空间分布
白雪娇1,2,邓莉萍1,李露露1,牛沙沙1,韩美娜1,秦胜金1,周永斌1,2,*
1 沈阳农业大学林学院, 沈阳摇 110866
2 中国科学院清原森林生态系统观测研究站, 沈阳摇 110016
摘要:森林木本植物的空间格局有助于揭示群落结构的形成机制与潜在的生态学过程,且对林分经营具有一定指导意义。 在
0—50 m尺度范围内综合分析了辽东山区 4 hm2温带次生林样地多度>10的树种空间格局。 研究发现:(1)在完全随机零模型
下,大部分树种呈现聚集格局,聚集格局树种的比例随尺度增加而降低;在>32 m的较大尺度下,随尺度增加,随机和规则格局
成为树种分布的主要形式;(2)在异质性泊松过程零模型下,55.9%的树种呈现随机格局,其余大部分树种在<10 m的尺度下呈
现聚集格局,且随尺度增加,规则格局成为主要形式;(3)在完全随机零模型下,树种属性(林层、径级和多度)显著地影响种群
聚集度,而在异质性泊松过程零模型下,树种属性对种群聚集度不存在显著影响。 综上,生境异质性、扩散限制和树种属性部分
解释了辽东山区次生林木本植物空间分布格局,相对而言,生境异质性的效应更为突出。 研究结果有助于揭示次生林群落生物
多样性的维持机制。
关键词:生物多样性; 聚集; 生境异质性; 扩散限制; 点格局分析
Distribution patterns of woody plants in a secondary forest in the montane region
of eastern Liaoning Province, China
BAI Xuejiao1,2, DEND Liping1, LI Lulu1, NIU Shasha1, HAN Meina1, QIN Shengjin1, ZHOU Yongbin1,2,*
1 College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
2 Qingyuan Forest CERN, Chinese Academy of Sciences, Shenyang 110016, China
Abstract: Secondary forests comprise the main forest resource in China. These secondary forests maintain the species
composition and habitat of primary forests but differ markedly in terms of structural composition, tree growth, productivity,
forest environment, and ecological function. In the montane region of eastern Liaoning province, secondary forests are
gradually formed through the destruction of broad鄄leaved Korean pine forests and they cover an area of 1. 2 伊 107 hm2,
representing 84% of the total forest area. Secondary forests play important roles in soil and water conservation, climate
regulation, agricultural production, and economic revitalization of old industrial sites. The spatial pattern of these forests is
derived from the combined effects of biological characteristics, interspecific or intraspecific relationships, and environmental
conditions, and it is an indicator of the adaptation of populations to environmental resources and ecological processes. The
spatial distribution pattern reflects the processes of seed dispersal limitation, competition, habitat heterogeneity, etc.
Evaluation of the distribution patterns of woody plants facilitates elucidation of the mechanisms involved in determining
community structure and underlying ecological processes in forests. In the present study, we analyzed the distribution
patterns of species with more than 10 individuals at spatial scales of 0—50 m in a 4 hm2 temperate secondary forest plot
located in the montane region of eastern Liaoning province. First, we found that most species showed aggregated spatial
http: / / www.ecologica.cn
patterns under complete spatial randomness null models. The proportion of species exhibiting aggregated spatial patterns
decreased with spatial scale, whereas the proportion of species exhibiting random or regular spatial patterns increased with
spatial scale and mainly occurred at a scale of >32 m. Second, we found that 55.9% of species showed random or regular
patterns under heterogeneous Poisson process null models, whereas the remaining species showed aggregated patterns at a
scale of <10 m. The proportion of species exhibiting random or regular spatial patterns increased with spatial scale and
mainly occurred at a scale of > 10 m. Finally, we found that, under complete spatial randomness null models, species
attributes (canopy layer, mean DBH, and abundance) clearly influenced the population aggregation; under heterogeneous
Poisson process null models, species attributes had no significant influence on the population aggregation. Taken together,
our results indicate that the distribution patterns of woody plants in secondary forests in the montane region of eastern
Liaoning province may be partially explained by seed dispersal limitation, species attributes, and, in particular, habitat
heterogeneity. Our findings provide a valuable insight into the mechanisms of biodiversity maintenance in secondary forests.
Key Words: biodiversity; aggregation; habitat heterogeneity; seed dispersal limitation; point pattern analysis
次生林是中国森林资源的主体,它既保持着原始森林的物种成分与生境,又与原始森林在结构组成、林木
生长、生产力、林分环境和生态功能等诸多方面有着显著的不同[1]。 随着森林的退化,次生林面积的快速增
加,生物多样性丧失的不断加剧,生态学家面临着如何恢复和保护生物多样性的严峻考验。 因此,生物多样性
的维持机制,一直是生态学研究的核心内容,而森林木本植物的空间格局有助于揭示群落结构的形成机制与
潜在的生态学过程[2鄄5],且对林分经营具有一定指导意义[6]。
种群的空间格局是多种因素综合作用的结果,如竞争作用、扩散限制、生境异质性和种群自身的属性(生
长型、耐阴性、种子传播方式、多度和径级等)等[7鄄17]。 早期研究空间格局的方法存在一定的局限性,如样方法
受限于取样面积,距离法则受种群密度的影响,它们都不能全面反映种群或群落的空间分布特点。 由于点格
局分析方法能有效地利用空间点的坐标信息,描述不同尺度的种群空间格局和种间关系,能很好地揭示森林
群落的格局,因而被生态学家广泛应用[18鄄20]。
辽东山区次生林是由原生的地带性顶极群落阔叶红松林被破坏后逐渐形成的[21],现存面积约 1.2伊107
hm2,是辽东山区森林资源的重要组成部分,占该区森林总面积的 84%,担负着保持水土、涵养水源、调节气候
的重要作用,是该区农业生产及辽宁老工业基地经济振兴的重要绿色屏障[22]。 本研究应用点格局方法分析
辽东山区次生林木本植物在不同空间尺度的分布格局,并比较不同种子传播方式、不同林层间的种群聚集度
差异,探讨多度和平均胸径对种群聚集度的影响,以期揭示次生林群落结构、演替动态及驱动机制,进而为该
区域次生林的恢复和改造及生物多样性保护提供科学依据。
1摇 研究区概况
研究区位于辽宁省东部山区清原县的次生林内(41毅51.102忆N,124毅54. 543忆E),属于长白山山脉的延伸,
海拔 252—1116m。 气候属于温带大陆性气候,冬季漫长寒冷,夏季炎热多雨。 年均气温 3.9—5.4益,最冷月
为 1月,最热月为 7月。 大于 10益的年活动积温 2497. 5—2943. 0益,无霜期 120—139 d,年降水量 700—850
mm,降雨集中在 6—8 月份[23]。 主要有柞属(Quercus spp.)、松属(Pinus spp.)、桦属(Betula spp.)、槭属(Acer
spp.)、椴属(Tilia spp.)、水曲柳(Fraxinus mandshurica)、核桃楸(Juglans mandshurica)等珍贵树种。
2摇 研究方法
2.1摇 样地设置与植被调查
在清原森林生态实验站附近的实验林设置次生林固定监测样地一块,样地规格为 200 m 伊 200 m,按
CTFS (Centre for Tropical Forest Science) 样地建设方法[24],用全站仪将整个样地划分成 100个20 m伊20 m的
99摇 1期 摇 摇 摇 白雪娇摇 等:辽东山区次生林木本植物空间分布 摇
http: / / www.ecologica.cn
样方,调查样方内所有胸径(DBH)逸1 cm的木本植物,记录植株的种类、胸径及坐标等,并挂牌标记,以便进
行永久监测,调查于 2013年 8月完成。 样地平均海拔为 728. 2 m,最高海拔 780.5 m,最低海拔 685.5 m,最大
高差 95.0 m,样地地形如图 1所示。
图 1摇 样地等高线图
Fig.1摇 The topography map in the plot
2.2摇 数据分析
2.2.1摇 点格局分析
采用双关联函数 g( r)来分析不同尺度下木本植物
的分布格局。 双关联函数 g ( r)由 Ripley忆 s K 函数
(K( r)= 仔r2)推演而来[25鄄26],公式如下:
g( r) = 1
2仔r
dK( r)
d( r)
Ripley忆s K( r)是在以某一任意点为圆心、r 为半径
的圆内,期望点数与样方内点密度的比值[26鄄27],即以 r
为半径的圆内所有个体的分布,包括了以某一距离为半
径的圆中的所有信息,随着尺度的增加,大尺度的分析
结果包括了小尺度的信息。 这种累积性的计算,混淆了
大尺度与小尺度的效应[8,26]。 g 函数用圆环替代了
Ripley忆s K 函数所使用的圆圈,计算环内的点的平均数
目,从而能较敏感地判别某一尺度下点的实际分布偏离
期望值的程度。 对于聚集分布格局,g( r) > 1;对于规则分布格局,g( r)<1;对于完全随机分布格局,g( r)= 1。
2.2.2摇 零模型
完全随机零模型(Complete spatial randomness, CSR)相当于均质的泊松过程,即区域内种群每个个体在
任何位置出现的概率都是等同的,各个位置的种群个体都是相互独立的。
异质性泊松过程零模型(Heterogeneous Poisson process, HPP)则要求在某一区域内找到 n 个种群个体的
概率要服从泊松分布,即排除生境异质性的零假设模型。 异质性泊松过程用于预测以环境协变量为函数的某
个位置某个种群个体出现的概率。 在这个零模型中,种群个体密度与生境异质性的关系用空间异质性密度函
数 姿( s)来表示[28鄄29]。 异质性密度函数 姿( s)随位置 s发生变化,生境模型和物种分布模型[30]能用于异质性密
度函数 姿( s)的参数估计。 拟合异质性泊松过程密度函数最为显著的参数模型为 log多项式模型[31]。
姿( s) = exp(茁TX( s))
式中,X(s)是环境变量的向量,而 茁T是回归参数的向量。 本研究中环境变量是 5m伊5m 尺度下的海拔、坡度、
凹凸度和坡向。
本研究分析样地内多度>10的 34个树种的空间分布,树种属性如表 1所示。 采用上述两种零模型,分析
尺度范围都为 0—50 m,应用 Monte Carlo循环模拟 199次,构建置信度为 95%的置信区间,点格局分析使用 R
3.0.2软件[32]。
表 1摇 多度大于 10的树种属性
Table 1摇 Attributes for species with 逸 10 individuals
树种
Species
多度
Abundance
平均胸径 / cm
Mean DBH
林层
Canopy layer
种子传播类型
Seed dispersal type
色木槭 Acer mono 1484 4.83 中林层 风力传播
毛榛 Corylus mandshurica 953 1.90 林下层 重力传播
假色槭 Acer pseudo鄄sieboldianum 607 3.47 中林层 风力传播
暴马丁香 Syringa reticulata 595 2.81 林下层 风力传播
千金榆 Carpinus cordata 537 5.37 中林层 风力传播
001 摇 生摇 态摇 学摇 报摇 摇 摇 35卷摇
http: / / www.ecologica.cn
续表
树种
Species
多度
Abundance
平均胸径 / cm
Mean DBH
林层
Canopy layer
种子传播类型
Seed dispersal type
裂叶榆 Ulmus laciniata 460 5.49 中林层 风力传播
蒙古栎 Quercus mongolica 427 18.81 主林层 重力传播
胡桃楸 Juglans mandshurica 347 27.43 主林层 重力传播
水曲柳 Fraxinus mandshurica 265 16.76 主林层 风力传播
紫椴 Tilia amurensis 260 10.74 主林层 风力传播
花曲柳 Fraxinus mandshurica 230 11.83 主林层 风力传播
鼠李 Rhamnus davarica 179 2.29 林下层 重力传播
灯台树 Cornus controversa 176 9.45 中林层 重力传播
山杨 Populus davidiana 163 22.00 主林层 风力传播
青楷槭 Acer tegmentosum 130 5.64 中林层 风力传播
小楷槭 Acer tsckonoskii 106 2.40 中林层 风力传播
刺五加 Acanthopanax senticosus 88 1.41 林下层 重力传播
忍冬属 Lonicera spp. 74 1.85 林下层 重力传播
白桦 Betula platyphylla 67 18.26 主林层 风力传播
乌苏里鼠李 Rhamnus ussuriensis 61 1.93 林下层 重力传播
黄檗 Phellodendron amurense 54 20.99 主林层 重力传播
怀槐 Maackia amurensis 52 9.64 中林层 风力传播
山樱桃 Cerasus maximowiczii 32 14.40 主林层 风力传播
枫桦 Betula costata 31 22.15 主林层 风力传播
八角枫 Alangium chinense 29 2.20 林下层 重力传播
东北山梅花 Philadelphus schrenkii 28 1.49 林下层 重力传播
小叶榆 Ulmus parvifolia 24 10.93 中林层 风力传播
翅卫矛 Euonymus macropterus 18 2.19 林下层 重力传播
多脉榆 Ulmus castaneifolia 17 2.74 林下层 风力传播
接骨木 Sambucus williamsii 16 3.34 林下层 重力传播
稠李 Prunus padus 13 2.97 林下层 重力传播
野丁香 Leptodermis potanini 13 3.16 林下层 风力传播
卫矛 Euonymus alatus 11 1.62 林下层 重力传播
摇 摇 样地中混有人工栽植的红松和落叶松,其多度分别为 191和 182,它们不包括在本文的分析中
2.2.3摇 树种属性对种群聚集程度的影响
本研究采用 g1—10表示种群聚集度,即 g( r= 1), g( r= 2), g( r = 3), g( r = 4), g( r = 5), g( r = 6), g( r =
7), g( r= 8), g( r= 9)和 g( r= 10)的平均值;运用 One鄄way ANOVA检验不同种子传播方式、林层间种群聚集
度的差异;运用线性模型检验多度和平均胸径对种群格局聚集度的影响,即以 g1—10为因变量,多度和平均胸
径为自变量。 由于拟合的 g1—10成偏态分布,上述两种分析中的 g1—10要经过 log转换。
3摇 结果分析
3.1摇 种群分布格局
在完全随机零模型下,大部分树种呈现聚集格局(图 2)。 所检验的树种在不同空间尺度上所表现的格局
不同(图 2),聚集分布的树种比例随尺度的增加而降低,如 85%的树种在 0—10 m 的尺度下呈现聚集格局,
71%的树种在 10—32 m的尺度下呈现聚集格局,42%的树种在 32—50 m 的尺度下呈现聚集格局。 相反,随
机格局和规则格局树种的比例随尺度增加而升高。 异质性泊松过程零模型下的分析表明:在 0—10 m的尺度
下,14个树种呈现聚集格局,1个树种呈现规则格局。 随着尺度的增加,聚集格局树种的比例减少,规则格局
树种的比例增加(图 3)。 在 20—50 m,1—2 个树种呈现聚集格局,13—14 个树种呈现规则格局。 在 0—
101摇 1期 摇 摇 摇 白雪娇摇 等:辽东山区次生林木本植物空间分布 摇
http: / / www.ecologica.cn
50 m,19个树种的分布服从随机分布。
摇 图 2摇 在完全随机零模型下,检验的树种在不同尺度上表现聚集、
随机和规则分布格局的比例
Fig.2摇 Proportion of tested species showing patterns of significant
aggregation, randomness and regularity at scales r under
complete spatial randomness null model
摇 图 3摇 在异质性泊松过程零模型下,检验的树种在不同尺度上表
现聚集、随机和规则分布格局的比例
Fig.3摇 Proportion of tested species showing patterns of significant
aggregation, randomness and regularity at scales r under
heterogeneous Poisson process null model
3.2摇 种子传播方式、林层对种群聚集度的影响
在完全随机零模型下,重力传播树种的平均聚集度(9.25依2.13)大于风传播树种的平均聚集度(9郾 11依
2郾 40),而 t检验结果表明风传播树种与重力传播树种平均聚集度的差异并不显著(P = 0.788)。 相反,在异质
性泊松过程零模型下,重力传播树种的平均聚集度(3.41依0.23)小于风传播树种的平均聚集度(4.55依0.40),
并且重力传播树种与风传播树种平均聚集度的差异并不显著(P= 0.10)。
在完全随机零模型下,主林层树种和中林层树种的平均聚集度(4.71依0.69; 6.31依1.76)小于林下层树种
的平均聚集度(14.03依3.43)。 t检验结果表明主林层和中林层树种与林下层树种平均聚集度间差异显著(P =
0.02; P= 0.04),且林层间的平均聚集度差异显著(P= 0.04)。 相反,在异质性泊松过程零模型下,主林层和中
林层树种的平均聚集度(4.24依0.56; 4.52依0.69)均大于林下层树种的平均聚集度(3.74依0.31),而林层间的平
均聚集度差异并不显著(P= 0.71)。
3.3摇 多度、平均胸径对种群聚集度的影响
在完全随机零模型下,28 个树种在 0—10 m 呈现显著的聚集格局,种群聚集度与多度、平均胸径呈现显
著的负相关(P= 0.00; P = 0.01, 表 2),即种群聚集度随多度和平均胸径的增加而显著地降低。 然而,在异质
性泊松过程零模型下,14个树种在 0—10 m 呈现显著的聚集格局,虽然种群聚集度与多度、平均胸径呈现负
相关,但并不显著(P= 0.09; P= 0.73, 表 2)。
4摇 讨论和结论
在完全随机零模型下,辽东山区次生林大部分树种呈现聚集格局,符合自然群落种群聚集分布的一般规
律[33]。 对热带、亚热带、温带森林样地的种群空间格局分析结果表明,研究尺度对树种聚集分布的比例存在
一定的影响[8,10,12,17,34]。 本研究发现 85%的树种在 0—10 m呈现聚集格局,这一比例略低于同尺度下温带、亚
热带和热带森林的研究结果[8,10,12,17]。 树种在 0—10 m的尺度下呈现聚集格局,因而在该区域次生林经营时,
应多关注 0—10 m尺度下的林木。 影响树种分布格局的因素有很多,生境异质性是森林木本植物聚集分布的
重要驱动因素[35鄄37]。 本研究发现在 32—50 m的较大尺度下 42%的树种呈现聚集格局,表明生境异质性部分
决定了辽东山区次生林样地木本植物的分布格局。 为了检验多种因素或生态学过程对种群分布格局的影响,
本研究采用异质性泊松过程零模型排除生境异质性效应。 虽然本研究在异质性泊松过程零模型中只考虑了
地形因子,如海拔、坡度、坡向和凹凸度,但这些地形因子也部分地反映了土壤、水分等其他生境因子,体现了
201 摇 生摇 态摇 学摇 报摇 摇 摇 35卷摇
http: / / www.ecologica.cn
辽东山区次生林样地生境异质性。 研究发现在异质性泊松过程零模型下,55.9%的树种呈现随机分布格局,
这说明辽东山区次生林样地树种的分布与生境存在着关联性;随着尺度的增加,聚集分布树种的比例降低,而
规则分布树种的比例增加,说明排除生境异质性效应部分树种的个体主要聚集在同种邻体的周围[5]。
扩散限制是影响同种聚集的主要因素[11,38鄄39]。 本研究发现在完全随机零模型下同种聚集的树种比例随
着尺度的增加而降低,且排除生境异质性效应后,聚集主要发生在<10 m 的局部尺度上,在>10 m 的尺度,聚
集树种的比例也随尺度的增加而急剧降低。 一方面,扩散导致大部分种子落在母株周围,种子数量随着远离
母株的距离而下降[40鄄41],即使负密度制约效应会提高母株周围更新个体的死亡率,但大部分更新个体仍会聚
集在成年树周围,导致种群聚集[5]。 另一方面,成年树周围的生境通常适宜种群生长,有助于更新体的存
活[5],导致种群在较小尺度聚集。
表 2摇 在线性模型下,多度、平均胸径对转换后聚集度的影响
Table 2摇 Effects of abundance, mean DBH on log鄄transformed g1—10under linear model
零模型
Null model
参数
Parameter
估计值
Estimate
标准误
Std. Error t P
完全随机零模型 截距 1.860 0.115 16.147 0.000
Complete spatial randomness 多度 -0.484 0.111 -4.373 0.000
null model 平均胸径 -0.380 0.132 -2.886 0.008
异质性泊松过程零模型 截距 1.458 0.073 19.846 0.000
Heterogeneous Poisson 多度 -0.103 0.056 -1.832 0.094
process null model 平均胸径 -0.029 0.080 -0.360 0.726
摇 摇 另外,种子传播方式会影响种群的扩散过程,进而影响种群分布格局[8,10,12,15,17]。 相对传播能力较好
的树种,传播能力较差的树种应具有更高的聚集度[17]。 虽然本研究发现在完全随机零模型下,重力传播树种
的平均聚集度大于风传播的树种,但两种传播方式间树种平均聚集度的差异并不显著。 相反,在异质性泊松
过程零模型下,风传播树种的平均聚集度却大于重力传播的树种,其结果可能是样本量限制造成的(在异质
性泊松过程零模型下,14个树种呈现显著的聚集格局,其中仅有 4个是重力传播的树种)。 较林下层树种,主
林层树种种子传播能力通常更强[17],主林层树种的聚集度应小于林下层树种。 本研究也发现在完全随机零
模型下主林层和中林层树种的平均聚集度小于林下层树种的平均聚集度,且林层间的平均聚集度差异显著。
相反,在异质性泊松过程零模型下,主林层和中林层树种的平均聚集度却大于林下层树种的平均聚集度,而林
层间的平均聚集度差异并不显著,说明排除生境异质性效应林层对树种分布格局没有显著的影响。
径级和多度也会影响种群聚集度。 在完全随机零模型下,随着多度和平均胸径的增加,种群聚集度显著
地降低。 该结果表明相对于丰富种和常见种,偶见种甚至稀有种的个体更加聚集,与其他研究结果一
致[8,10,12,17]。 相对大径级的树种,小径级树种的个体更加聚集,相关结论在其他研究中也有所体现[8鄄9,11鄄12]。
可能是由于大径级的树种一般处于主林层,主林层树种种子传播能力更强,聚集度较低,相反小径级的树种一
般处于林下层,其种子传播能力较差,聚集度相对更高。 也有可能是由于大径级的树种种内或种间对光、水或
养分等资源的竞争较为强烈,聚集度较小径级的树种低。 相反,在异质性泊松过程零模型下,多度和平均胸径
对种群聚集度不存在显著影响,说明相比径级和多度两个属性生境异质性对种群分布格局的影响更大。
本研究发现在完全随机零模型下辽东山区次生林大部分树种呈现聚集格局,树种的属性,如林层、平均胸
径和多度显著地影响种群的聚集分布格局。 然而,在异质性泊松过程零模型下树种属性对种群分布格局没有
显著的影响。 综合两种零模型的结果,生境异质性、扩散限制和树种属性共同驱动着辽东山区次生林木本植
物空间分布格局,相对而言,生境异质性的效应更为突出。
致谢:沈阳农业大学林学院高阳、胡兴、李涛、刘翼、魏俊和肖连垒等同学在植被调查中给予帮助;感谢中国科
学院武汉植物园郭屹立博士和中国科学院沈阳应用生态研究所王绪高博士在数据分析中给予帮助,特此
301摇 1期 摇 摇 摇 白雪娇摇 等:辽东山区次生林木本植物空间分布 摇
http: / / www.ecologica.cn
致谢。
参考文献(References):
[ 1 ]摇 朱教君. 次生林经营基础研究进展. 应用生态学报, 2002, 13(12): 1689鄄1694.
[ 2 ] 摇 Ripley B D. Modelling spatial patterns (with discussion) . Journal of the Royal Statistical Society, Series B, 1977, 39: 172鄄212.
[ 3 ] 摇 Diggle P J. On parameter estimation and goodness鄄of鄄fit testing for spatial point patterns. Biometrics, 1979, 35(1): 87鄄101.
[ 4 ] 摇 Barot S, Gignoux J, Menaut J C. Demography of a savanna palm tree: predictions from comprehensive spatial pattern analyses. Ecology, 1999, 80
(6): 1987鄄2005.
[ 5 ] 摇 祝燕, 白帆, 刘海丰, 李文超, 李亮, 李广起, 王顺忠, 桑卫国. 北京暖温带次生林种群分布格局与种间空间关联性. 生物多样性, 2011,
19(2): 252鄄259.
[ 6 ] 摇 汤孟平. 森林空间经营理论与实践. 北京: 中国林业出版社, 2007.
[ 7 ] 摇 Bohlman S A, Laurance W F, Laurance S G, Nascimento H E M, Fearnside P M, Andrade A. Importance of soils, topography and geographic
distance in structuring central Amazonian tree communities. Journal of Vegetation Science, 2008, 19(6): 863鄄874.
[ 8 ] 摇 Condit R, Ashton P S, Baker P, Bunyavejchewin S, Gunatilleke S, Gunatilleke N, Hubbell S P, Foster R B, Itoh A, LaFrankie J V, Lee H S,
Losos E, Manokaran N, Sukumar R, Yamakura T. Spatial patterns in the distribution of tropical tree species. Science, 2000, 288 ( 5470):
1414鄄1418.
[ 9 ] 摇 Getzin S, Wiegand T, Wiegand K, He F L. Heterogeneity influences spatial patterns and demographics in forest stands. Journal of Ecology, 2008,
96(4): 807鄄820.
[10] 摇 Guo Y L, Lu J M, Franklin S B, Wang Q G, Xu Y Z, Zhang K H, Bao D C, Qiao X J, Huang H D, Lu Z J, Jiang M X. Spatial distribution of
tree species in a species鄄rich subtropical mountain forest in central China. Canadian Journal of Forest Research, 2013, 43(9): 826鄄835.
[11] 摇 He F L, Legendre P, LaFrankie J V. Distribution patterns of tree species in a Malaysian tropical rain forest. Journal of Vegetation Science, 1997, 8
(1): 105鄄114.
[12] 摇 Li L, Huang Z L, Ye W H, Cao H L, Wei S G, Wang Z G, Lian J Y, Sun I F, Ma K P, He F L. Spatial distributions of tree species in a
subtropical forest of China. Oikos, 2009, 118(4): 495鄄502.
[13] 摇 Lin Y C, Chang L W, Yang K C, Wang H H, Sun I F. Point patterns of tree distribution determined by habitat heterogeneity and dispersal
limitation. Oecologia, 2011, 165(1): 175鄄184.
[14] 摇 Pulliam H R. On the relationship between niche and distribution. Ecology Letters, 2000, 3(4): 349鄄361.
[15] 摇 Seidler T G, Plotkin J B. Seed dispersal and spatial pattern in tropical trees. PLoS Biology, 2006, 4(11): e344.
[16] 摇 Svenning J C, Engelbrecht B M J, Kinner D A, Kursar T A, Stallard R F, Wright S J. The relative roles of environment, history and local dispersal
in controlling the distributions of common tree and shrub species in a tropical forest landscape, Panama. Journal of Tropical Ecology, 2006, 22(5):
575鄄586.
[17] 摇 Wang X G, Ye J, Li B H, Zhang J, Lin F, Hao Z Q. Spatial distributions of species in an old鄄growth temperate forest, northeastern China.
Canadian Journal of Forest Research, 2010, 40(6): 1011鄄1019.
[18] 摇 Diggle P J. Statistical Analysis of Spatial Point Patterns. New York: Academic Press, 1983.
[19] 摇 Stoyan D, Penttinen A. Recent applications of point process methods in forestry statistics. Statistical Science, 2000, 15(1): 61鄄78.
[20] 摇 Dale M R T, Dixon P, Fortin M J, Legendre P, Myers D E, Rosenberg M S. Conceptual and mathematical relationships among methods for spatial
analysis. Ecography, 2002, 25(5): 558鄄577.
[21] 摇 胡理乐, 毛志宏, 朱教君, 刘足根, 陈广华, 张立君. 辽东山区天然次生林的数量分类. 生态学报, 2005, 25(11): 2848鄄2854.
[22] 摇 孔祥文, 胡万良, 张冰, 王玉光. 辽东山区现有次生林结构类型的数量分类. 辽宁林业科技, 2002, (3): 14鄄16.
[23] 摇 李秀芬, 朱教君,王庆礼,刘足根,侯传生,杨焕君. 辽东山区天然次生林雪 /风灾害成因及分析. 应用生态学报, 2004, 15(6): 941鄄946.
[24] 摇 Condit R. Research in large, long鄄term tropical forest plots. Trends in Ecology and Evolution, 1995, 10(1): 18鄄23.
[25] 摇 Ripley B D. The second鄄order analysis of stationary point processes. Journal of Applied Probability, 1976, 13(2): 255鄄266.
[26] 摇 Wiegand T, Moloney K A. Rings, circles, and null鄄models for point pattern analysis in ecology. Oikos, 2004, 104(2): 209鄄229.
[27] 摇 Loosmore N B, Ford E D. Statistical inference using the G or K point pattern spatial statistics. Ecology, 2006, 87(8): 1925鄄1931.
[28] 摇 Diggle P J. Statistical Analysis of Spatial Point Patterns. 2nd ed. London: Hodder Education Publishers, 2003.
[29] 摇 Illian J, Penttinen A, Stoyan H, Stoyan D. Statistical Analysis and Modelling of Spatial Point Patterns. Chichester, UK: Wiley鄄Interscience, 2008.
[30] 摇 Elith J, Leathwick J R. Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology,
Evolution, and Systematics, 2009, 40(1): 677鄄697.
401 摇 生摇 态摇 学摇 报摇 摇 摇 35卷摇
http: / / www.ecologica.cn
[31]摇 Waagepetersen R P. An estimating function approach to inference for inhomogeneous Neyman鄄Scott processes. Biometrics, 2007, 63(1): 252鄄258.
[32] 摇 R Development Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical
Computing, 2009.
[33] 摇 Greig鄄Smith P. Quantitative Plant Ecology. 3rd ed. Oxford: Blackwell Scientific Publications, 1983.
[34] 摇 宋厚娟, 叶吉, 蔺菲, 原作强, 郝占庆, 王绪高. 取样面积对森林木本植物空间分布格局分析的影响. 科学通报, 2014, 59( 24):
2388鄄2395.
[35] 摇 Harms K E, Condit R, Hubbell S P, Foster R B. Habitat associations of trees and shrubs in a 50鄄ha neotropical forest plot. Journal of Ecology,
2001, 89(6): 947鄄959.
[36] 摇 Lai J S, Mi X C, Ren H B, Ma K P. Species鄄habitat associations change in a subtropical forest of China. Journal of Vegetation Science, 2009, 20
(3): 415鄄423.
[37] 摇 Wiegand T, Gunatilleke S, Gunatilleke N. Species associations in a heterogeneous Sri Lankan dipterocarp forest. The American Naturalist, 2007,
170(4): E77鄄E95.
[38] 摇 Murrell D, Purves D, Law R. Intraspecific aggregation and species coexistence. Trends in Ecology & Evolution, 2002, 17(5): 211.
[39] 摇 Hardy O J, Sonk佴 B. Spatial pattern analysis of tree species distribution in a tropical rain forest of Cameroon: Assessing the role of limited dispersal
and niche differentiation. Forest Ecology and Management, 2004, 179(1 / 3): 191鄄202.
[40] 摇 Janzen D H. Herbivores and the number of tree species in tropical forests. The American Naturalist, 1970, 104(940): 501鄄528.
[41] 摇 Connell J H. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees / / den Boer P J,
Gradwell G R, eds. Dynamics of Populations. Wageningen, The Netherlands: Center for Agricultural Publishing and Documentation, 1971:
298鄄312.
501摇 1期 摇 摇 摇 白雪娇摇 等:辽东山区次生林木本植物空间分布 摇