免费文献传递   相关文献

Response of activated oxygen metabolism to water stress in different drought-tolerant maize hybrids and their parents

不同耐旱性玉米杂交种及其亲本叶片活性氧代谢对水分胁迫的响应


Drought might be the biggest adversity in the nature and might seriously affect maize (Zea Mays L.), one of the most important food-feedstuff crops in China. Although ecologists and physiologists have focused on the response of the activated oxygen metabolism to water stress in maize for a long period and made a great progress, the changes of activated oxygen metabolism, under water stress, and the relationship between the hybrid’s and its parents’ ability to maintain the balance of activated oxygen metabolism in different drought-tolerant maize during the whole life are still lacking. A pot-cultivation experiment, therefore, was conducted in the waterproof shed to try to explore these issues. Different drought-tolerant maize hybrids, Yedan 2, Yedan 13 and their parents were used in the experiment. The result showed that under water stress: (1) The O-〖DD(X-*2〗〖DD)〗2 production rate and the content of H2O2 in maize leaves increased rapidly, whereas the activities of SOD, CAT, ASP, and the content of ASA were increased a little in the early growing stage and decreased obviously in the late growing stage. Consequently the content of MDA, the outcome of lipid peroxidation, was much higher in the whole life period, especially in the late stage. (2) There was a difference in the ability to maintain the balance of activated oxygen metabolism between different drought-tolerant maize hybrids, and much more difference was found in the late period. The high drought-tolerant maize, Yedan 2 and its parents, showed a higher ability to maintain the balance of activated oxygen metabolism. In Yedan 2 and its parents, the increase in the O-〖DD(X-*2〗〖DD)〗2 production rate and the content of H2O2 in maize leaves was less, accompanied by a much more increase in the activities of SOD, CAT and ASP, and in the content of ASA in the early stage, a much more increase in the enzymes’ activity and the content of scavengers in the late stage, and a smaller increase in the content of MDA during the whole life period. The changes were to the contrary in Yedan 13 and its parents whose drought-tolerance was low. (3)The hybrid’s ability to maintain the balance of activated oxygen metabolism was decided genetically by that of its parents. There was a positive correlation in WS/CK ratio between the hybrid and the averages of its parents. Moreover, the correlation was significant in terms of CAT, ASP, and ASA.


全 文 :第 26 卷第 6期
2006 年 6月
生 态 学 报
ACTA ECOLOGICA SINICA
Vol. 26, No. 6
Jun. , 2006
不同耐旱性玉米杂交种及其亲本叶片
活性氧代谢对水分胁迫的响应
李潮海1 , 尹 飞2, 3 , 王 群1
( 1. 河南农业大学作物生长发育调控重点实验室,郑州 450002; 2. 中国科学院生态环境研究中心系统生态
国家重点实验室,北京 100085; 3. 中国科学院遗传与发育生物学研究所农业资源研究中心,石家庄 050021)
基金项目:河南省/ 九五0重点科技攻关资助项目(960201019)
收稿日期: 2005-04-04;修订日期: 2006-03-11
作者简介:李潮海( 1956~ ) ,男,河南巩义人,博士,教授,主要从事作物生理生态学教学和科研工作. E-mail : chaohai@ 371. net
Foundation item: The project was supported by the / Ninth Five-year Plan0 Key Science and Technology Research Project in Henan Province (No. 960201019)
Received date: 2005-04-04; Accepted date: 2006-03-11
Biography: LI Chao-Hai, Ph. D. , Professor, mainly engaged in crop eco-physiology. E-mail: chaohai@ 371. net
摘要:干旱是制约玉米生产最主要的逆境因子。通过在活动式防雨棚下进行盆栽试验,以耐旱性不同的 2 个玉米杂交种及其亲
本自交系为材料,研究了水分胁迫下玉米叶片活性氧代谢的变化及膜脂过氧化水平。结果表明, 在水分胁迫下: ( 1)玉米叶片
O-Ó2 产生速率和H2O2 含量升高、活性氧清除酶类 SOD、CAT、AsP 活性和清除剂 AsA含量在生育前期略微升高, 在生育后期明显
降低,致使膜脂过氧化产物 MDA含量在整个生育期, 特别在生育后期明显升高; ( 2)耐旱性不同的玉米材料维持活性氧代谢平
衡的能力存在差异,且该差异在生育后期更为明显。耐旱性较强的掖单 2号及其亲本叶片 O-Ó2 产生速率和 H2O2 含量增加幅度
小,生育前期 SOD、CAT和 AsP活性,以及AsA含量增幅大, 后期清除酶活性和清除剂含量较高,全生育期内MDA含量增幅小,
表现出较强的维持活性氧代谢平衡能力。而耐旱性较弱的掖单 13 及其亲本正相反; ( 3)杂交种维持活性氧代谢平衡的能力受
亲本维持能力遗传决定。杂交种各指标的相对耐旱值与其两亲本的平均值呈正相关, 其中 CAT 和 AsP活性以及 AsA 含量 3 个
指标差异达显著水平。
关键词:水分胁迫; 玉米;活性氧代谢; 耐旱性;遗传
文章编号: 1000-0933(2006) 06-1912-08 中图分类号: Q143, S314, S513 文献标识码: A
Response of activated oxygen metabolism to water stress in different drought-tolerant
maize hybrids and their parents
LI Chao-Hai
1
, YIN Fei
2, 3
, WANG Qun
1 ( 1. Key Laboratory for Regulating and Controlling Crop Growth and Development , Hecnan Agricultural
Universi ty, Zhengzhou 450002, China ; 2. State K ey Laboratory of System Ecology , Research Center f or Eco-environmental Sci ence, China Academy of Sciences ,
Beijing 100085, China ; 3. Research Center of Agricul tural Resources, ChineseAcademy of Sciences, Shijiazhuang 050021, China) . Acta Ecologica Sinica, 2006,
26(6) : 1912~ 1919.
Abstract: Drought might be the biggest adversity in the nature and might seriously affect maize ( Zea Mays L. ) , one of the most
important food-feedstuff crops in China. Although ecologists and physiologists have focused on the response of the activated oxygen
metabolism to water stress in maize for a long period and made a great progress, the changes of activated oxygen metabolism, under
water stress, and the relationship between the hybrid. s and its parents. ability to maintain the balance of activated oxygen
metabolism in different drough-t tolerant maize during the whole life are still lacking. A po-t cultivation experiment, therefore, was
conducted in the waterproof shed to try to explore these issues. Different drough-t tolerant maize hybrids, Yedan 2, Yedan 13 and
their parents were used in the experiment. The result showed that under water stress: ( 1) The O-Ó2 production rate and the content
of H2O2 in maize leaves increased rapidly, whereas the activities of SOD, CAT, ASP, and the content of ASA were increased a
little in the early growing stage and decreased obviously in the late growing stage. Consequently the content of MDA, the outcome
of lipid peroxidation, was much higher in the whole life period, especially in the late stage. ( 2) There was a difference in the
ability to maintain the balance of activated oxygen metabolism between different drough-t tolerant maize hybrids, and much more
difference was found in the late period. The high drough-t tolerant maize, Yedan 2 and its parents, showed a higher ability to
maintain the balance of act ivated oxygen metabolism. In Yedan 2 and its parents, the increase in the O-Ó2 production rate and the
content of H2O2 in maize leaves was less, accompanied by a much more increase in the act ivities of SOD, CAT and ASP, and in
the content of ASA in the early stage, a much more increase in the enzymes. activity and the content of scavengers in the late
stage, and a smaller increase in the content of MDA during the whole life period. The changes were to the contrary in Yedan 13
and its parents whose drough-t tolerance was low. ( 3)The hybrid. s ability to maintain the balance of act ivated oxygen metabolism
was decided genetically by that of its parents. There was a positive correlation in WSPCK ratio between the hybrid and the averages
of its parents. Moreover, the correlation was significant in terms of CAT, ASP, and ASA.
Key words: water stress; maize; activated oxygen metabolism; drought tolerance; inheritance
氧作为植物体内重要的电子受体参与多项生命活动并提供能量,但同时通过多种途径, 其自身也会被活
化,形成超氧阴离子自由基( O-Ó2 )和过氧化氢(H2O2 )等对细胞有伤害的活性氧 [ 1,2]。植物有机体在长期进化过
程中相应形成了酶促 ) ) ) 超氧化物歧化酶( superoxide dismutase, SOD)、过氧化氢酶( catalase, CAT)、抗坏血酸过
氧化物酶( ascorbic acid peroxidase,AsP)等抗氧化酶, 和非酶促 ) ) ) 还原型抗坏血酸( ascorbic acid, AsA)、生育酚
等抗氧化剂两大类保护系统, 赋予植物体清除活性氧的能力。在正常情况下细胞内活性氧的产生与清除处于
动态平衡状态, 不会对植物产生伤害, 但在逆境胁迫条件下, 这种平衡就会遭到破坏而有利于活性氧的产
生[ 3,4] 。所积累的活性氧会引发或加剧细胞膜脂过氧化或膜脂脱脂作用,造成膜系统的损伤[ 5,6]。前人对水分
胁迫下玉米活性氧清除酶类作了大量研究[ 7~ 10]。但关于水分胁迫下不同耐旱性玉米材料全生育期内活性氧
代谢变化、亲本自交系与其杂交种的活性氧代谢对水分胁迫响应程度之间关系的研究鲜有报道。本研究以不
同抗旱性玉米杂交种及其亲本自交系为材料,研究水分胁迫下其活性氧代谢变化之间的关系, 以期从活性氧
代谢生理角度为玉米抗旱育种提供理论依据。
1 材料与方法
111 试验处理与设计
2002年6月 9日至 10月 1日,利用中国农科院农田灌溉研究所的大型防雨棚,进行人工干旱胁迫处理,
对30份玉米( Zea Mays L1)生产上常用的骨干自交系从植株形态、发育进程和产量等方面进行了耐旱性鉴定
(数据未发表)。根据鉴定结果, 2003年选用耐旱性较强的亲本自交系掖 107( Y107, a )、黄早 4( HZ4, ` )及其
单交种掖单 2号( YD2, F1)和耐旱性较弱的亲本自交系丹 340( D340, a )、478( 478, ` )及其单交种掖单 13
(YD13,F1)在河南农业大学科教园区(郑州)移动式防雨棚下进行盆栽试验。6月 12日播种, 10月 5日收获,
每盆播种 3粒种子,出苗后待 5叶期定苗,留苗 1株,每处理重复 20次。实验用盆钵内径 30cm, 高 27cm, 盆土
为试验地耕层土(基础肥力为有机质 13111 g#kg- 1 ,全氮 1107 g#kg- 1 ,速效磷 01018 g#kg- 1 , 速效钾 01077 g#
kg
- 1
)。每盆装风干土壤 1215kg,施用 12g 复合肥( N25%、P2O5 18%、K2O12%)作基肥,并在玉米大喇叭口期追
施3g 尿素。两次施肥量约折合亩施纯N15kg、P2O5 715kg、K2O 715kg。播种前浇透水,在玉米生育期内使用称
重法测定土壤相对含水量。水分胁迫处理( water stress, WS)是在玉米整个生育期内, 以土壤相对含水量 50%
为控水下限,达到控水下限时每盆每次浇水 1000ml; 对照( CK)为正常供水处理, 即根据玉米生长发育的特性
和对土壤水分的要求,在试验中确定玉米 4个主要生育阶段的适宜土壤相对含水量下限分别是: 苗期(出苗-
拔节)为 60%;穗期(拔节-抽雄)为 70%; 吐丝期(抽雄-吐丝)为 80%; 灌浆期(吐丝-成熟)为 70%, 达到控水下
限时每株每次浇水 1000ml。
112 测定项目与方法
分别于小喇叭口期(第 9片叶展开, 9th leaf expanding ) ,大喇叭口期(第 12片叶展开, 12th leaf expanding) ,
吐丝期( silking)和吐丝后 20d( 20d after silking)进行指标测定,小喇叭口期和大喇叭口期测定第 6片展开叶,吐
19136期 李潮海 等:不同耐旱性玉米杂交种及其亲本叶片活性氧代谢对水分胁迫的响应
丝期和吐丝后 20d测定穗位叶,单株最多参与 1个生育时期的指标测定。分别在各处理内选择具有代表性的
植株 3株,把待测叶整片取下后,装入密封的取样袋中,用盛有冰块的取样箱带回试验室。而后在冰浴的环境
下,去除主叶脉,用打孔器打成叶圆片, 分株混匀, 置入超低温冰箱用于以下指标的测定。
11211 活性氧测定 O-Ó2 产生速率测定参照罗广华等[ 11]的方法; H2O2 含量的测定参照赵世杰[ 12]的方法。
11212 活性氧清除酶活性测定 SOD活性按 Giannopolitis 和 Ries[ 13] 的氮蓝四陛( NBT)法, 以每单位时间内抑
制NBT 光化还原 50%为 1个酶活单位; CAT 活性参照 Aebi[ 14] 的方法,以 1min内 OD240值增加 011为 1个酶活
单位; AsP 活性参照 Gossett [15]的方法, 以每分钟氧化 1Lmol抗坏血酸为 1个酶活单位。以样品的鲜重计算酶
活性。
11213 活性氧清除剂含量测定 抗坏血酸 ( AsA)含量的测定参照 Sakaki[ 16]的方法。
11214 膜脂过氧化作用测定 膜脂过氧化产物丙二醛(MDA)含量的测定参照赵世杰 [ 12]的方法。
113 耐旱系数的计算
用耐旱系数表示材料耐旱性能可以消除各指标数据固有的差异[ 17] 。一般而言, SOD、CAT 及 AsP 活性、
AsA含量等 4个指标数值越高,其耐旱性越强[ 8, 10] ,所以它们的耐旱系数适用公式( 1)计算; 相反, O-Ó2 产生速
率、H2O2和 MDA含量 3个指标的耐旱系数则适用公式( 2)计算[ 9]。
耐旱系数 = 干旱测定值对照测定值 ( 1)
耐旱系数 = 1 - 干旱测定值对照测定值 ( 2)
2 结果与分析
图 1 水分胁迫下不同耐旱性玉米叶片 O-Ó2 产生速率
Fig. 1 Generat ing rate of O-Ó2 in leaves of different drough-t tolerance maize under water stress
A: YD2及其亲本 YD2 and it s parents; B: YD13及其亲本 YD13and its parents; Ñ :小喇叭口期 9th leaf expanding; Ò :大喇叭口期 12th leaf expanding;
Ó :吐丝期 silking; Ô:吐丝后 20 d 20d after silking
211 玉米叶片 O-Ó2 和H2O2 对水分胁迫的响应
整个生育期内, 玉米叶片 O-Ó2 产生速率和H2O2 含量在水分胁迫处理下均升高(图 1、2) , 但升高的程度因
材料耐旱性不同而存在差异,且该差异在玉米生育后期表现更为明显。同时, 杂交种叶片 O-Ó2 产生速率和过
氧化氢含量对水分胁迫敏感性与其亲本的敏感性存在一致性。总的来说, 耐旱性较弱的杂交种 YD13及其亲
本自交系 D340和 478受水分胁迫的影响程度比耐旱性较强的 YD2及其亲本 Y107和 HZ4大。以吐丝期为
例,水分胁迫处理与正常供水处理相比,杂交种 YD13及其亲本自交系 D340、478叶片 O-Ó2 产生速率分别升高
了32161%、48189%和 54173%;叶片H2O2 含量分别升高了 49181%、47175%和 42148%。而杂交种 YD2及其
亲本自交系 Y107、HZ4叶片 O产生速率分别只升高了 23199%、32117%和 16173% ;叶片 H2O2 含量分别只升
高了 36123%、35188%和 38161%。
1914 生 态 学 报 26卷
图 2 水分胁迫下不同耐旱性玉米叶片 H2O 2 含量
Fig. 2 H2O2 content in leaves of different drough-t tolerance maize under water stress
212 玉米叶片活性氧清除系统对水分胁迫的响应
21211 玉米叶片SOD、CAT 和 AsP 活性对水分胁迫的响应 玉米叶片中主要的活性氧清除酶 SOD、CAT 和
AsP 活性随生育进程均呈单峰曲线变化趋势(见图 3~ 5)。可以看出,杂交种活性氧清除酶系统对水分胁迫的
敏感性受其亲本遗传决定, 3者的变化趋势基本一致。水分胁迫处理下,玉米生育前期叶片 SOD、CAT 和 AsP
活性有所升高, 生育后期明显降低,且耐旱性不同的玉米材料3种酶下降程度存在明显差异。
图 3 水分胁迫下不同耐旱性玉米叶片 SOD活性
Fig. 3 SOD activity in leaves of different drough-t tolerance maize under water stress
图 4 水分胁迫下不同耐旱性玉米叶片 CAT活性
Fig. 4 CAT activity in leaves of different drough-t tolerance maize under water stress
从图 3可以看出,水分胁迫处理下,耐旱性较强的杂交种 YD2及其亲本的 SOD活性到吐丝期还比正常供
水处理下的高。而耐旱性较弱的YD13及其亲本 D340和 478的 SOD活性在大喇叭口期之后就明显低于正常
供水处理的水平,在吐丝期分别降低了 13175%、14110%和 5108%。表现为耐旱性较弱的玉米材料的叶片
SOD活性对水分胁迫较敏感。
从图 4、图 5可以看出,水分胁迫处理玉米叶片 CAT 活性在大喇叭口期之前、AsP活性在小喇叭口期之前
19156期 李潮海 等:不同耐旱性玉米杂交种及其亲本叶片活性氧代谢对水分胁迫的响应
图 5 水分胁迫下不同耐旱性玉米叶片AsP活性
Fig. 5 AsP act ivity in leaves of different drough-t tolerance maize under water stress
高于正常供水处理。同时在水分胁迫处理下,耐旱性较强的 YD2及其亲本叶片 CAT 和AsP 活性在吐丝期出
现峰值;而耐旱性较弱的 YD13及其亲本叶片 CAT 和AsP活性的峰值出现在大喇叭口期, 而后迅速下降, 在生
命活动最旺盛的吐丝期活性较低。可见,在水分胁迫下,耐旱性较强玉米材料的 H2O2 清除酶活性强, 具有明
显高于耐旱性较弱玉米材料的 H2O2 清除能力。水分胁迫处理与正常供水处理相比, 生育后期耐旱性较弱的
玉米材料叶片 CAT 和AsP活性下降程度明显较高。
21212 玉米叶片AsA含量对水分胁迫的响应 从图 6可以看出,水分胁迫处理下,玉米叶片AsA含量在生育
前期略微增加, 而在生育后期明显降低,但具体情况因材料耐旱性不同而不同。水分胁迫处理下, 耐旱性较强
的YD2及其亲本叶片AsA含量在大喇叭口期之后才开始低于正常供水处理下的水平; 而耐旱性较弱的 YD13
及其亲本叶片AsA含量在大喇叭口期之前就低于正常供水处理下的水平。并且在生育后期, 耐旱性不同的
玉米叶片AsA含量因水分胁迫影响而降低的程度明显不同。以吐丝期为例, 水分胁迫处理与正常供水处理
相比, 耐旱性较弱的 YD13及其亲本 D340、478叶片 AsA含量分别降低了 20148%、36153%和 21105%, 下降幅
度大于耐旱性较强的 YD2( 13107%)及其亲本 Y107( 5146%)和 HZ4( 11190% )。表明耐旱性较强的玉米叶片
AsA含量在水分胁迫处理下降低程度较小,且杂交种叶片 AsA含量对水分胁迫的敏感性与其亲本自交系的敏
感性有一定相关性。
图 6 水分胁迫下不同耐旱性玉米叶片 AsA 含量
Fig. 6 AsA content in leaves of dif ferent drough-t tolerance maize under water stress
213 玉米叶片丙二醛(MDA)含量对水分胁迫的响应
在水分胁迫处理下, 全生育期内各材料叶片MDA含量均较正常供水处理有所升高,升高的幅度随生育进
程有加大的趋势。同时, 耐旱性较弱的玉米叶片MDA含量在水分胁迫下增加幅度较大,耐旱性较强的玉米材
料增加幅度较小,这在玉米生育后期表现更为明显。以吐丝后 20d为例,水分胁迫处理与正常供水处理相比,
耐旱性较弱的YD13及亲本 D340、478的叶片 MDA含量分别增加了 77194%、41158%和 80165% ;耐旱性较强
的YD2及亲本 Y107和HZ4的分别增加 43130%、42135%和 36167%。
1916 生 态 学 报 26卷
图 7 水分胁迫下不同耐旱性玉米叶片MDA含量
Fig. 7 MDA content in leaves of different drough-t tolerance maize under water stress
214 活性氧代谢指标相对耐旱值遗传相关性
从以上各项指标分析可知,杂交种活性氧代谢表现出的耐旱性受两亲本自交系耐旱性综合影响, 为了进
一步分析杂交种与亲本活性氧代谢能力耐旱性之间的关系,对杂交种各测定指标的耐旱系数与两亲本的耐旱
系数平均值进行了相关分析, 并对其相关系数进行显著性测验。从表 1可以看出,对于每个指标,杂交种耐旱
系数与亲本耐旱系数的平均值之间均存在着正相关,表明亲本自交系活性氧代谢表现出的耐旱性能的平均水
平决定了其杂交种后代活性氧代谢耐旱能力的高低。同时, 不同指标的重要性是不同的。CAT 活性、AsP 活
性和AsA含量等 3个与消除 H2O2 相关的指标,杂交种耐旱系数与亲本的耐旱系数平均值之间相关系数达到
显著水平,说明就这 3个指标来说,亲本自交系的耐旱性显著影响着杂交种后代的耐旱性。
表 1 杂交种耐旱系数与其亲本平均耐旱系数相关系数表
Table 1 The correlation index in the drought tolerance coefficient
between hybrid and the averages of its own parents
YD2与其亲本
YD2 and its parents
YD13与其亲本
YD13 and its parents
SOD 01894 01905
CAT 01988* 01986*
O-Ó2 01866 01502
H2O2 01876 01485
AsP 01954* 01986*
AsA 01990* 01991* *
MDA 01811 01940
注: * 和* * 分别表示 0105\p > 0101 和 p [ 0101水平上的显著
性; n= 3 Single and double asterisks denote statistical signif icance at the 0105
\p > 0101 and p [ 0101 levels respect ively; n= 3
3 讨论
根据生物自由基伤害学说 [18] ,逆境胁迫下细胞内
活性氧产生与清除平衡失调, 从而使膜脂发生过氧化
作用, 形成 MDA, 破坏膜结构, 使植物受到伤害。O-Ó2
是活性氧的主要成员, 它既可以直接启动膜脂过氧
化,又可以与H2O2 通过 Haber-Weiss反应生成更多的
活性氧,加剧膜系统的破坏。生物通过酶促和非酶促
两类系统来清除活性氧。SOD是清除 O-Ó2 的重要酶,
在活性氧消除系统中发挥着特别重要的作用, 催化反
应: 2O-Ó2 + 2H+ yH2O2 + O2。CAT 可专一清除 H2O2 ,
是生物体内清除 H2O2 的重要酶, CAT 催化H2O2 的反
应不需要另外的还原力, 但 CAT 对H2O2 的亲和力很
低[ 19] , 所以, CAT 多数定位于 H2O2 含量较高的线粒
体、过氧化物体和乙醛酸循环体等细胞器,而叶绿体中 H2O2 的清除则通过 Halliwel-l Asada途径进行的[ 20] , AsP
在这一途径中发挥着重要作用。AsA不仅可以在Halliwel-l Asada循环中作为 AsP 的底物参与清除 H2O2 , 还可
以作为活性氧清除剂直接清除活性氧。活性氧清除系统是个多组分组成的、分工协作的系统。在玉米生命活
动旺盛的吐丝期,玉米叶片 SOD活性明显升高(图 3) ,所以吐丝期叶片内 O-Ó2 产生速率与大喇叭口期相比有
所降低(图 1)。而水分胁迫下, 耐旱性弱的 YD13及其亲本的 CAT, (图 4)和AsP活性(图 5)在吐丝期过早地降
低, 致使其叶片H2O2 (图2)及MDA含量(图 7)明显地升高。可见,只有活性氧清除系统各成员协同作用,才能
达到维持活性氧代谢平衡的目的。所以,在鉴定玉米材料耐旱性时, 也应综合考虑这些指标。本研究表明,耐
旱性较强的玉米材料在水分胁迫处理下维持活性氧代谢平衡的能力较强, 表现为叶片SOD、CAT 和AsP 活性、
19176期 李潮海 等:不同耐旱性玉米杂交种及其亲本叶片活性氧代谢对水分胁迫的响应
AsA含量在生育前期升高幅度大且持续时间长, 生育后期清除酶活性(清除剂含量)较高,叶片 O-Ó2 产生速率、
过氧化氢和MDA含量增幅较小。而耐旱性较弱的玉米材料正相反。
前人通过干旱模拟试验, 对苗期玉米活性氧清除酶类做了大量研究[ 7, 8, 10] , 但本试验表明水分胁迫下,各
玉米材料(自交系和杂交种)活性氧代谢指标在生育前期受水分胁迫处理影响较小, 且耐旱性不同的玉米材料
之间差异较小; 而在生育后期受水分胁迫处理影响较大,且玉米各材料耐旱性之间的差异表现更为明显。所
以鉴定玉米材料耐旱性应推迟到生育后期进行,以提高可靠性。
杂交种活性氧代谢各指标耐旱系数与两亲本自交系的耐旱系数平均值之间存在正相关关系(表 1) ,可
见,水分胁迫条件下,玉米杂交种维持活性氧代谢平衡能力的高低直接受其亲本决定。本研究还发现,杂交种
与亲本之间CAT 和AsP 活性以及AsA含量3个指标的耐旱系数相关性达到显著水平,而这3个指标均与清除
H2O2 有关。前人研究表明,叶片中H2O2降解能力的下降可能是水分胁迫下发生氧化伤害和脂质过氧化的根
源[ 21~ 23] 。所以,从活性氧代谢生理的角度,筛选和利用干旱条件下H2O2 降解能力强的自交系可能为玉米耐
旱育种提供新的思路。
References:
[ 1 ] Du X M, YinW X, Zhao Y X, et al . The production and scavenging of reactive oxygen species in plants. Chinese Journal of Biotechnology, 2001, 17( 2) :
121~ 125.
[ 2 ] Yao Y C, Zhang D P, Wang Y N, et al . Ant ioxidant metabolism of the chloroplast in apple seeding under water stress. Journal of Fruit Science, 2000,
17( 1) : 1~ 6.
[ 3 ] Smimoff N. The role of act ive oxygen in the response of plants to water deficit and desiccat ion. New Phytologist , 1993, 125: 27~ 58.
[ 4 ] Zhang J, KirkhamMB. Lipid peroxidation in sorghum and sunflower seedings as affected by ascorbic acid, benzoic acid and propyl gallate. Journal of Plant
Physiology, 1996, 149: 489~ 493.
[ 5 ] Salin M L. Toxic oxygen species and protective system of the chloroplast. Physiologia Plantarum, 1987, 72: 681~ 689.
[ 6 ] Shen X Y, Xu S C, Dai J Y. Effects of drought on the activit ies of SOD、CAT and acid phosphatase in maize leaves. Plant Physiology Communications,
1995, 31( 3) : 183~ 186.
[ 7 ] Tang L S, Li G M. Effect of drought on lipid peroxidation and protect ive enzyme activit ies in hybrid maize and their parental lnbred lines. Acta Agronomica
Sinica, 1995, 21( 4) : 509~ 512.
[ 8 ] Wang J, Li D Q, Gu L K. The response to water stress of the antioxidant system in maize seeding root s with diff erent drought resistance. Acta Botanica
Boreal-i Occidentalia Sinica, 2002, 22( 2) : 285~ 290.
[ 9 ] Xu S C, Shen X Y, Gu W L, et al . Changes of lipid peroxidation, reasterificat ion of phosphatide and ultrast ructure of membrane in leaf cells of maize
under soil drought condit ion. Acta Agronomica Sinica, 1994, 20( 5) : 564~ 569.
[ 10] Song F B, Dai J Y. Effects of water stress on the act ivities of act ive oxygen exterminating enzymes of maize leaves. Journal of Jilin Agricultural University,
1995, 17( 3) : 9~ 15.
[ 11] Luo GH, Wang A G, Guo J Y. Effect s of some exogenous factors on superoxide dismutase act ivity in soybean seeding. Acta Phytophysiologica Sinica, 1990,
16( 3) : 239~ 244.
[ 12] Zhao S J, Liu H S, Dong X C. Plant physiology experimentat ion guidance. Beijing: Chinese Agricultural Science and Technology Press, 1998. 155~ 161.
[ 13] Giannopolitis C N, Ries S K. Superoxide dismutase Ñ . Occurrence in higher plants. Plant Physiology, 1977, 59: 309~ 314.
[ 14] Aebi H. catalase. In: Bergmeyer H U. Methods of enzymatic analysis ( vol. 2) . New York: Academic Press, 1974. 673~ 684.
[ 15] Gossett D R, Millhollon E P, LucasM C. Antioxidant response to NaCl st ress in salt tolerant and sal-t sensitive cultivars of cot ton. Crop Science, 1994, 34:
706~ 714.
[ 16] Sakaki T, Kondo N, Sugahara K. Breakdown of photosynthet ic pigments and lipids in spinach leaves with ozone fumigation role of active oxygens.
Physiologia Plantarum, 1983, 59: 28~ 34.
[ 17] Fu F L, Zhou S F, Pan G T, et al . Mult iple regression analysis of drought tolerance coefficients in maize.Acta Agronomica Sinica, 2003, 29( 3) : 468~
472.
[ 18] Fridovich I. Superoxide dismutase. Annual Review of Biochemistry, 1975, 44: 147~ 159.
[ 19] Halliw ell B. The toxic effects of oxygen on plant tissues. In: Oberley LW. ed. Superoxide Dismutase. Vol I. Boca Raton, FL: CRC Press, 1982. 89~
123.
1918 生 态 学 报 26卷
[ 20] Yan C S, Li D Q, Zhang J H. Plant leaf senescence and oxidat ive st ress. Chinese Bullet in of Botany, 1999, 16( 4) : 398~ 404.
[ 21] Bewley J D. Physiological aspects of desiccation tolerance. Annual Review of Plant Physiology, 1979, 30: 195~ 238.
[ 22] Gamble P E, Burke JJ. Effect of water stress on the chloroplast antioxidant system Ñ . Alteration in glutathione reductase activity. Plant Physiology,
1984, 76: 615~ 621.
[ 23] Guan LQM, Zhao J, Scandalios JG. Cis-elements and trans-factors that regulate expression of the maize Cat1 antioxidant gene in response to ABA and
osmot ic stress: H2O 2 is the likely intermediary signaling molecule for the response, The Plant Journal: for Cell and Molecular Biology. 2000, 22( 2) : 87~
95.
参考文献:
[ 1 ] 杜秀敏, 殷文璇, 赵彦修,等.植物中活性氧的产生及清除机制. 生物工程学报, 2001, 17( 2) : 121~ 125.
[ 2 ] 姚允聪, 张大鹏, 王有年,等.水分胁迫条件下苹果幼苗叶绿体抗氧化代谢研究. 果树科学, 2000, 17(1) : 1~ 6.
[ 6 ] 沈秀瑛, 徐世昌, 戴俊英.干旱对玉米叶 SOD, CAT 及酸性磷酸酯酶活性的影响. 植物生理学通讯, 1995, 31(3) : 183~ 186.
[ 7 ] 唐连顺, 李广敏.干旱对玉米杂交种及其亲本自交系幼苗膜脂过氧化及其保护酶活性的影响.作物学报, 1995, 21( 4) : 509~ 512.
[ 8 ] 王娟, 李德全, 谷令坤.不同抗旱性玉米幼苗根系抗氧化系统对水分胁迫的反应. 西北植物学报, 2002, 22(2) : 285~ 290.
[ 9 ] 徐世昌, 沈秀瑛, 顾慰连,等.土壤干旱下玉米叶细胞膜脂过氧化和膜磷脂脱酯化反应以及膜超微结构的变化. 作物学报, 1994, 20( 5) :
564~ 569.
[ 10] 宋凤斌, 戴俊英.水分胁迫对玉米叶片活性氧清除酶类活性的影响. 吉林农业大学学报, 1995, 17( 3) : 9~ 15.
[ 11] 罗广华, 王爱国, 郭俊彦.几种外源因子对大豆幼苗 SOD活性的影响. 植物生理学报, 1990, 16( 3) : 239~ 244.
[ 12] 赵世杰, 刘华山, 董新纯.植物生理学实验指导. 北京:中国农业科技出版社, 1998: 155~ 161.
[ 17] 付凤玲,周树峰,潘光堂,等.玉米耐旱系数的多元回归分析.作物学报, 2003, 29( 3) : 468~ 472.
[ 20] 阎成士, 李德全, 张建华.植物叶片衰老与氧化胁迫. 植物学通报, 1999, 16( 4) : 398~ 404.
19196期 李潮海 等:不同耐旱性玉米杂交种及其亲本叶片活性氧代谢对水分胁迫的响应