免费文献传递   相关文献

Effect of cofactor regulation on succinate production in Escherichia coli during dual-phase fermentation

基于辅因子调控对大肠杆菌两阶段发酵产丁二酸的影响



全 文 :!10
"!

#
2012
$

%
M
 

 
Ê
 
“
 
Ë
 
Ì
ChineseJournalofBioprocessEngineering
Vol.10No.3
May2012
doi:10.3969/j.issn.1672-3678.2012.03.001
OPQI
:2011-09-22
KCR!

ÍÎÏÐÑo)ÒÓÔÕÖ
(21076105);
ÍÎ×Ø)ÙÆÇ8ÉÚÛ
(973
ÚÛ

ÓÔÕÖ
(2009CB724701)
ST.U

ÜÝÞ
(1985—),
ß

àáqâã

äåÆÇM

ÆÇæç

),“Ì

89“Ì

è
 
é

‚êã
),
ëì
,Email:bioengine@njut.
edu.cn
KVWXYZ[\]^_`abc
defghijk
!"#

$%&

(#

)
 
*

+,-

./0

1
 
2

3
 
4

56789: ;<=>?7@:A

56
210009)
7
 
l

œž
E.coliNZN111
Ÿ ¡¢£¤
E.coliNZN111/pTrc99a pncB
¥¦§¨©ª«¬­®
。E.coli
NZN111¯
°±¥¦©ª«¬²³
,´
µ‹¶·«¬¸¹º

»¼¥½

¾¿¿¸ÀÁ«šÃ«ÄÅÆÇ
,¯
°±¥¦¡¢£¤
E.coliNZN111/pTrc99a pncB,
Èɶ·«¬¹ºÊĘ̈ÍΫ§‹

ÏЩª«¬¨¸

©
ª«ÑÒÓÔÅÕÒÖ×ÏО
139%
Ó
20%。
mno

ØÙ£

«

šÃ«ÄÅÆÇ

©ª«
pqrst
:Q815    
6uvBw
:A    
6x;t
:1672-3678(2012)03-0001-05
EfectofcofactorregulationonsuccinateproductioninEscherichiacoli
duringdualphasefermentation
LIURongming,LIANGLiya,WANGGuangming,ZHANGMin,
MAJiangfeng,CHENKequan,JIANGMin,WEIPing
(ColegeofBiotechnologyandPharmaceuticalEngineering,NanjingUniversityofTechnology,Nanjing210009,China)
Abstract:Twostrains,includingE.coliNZN111anditsrecombinantstrainE.coliNZN111/pTrc99a
pncBwereinvestigatedastheproductionofsuccinate.Duringdualphasefermentation,E.coliNZN111
generatedsuccinateasthemainproducts,meanwhile,pyruvatewasaccumulated.Withtheoverex
pressedthenicotinicacidphosphoribosyltransferase,therecombinantstrainloweredtheconcerntrationof
pyruvate,eliminatedthegenerationofacetateandincreasedtheproductionofsuccinateunderdualphase
fermentationTheyieldofsuccinateandtheglucoseconsumptionratewasincreasedby139%,and
20%,respectively.
Keywords:E.coli;nicotinicacid;phosphoribosyltransferase;succinate
  
;<=
(succinate)
íAîŠï>
C4
ðñXY


ò†óYZ
1,4
;
ôõö÷øQRXo
ù–òúÃM¶ûi-¡lf;<=;(PBS)
>al

FGüM¶‰bc;<=ýXo‰


òÿ¢£
CO2!"#$%&,($)*+
ZóÆÇ,Ø
[1-3]。
  
1234
NZN111
í56789M:;<=>
-n4B

.í/*0ª12=3õV~NO=
4=5ÃV>67),
ldhA、pflB,
y8+V
NADH/NAD+
9ð:

56789;<=>;<=
>ZNO=>1˜?@
[4-5]。
A*BCD89ËÌ
s×E4
E.coliNZN111/pTrc99a pncB
FGH4
Bs
NADH/NAD+
þIJð:

‘û`aKL=
M$sNOV>V®

"#NO=>?@

PÊ;
<=>:˜
[6]。
QRS56789>TUVW×
E4YZ;<=>Fn

ÿ#ó1234),“Ì
456789M:;<=X£)Ù

Y

ó123
4
NZN111
56789M:;<=>Z[\]
[7]。
q
1 
]^_`
NZN111
abcdye
fghiz{|}
Fig.1 Pathwaysofsuccinicacidproductionfor
EscherichiacoliNZN111during
dualphagefermentation
1 
~%€
11 

  
^_4~0`4
E.coliNZN111(ldhA::Kan
Pfl::cam),
abFcbdeZf1o
Clark
ëìg
h

—i
pTrc99a,
ajkl1omnoëìgh

E.coliNZN111/pTrc99a pncB,
aj“p1oM¶
ËÌýêq“ÌrstÏ_uv

12 
ƒ„K%ƒ„€
121 
wx)
  
î-wx)

9yz
5g/L,
}{
10g/L,
NaCl5g/L,pH70。
  
89wx)

9yz
5g/L,
}{
10g/L,
NaCl5g/L,
tuK
40g/L,
|=
05mmol/L,
xy
}
IPTG03mmol/L,pH70。
  
wx)~HG€Êdr¿

=d‚r¿~
hƒqr¿

„—˜…Ui†ó
25、30
~
100
μg/mL。
122 
wxæ‰
  
î-wx

‡ˆ‰*
-80℃
>4î~ÊQS‡
«M¿>ðŠ‹®X

Œ4Ž
150mL
î-wx
)s
,37℃、200r/min
wx
5h。
  
89wx

‡î-ÿ
10%
>‘’“Q
15L
89wx)>
5L
89”s
,30℃、170r/min
QDwx•4–M—{˜£#
,30℃、170r/min
ÿ
05L/min
>™š›œ’
CO2,CD8948h。
13 
r…€
131 
89–Z[¶iž
  
Ÿ M¶˜
(OD600)、Ÿ ¡—˜(DCW)、tu
Kÿ–QR=¢£¤`¥¦
[6]。
132 
V®¢£
  
§¨©ª¤`¥¦
[6]。
  
«}…U££¤`
Bradford
‰
[8],
ÿ¬­®
}
(BSA)
ó¯°

  NAPRTase
V®££æ‰¤`¥¦
[9]。
  NAPRTase
V®£±
:30℃、1min
²WX
1mmol
>|=³Xó|=´w=µ¶·>V˜

¸
1U。
þV®£±ó¹º»}¼Q>V®
(U/mg)。
  PPC,ICL
V®££æ‰¤`¥¦
[6]。
  PPC,ICL
V®£±ó
1min
²WX
1μmol
NADH
³Xó
NAD+
µ¶·>V˜ó
1U[4]。
þV
®£±ó¹º»}¼Q>V®
(U/mg)。
133 
+V
NADH
ý
NAD+
…U>££
  
+V
NADH
ý
NAD+
>££æ‰¤`¥¦
[10]。
2 
†‡%ˆ)
21 
3‰`Š‹ŒŽyi‘’
  
×E4~î-wx)sQDwx•½¾
OD600
ó
03、05、07、09
>wxsʒ„…U
05
mmol/L
>|=
、03mmol/L
>
IPTG,
;<~½¾
OD600ó03>wx¿Ê’ 05mmol/L>|=
†óÀ0`
,30℃、170r/min
QDwx
8h,
Á
¨££4–M¶˜–
NAPRTase
þV®

ÂÃÄ
Y
2。

M
 

 
Ê
 
“
 
Ë
 
Ì
  
!
10
"
 
q2 
“”Ž
OD600\`•y–
NAPRTase
—˜™ijk
Fig.2 EfectsofdiferentOD600withIPTGonbiomass
andspecificenzymeactivityofNAPRTase
  
/Y

òÅ

ËÆÊ
IPTG
xy),>
pncB
z{

F‘û×E4>M¶˜~
NAPRTase
þV®

~9;½¾
OD600>4sʒ IPTGxyz{,Ç
F~A£ÌU‹‘û4–>M¶˜~
NAPRTase
þ


Ƚ¾
OD600~03~07ÉÊ<,M¶˜~
NAPRTase
þV®Ë̽¾
OD600>PûÍPû;~
½¾
OD600ó07<ʒ IPTGxyz{,M¶˜~
NAPRTase
þV®Îû

ϜPʽ¾
OD600,M¶˜
~
NAPRTase
þV®ÐÍú‹

ÑòFíxy¶Ê
’ÒÓ

H
NAPRTase
ÔQÕÖ×؏z{

ÈÍ?
@1×E4>M—

22 

IPTG
š›i‘’
  
~×E4M—•ÎÙxyÚ¾˜<

i†çw
xsʒ„…Uó
01、03、05
~
07mmol/L
>
IPTG
ÿ–„…Uó
05mmol/L
>|=
,30℃、
170r/min
QDwx
8h,
Á¨££M¶˜–
NAP
RTase
þV®

ÂÃÄY
3。
q
3 IPTG
œ\`•y–
NAPRTase
—˜™ijk
Fig.3 EfectsofIPTGconcentrationoncelmass
andspecificenzymeactivityofNAPRTase
  
/Y

òÅ

~A£lÛ²

xy¶
IPTG
…U
Üû

M¶˜~
NAPRTase
þV®Üû
,IPTG
ÆÊ
„…Uó
03mmol/L
<

M¶˜~
NAPRTase
þV
®Îû

ÈÝË
03mmol/L
ÿÞ

M¶˜~
NAP
RTase
þV®ú‹

ÑòFí/*
IPTG
…UËû

eßµàQ>Ÿ á¯âb14–>M—

23 
3‰žhœi‘’
  
~×E4M—•ÎÙxyÚ¾˜<

i†Ê’
„…Uó
01、03、05
~
07mmol/L
>|=ÿ–
03mmol/L
>
IPTG,30℃、170r/min
QDwx

h,
Á¨££M¶˜–
NAPRTase
þV®

ÂÃÄ
Y
4。
  
/Y

òÅ

~A£…UlÛ²

|=…UÜ
û

M¶˜~
NAPRTase
þV®Üû

È|=ó
05
mmol/L
<

M¶˜~
NAPRTase
ÈV®Îû

È|
=„…UÝË
05mmol/L,
M¶˜~
NAPRTase
þ
V®ú‹

òFí˘>|=âb14–>M—
Z[
[11]。
q
4 
žhœ\`•y–
NAPRTase
˜™jk
Fig.4 Efectsofnicotinicacidconcentrationon
celmassandspecificenzymeactivityof
NAPRTase
24 
Ÿ ¡
NAPRTase
NADH
–
NAD+
ijk
  
wx4–½¾
OD600ó07ãä,ʒ„…U
ó
03mmol/LIPTG
~
05mmol/L
|=
,30℃、
170r/min
QDwx
8h
Þ

0å84B~×E4BÈ
æS‡V®££ÿ–
NADH
~
NAD+
££

ÂÃçz

µè

/z

òÅ

×E4
NAPRTase
þV®ó
1285
U/mg,
þV®‘û1
122
é
。NAD(H)
>«˜‘
û1
23
é

òÄ
pncB
),>˘z{òÿH`a
nÂð؏Þê‘û
,NADH
~
NAD+
>…Ui†
‘û1

é~
19
é

3 
!

# ÜÝÞø

)*+,-./0123456789:;<=>?@
 1 
\¢`%£¤`i—˜™–
NADH、NAD+、NAD(H)
iœ
Table1 SpecificenzymeactivityofNAPRTase,theconcentrationofNADH,NAD+
andNAD(H)inthecontrolstrainandrecombinantstrain
4B
þV®

(U·mg-1)
c(NADH)/
(μmol·g-1)
c(NAD+)/
(μmol·g-1)
c(NAD(H))/
(μmol·g-1)
E.coli
NZN111/pTrc99a 097 026 291 318
E.coliNZN111/
pTrc99a pncB 1285 213 834 1048
 
25 
Ÿ ¡
NAPRTase
\abcdijk
  
‡0`4ý×E4>î-ëÏÿ
10%
>‘î
˜‘’“Q
15L
89wx)>
5L
89”s

wx
4–½¾
OD600ó 07ãä,ʒ„…Uó 03
mmol/LIPTG
~
05mmol/L
|=
,30℃、170r/min
QDwx•4–M—È’˜£#
,30℃、170r/min
8
9
30h,
’¨££ëî¤ì

ÂÃçz

~z

µè

/z

òÅ

×E4CD67
30h,30g/L
>t
uK:
218g/L
>;<=

þå84‘û1
1868%,
;<=ؚ‘û1
139%,
íK™šî‘
û1
20%,
;<×E4sÔQ[=>MZ

"#1
Z[ï:¶089>?@

Í×E4s;<=ý
NO=>—˜…Uþðó
27,
ý0`4Sþ‘û
1
380%,
11"#1NO=>?@

 
2 
abcd¥¦d
30h
§‚MNi¨’†‡
Table2 Resultsofparametersonanaerobicfermentationat30haftertheonsetoftheanaerobicphase
4B
ρ(DCW)/
(g·L-1)
ρ(íK)/
(g·L-1)
íK™š

(g·h-1)
ρ(;<=)/
(g·L-1)
ρ(NO=)/
(g·L-1)
ρ([=)/
(g·L-1)
EcoliNZN111 535 25 015 76 134 29
EcoliNZN111/
pTrc99a pncB 574 30 017 218 80 NG
   
ñ

íK™šÿ¹»¡4–¹ò<óíK—˜:ô

  
/z

òÅ

×E4
NAPRTase
þV®ý0`
4Sþ‘û1
106
é
,NAD+
>…U‘û1
68
é

NADH
>…UîQµ‘û

zÞ˘z{
NAPRTase
‘û1
NAD+
ý
NADH
>¼˜

H
NADH
ý
NAD+
>…UþS
070
ú•
012,ICL
>þV®‘û1
313%,

NADH/NAD+
>…Uþð>ú‹

QF
*[v=\]>õ®

S͑û1NO=>óí™
š

"#1NO=>:å

Í[v=\]>õ®

H
/NO=MZ>[ö
CoA,
÷øË[v=\]M
Z;<=

SÍy8ÔQ[=>MZ

 
3 
abcd¥¦d
30h
\¢`%£¤`§‚˜i—˜™–
NADH、NAD+
iœ¨’
Table3 SpecificenzymeactivityofNAPRTase,PPC,andICL,theconcentrationofNADHandNAD+in
controlstrainandrecombinantstrainat30haftertheonsetoftheanaerobicphase
4B
NAPRTase
þV®

(U·mg-1)
PPC
þV®

(U·mg-1)
ICL
þV®

(U·mg-1)
c(NAD+)/
(μmol·g-1)
c(NADH/)
(μmol·g-1)
c(NADH)/
c(NAD+)
E.coliNZN111 083 044 114 289 202 070
E.coliNZN111/
pTrc99a pncB 965 043 471 2265 271 012
 
3 
†
 
)
  
ËVWå84B
NZN111
ý×E4B
NZN111/pTrc99a pncB
>56789

8ù˘z
{|=³ú=´KõV

FG‘û4–²
NAD+
ý
NADH
>¼˜

ú‹
NADH/NAD+,
õ®[v=4
M
 

 
Ê
 
“
 
Ë
 
Ì
  
!
10
"
 
],
S͑ûNO=>ó홚

11"#NO=
>:å

‘û1;<=>:˜

H;<=ؚ‘û
1
139%,
íK™šî‘û1
20%,
!û×E4sÔ
Q[=>MZ

"#1Z[ï:¶089>?@

óü£)*
NAD(H)
./;<=ûýš

ûM:þ
U>M¶YZ`a¯:¶>ÿ¯ðñÄÅ!"#
Ö>)Ù

M©6u

[1] McKinlayJB,VieileC,ZeikusGJ.Prospectsforabiobased
succinateindustry[J].ApplMicrobiolBiotech,2007,76(4):
727740.
[2] WilkeT,VorlopKD.Industrialbioconversionofrenewablere
sourcesasanalternativetoconventionalchemistry[J].ApplMi
crobiolBiotech,2004,66:131142.
[3] HongSH,LeeSY.Importanceofredoxbalanceontheproduc
tionofsuccinicacidbymetabolicalyengineeredE.coli[J].Appl
MicrobiolBiotech,2002,58:286290.
[4] WuH,LiZM,ZhouL,etal.Improvedsuccinicacidproduction
intheanaerobiccultureofanEscherichiacoliPflBldhAdouble
mutantasaresultofenhancedanapleroticactivitiesinthepre
cedingaerobicculture[J].ApplEnvironMicrobiol,2007,
73(24):78377843.
[5] VemuriGN,EitemanMA,AltmanE.Efectsofgrowthmodeand
pyruvatecarboxylaseonsuccinicacidproductionbymetabolicaly
engineeredstrainsofEscherichiacoli[J].ApplEnvironMicrobi
ol,2002,68(4):17151727.
[6] 
ÜÝÞ

$%&

()

ø

˘z{|=³ú=´KõV
01234
NZN111
:;<=>?@
[J].
M¶“Ìo*

2011,27(10):110.
[7] SinghA,LynchMD,GilRT.Genesrestoringredoxbalancein
fermentationdeficientE.coliNZN111[J].MetabEng,2009,
11(6):347354.
[8] AusubelFM,BrentR,KingstonRE.Shortprotocolsinmolecular
biology[M].Beijing:SciencePress,1999:240251.
[9] VinitskyA,GrubmeyerC.Anewparadigmforbiochemicalenergy
coupling:Salmonelatyphimurium nicotinatephosphoribosyl
transferase[J].JBiolChem,1993,268(34):2600426010.
[10] 
+v

,ò-

§ï.

ø

CD89QR=–ês
NAD+
~
NADH
££æ‰>v/
[J].
0ùÑÄ
,2008,33(12):
254257.
[11] WubboltsMG,TerpstraP,BeilenJBV,etal.Variationofcofac
torlevelsinEscherichiacoli[J].JBiolChem,1990,265:17665
櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒
17672.
,-./
ª,«¬­®¯°±¨²³´µ¶·¸#$
1231),ÆÇ4~¬­ÆNj5Ø67¯ÈÉ

Æ81AîލŸ ),E>Àæ‰

‡G*
a8¯­òŠP©8~9:ޟ ;>¬­²ø<·=>ÆÇ

ú1É~GE?¨e£@>¬­ûB—¯CD

óS´w=Âð1’ÆÇ;88M

8ÉRb–EFG

HIJK1Àæç

SN
ÆÇL¥~

Ÿ 

MN‹8z

Oæ‰S´w=Âð‹óëîMPQ~M¶oËÌ>ÆÇJK1À
RS

ó1TǬ­>UX–<·=¯

ÆÇãV0a8¯­òŠP©8~9:ޟ ;>¬­²ø<·
=>ÈæÆÇ

Wè1;!X/YÄ>6Z),y8

~Qã[–sµA£>\86ZòFý¬­]–A
N

,^

~;8iž~FGËÌsÈæ]¯XHI_i×·

ÑoÎzè
,^
Ÿ £@ÄÅH),EoÆǑ`1A]÷À>ab

HÑoÎcòÿdeSM
f®m>Î)eg
———
Ÿ Ñ]abhÆÇM¶>M—

8i

Mj

<·~ZBøËÌ


Ú[%

5 
!

# ÜÝÞø

)*+,-./0123456789:;<=>?@