免费文献传递   相关文献

Cloning and Expression Profile Analysis of the Gene Encoding Cinnamyl Alcohol Dehydrogenase under Abiotic Stress in Carrot

胡萝卜肉桂醇脱氢酶基因的克隆及其对非生物胁迫的响应



全 文 :书!"#$%&
,2016,36(7):1294-1301
犃犮狋犪犅狅狋.犅狅狉犲犪犾.犗犮犮犻犱犲狀狋.犛犻狀.
  !"#$:10004025(2016)07129408               犱狅犻:10.7606/j.issn.10004025.2016.07.1294
%&(
:20160420;)*&%+(:20160613
,-./

()*+,%-./012-.
(BK20130027);(3456%,789:(PAPD)
0123

;<=
(1993-),>,?@ABC,DEFGHIJKC$%AB。Email:2015104076@njau.edu.cn
LMNO:PQC,RS、T@CUV,DEFGHIWXYZ[JKC$%AB。Email:xiongaisheng@njau.edu.cn
456789:;<,=>?@A
BCDEFGH>IJ
!"#

$ %,&(,) *,& +,,-.

\]^_`%N$WX[Zabcdefghij

kl%m
,^
_nopqrklN$C$%[Zabsfghij

\]
210095)
K L:thiuvRTPCRwx,Fyz{‘|}~’€‚ƒ„…†‡ˆ‰Š‹Œ(Cinnamylalcoholdehy
drogenase,CAD)Ž-犇犮犆犃犇。犇犮犆犃犇‘’1074bp,†‡357“”-•。–—/˜—™Jš›œ,DcCAD
ž–—™Ÿ 

¡¢£¤Jš¥¦
,DcCAD[§¨CAD(XP_010314515.1)–©ª¡«¬。­®¯°PCR±²
¥¦
,犇犮犆犃犇-³yz{´、µ¶·µ¸€Ž›¹°º»¥¼,½¾¿›¹°Àµ¶>´>µ¸。犇犮犆犃犇-
¿3Á
(38℃)、ÂÁ(4℃)、ÃÄ(20%PEG)·Å(0.2mol·L-1 NaCl)ÆÇÈÉÊË,̽¿3ÁÆÇ·ÂÁÆ
Çʘ¥

ÍÎ3ÁÏÐÑ1h·ÂÁÏÐÑ2h›¹°«3。ABÒÓ,犇犮犆犃犇-¿yz{ÔՙÖÉ×
¯ŽNv

MNO

ˆ‰Š‹Œ

ØÙJš

ÚC$ÆÇ

›¹Jš

yz{
PQRS$
:Q785;Q786;S631.2 !TUVW:A
犆犾狅狀犻狀犵犪狀犱犈狓狆狉犲狊狊犻狅狀犘狉狅犳犻犾犲犃狀犪犾狔狊犻狊狅犳狋犺犲犌犲狀犲犈狀犮狅犱犻狀犵犆犻狀狀犪犿狔犾
犃犾犮狅犺狅犾犇犲犺狔犱狉狅犵犲狀犪狊犲狌狀犱犲狉犃犫犻狅狋犻犮犛狋狉犲狊狊犻狀犆犪狉狉狅狋
LIUYanjun,MAJing,WANGGuanglong,HUANGWei,WANGFeng,XIONGAisheng
(StateKeyLaboratoryofCropGeneticsandGermplasmEnhancement,MinistryofAgricultureKeyLaboratoryofBiologyand
GermplasmEnhancementofHorticulturalCropsinEastChina,ColegeofHorticulture,NanjingAgriculturalUniversity,Nan
jing210095,China)
犃犫狊狋狉犪犮狋:Here,thegeneencodingDcCADwereclonedfromcarrotcultivar‘Kurodagosun’withRTPCR
method.Thelengthof犇犮犆犃犇was1074bp,andencoding357aminoacids.TheDcCADmaybelongto
hydrophilicprotein.PhylogeneticanalysisshowedthatDcCAD closedto CADfrom tomato(XP_
010314515.1).QuantitativerealtimePCRanalysisshowedthattheexpressionprofilesofthe犇犮犆犃犇gene
aresignificantlydifferentindifferenttissues(root,leafblade,andpetiole)ofcarrot.Relativeexpression
levelofthe犇犮犆犃犇geneisleafblade>root>petiole.The犇犮犆犃犇geneisresponsivetovariousabiotic
stresses,suchasheat(38℃),cold(4℃),drought(20%PEG)andsalt(0.2mol·L-1NaCl).Theex
pressionlevelwassignificantlyincreasedafterhightemperatureorlowtemperaturetreatments,respective
ly.Theexpressionlevelspeakedat1hheattreatmentand2hcoldtreatment,respectively.Theseresults
suggestedthat犇犮犆犃犇geneparticipateintheresponseprocessofcarrotundertheabioticstress.
犓犲狔狑狅狉犱狊:cinnamylalcoholdehydrogenase;homologousanalysis;abioticstress;expressionanalysis;
犇犪狌犮狌狊犮犪狉狅狋犪
  ÛaÜ(lignin)DEJݞÛa¤ŽÞCßà
á€

âÀ#$ßàáãä…åEŽæç

˜—™è
é¿êëìíîïŽÔ™
[13]。
Ûa܎C$ðñ
òדóôZõ[Žö÷øùúû

ˆ‰Š‹Œ

(cinnamylalcoholdehydrogenase,CAD)NÀ½
€Žªü

ýþ³ÿ!"#$%&¿½£A
B
[4]。
d(ê)¿#$€ˆ‰Š‹ŒŽ±*™
a

¾ËŽ+,èé--./£…×0AB
[5]。
󞈉Š‹Œ¿ÛaÜ12ŽC$ðñ3
4fEŽNv

:#

)Éô“†‡ˆ‰Š‹ŒŽ
-F5Ø#$€6ñ+‚

789:
(犘犻狀狌狊
狋犪犲犱犪)[6]、;<=>(犃狉犪犾犻犪犮狅狉犱犪狋犪)[7]、?@AB
(犕犲犱犻犮犪犵狅狊犪狋犻狏犪)[89]、ô2C|CD(犔狅犾犻狌犿狆犲
狉犲狀狀犲)[10]·3E(犛狅狉犵犺狌犿犫犻犮狅犾狅狉)[11]F。ABG
Hh

øùÛaÜðñIJ€¾ª-Ž›¹


ùsÛa܎C$ðñ

LLJšMN
(犘狅狆狌犾狌狊
犾犪狌狉犻犳狅犾犻犪)[12]、OC(犜狉犻狋犻犮狌犿犪犲狊狋犻狏狌犿)[13]、PQ
R¸D
(犅狉犪犮犺狔狆狅犱犻狌犿犱犻狊狋犪犮犺狔狅狀)[14]€ˆ‰Š‹
Œ-Ž›¹STUV

ˆ‰Š‹Œ-³#
$€èô-eWŽXTY³

#$³Z[\ZC
$éÚC$ÆÇ]

½ÛaÜ^_¾ª-Ž›¹
`UCa¤

½ÛaÜb°G`¾Ëca

yz{
(犇犪狌犮狌狊犮犪狉狅狋犪L.)òdX,yz{
Ž×ZfEHI

³eë\qfghi

yz{è
ˆa´Àjvnk

bÉlmŽno$a·—p™
qr
[15]。
NÀ´vsHI

yz{ˆa´€ÛaÜ
b°Žtu`vÊyz{Žwa

:#

ɪdX
,HIN$€ÛaÜ^_¾ªAB&xÿy

zABèyz{

|}~

Àhi{|


-}~·-~€

LLRTPCR.‚0Û
aÜðñªü

ˆ‰Š‹ŒŽ-
(犇犮犆犃犇),
‚¿½£…ƒÀ„…ŽJš

LLh]¯°
PCRwx,AB犇犮犆犃犇 -³yz{5Ø~†é
5ØÕïÏЇŽ›¹ˆ‰

À£×Š‹ŒABy
z{€ˆ‰Š‹ŒŽ+,éËv¯-Ž

1 {|·.
1.1 X Y
yz{

|}~

ž2015210Z#ž]^_`%N$WX[Zabcdefghijý
‘’“j

yz{#”Z#³•–·É—a1∶1
Ž˜ð-a€

®™·Áç8¯À
:14h25℃®™
èé10h18℃|š,¾¿›ç60%~70%èé
240μmol·m
-2·s-1®™æç。
`œžž”DH5αózhijŸY;a ¡
2pMD19Tvectorsimple、犈狓犜犪狇 、¢-}
犕犾狌I、DL marker2000·dNTP­®¯°£|
SYBRGreenIFȤ*`¥TaKaRa¦§。
1.2 Z [
1.2.1 \] ¿‘|}~’2¨#”J©£

(38℃)、ÂÁ(4℃)、ÃÄ(20% PEG)·Å
(0.2mol·L-1NaCl)ÏÐ,J©ªÏÐ0、1、2、4、8
·24hŽñ«¬­µ¶,Ø]ª®ÏÐ#”µ¶À
¿™

ª2¨‘|}~’#”,¯ ª½C’¬­
Žµ¶vžµ¶°RNAãª,¢-}ñcDNA,v
ž‚犇犮犆犃犇-。ª2¨‘|}~’#”Ž
µ¶

µ¸
、´
À{|£~†›¹Jš

±Þª²
3“fö,ª²Ñ³´vµ¶·¸,‚ŸYž
-80℃¹º。
1.2.2 犚犖犃^\A犮犇犖犃_` vRNAsimple
TotalKit(Tiangen¦§,€d"])㪰 RNA,
RNA»ç·a°¼vNanodropND100J®®ç
½
(NanoDrop¦§,¾d)¿Ó。¼vPrimeScript
RTreagentKi(TaKaRa¦§,€d`¥)À㪎
°RNA¢-}ñcDNA。ÁÉcDNA²wÂÃ10
ÄvžPCR。
1.2.3 456犇犮犆犃犇 ,=ab>cde?@ 
-žzhijÓ¯Žyz{-}~€·-~
€
[16],
ÅƄ[犇犮犆犃犇-Ž‘,‚8½ÇÈÉ$
DcCADF(5′ATGGCTCAAACAACTCCCAATCACA
3′)·¢ÈÉ$ DcCADR(5′CTATGGTTTTCCAG
CAATATCAAT 3′)。è2¨‘|}~’cÊD
´cDNAË×ÌÀSÍ£Ît,¢ËÏÐÀ94℃
Ña™4min;94℃a™30s;54℃Ò830s;72℃
ÓÔ1min;35“Õî;72℃ÓÔ10min。¼v
1.2%Ö×ØÙÚÛÜJÝÎtÞ$,ßàÑ¥Æ[
pMD19Tsimple ¡ 2 á,‚ - ¤ [ ` œ  ž
DH5α。âÑãªa £PCRã¯,äå\].
æçC$,wÉ覧£DNAӐ。
1.2.4 abRf 5Ø#$¾ª-·”-•
‘Èé* NCBI€ê;¼vBioXM2.6ëп
犇犮犆犃犇-ŽKìíî’ç£ÑÓ,‚ïðñ
59217ñ              ;<=,F:yz{ˆ‰Š‹Œ-Ž‚齿ÚC$ÆǎÊË
¿ËŽ”-•‘

LL DNAMAN£”-•
‘ò¿é–—™

˜—™Jš

+Ñv Mega5*
7£¤N·†ó‚Cñ&ôõX
[17]。
Ÿ a-z
™aJšöv ExPASy¾ªëÐ÷ñ[18]。LL
SWISSMODEL(http://swissmodel.expase.org)
ÑÓDcCADŸ Žør±*。
1.2.5 ghij犘犆犚kJ h]¯°PCRuv
SYBRPremix犈狓犜犪狇 ùúû (` ¥ TaKaRa¦
§
),
³ ABI7300­®¯° PCR üá÷ñ,uv
iQTM5RealtimePCRSystem÷ñ,ý™þNÿœ
£

¾¿¯°.õ™2-ΔΔCt。èyz{犜狌
犫狌犾犻狀Àõ™-[19],É$ÀDcA15F(5′GAGTG
GAGTTACCTGCTGCCTTC3′)·DcA15R(5′AT
GTAGACGAGGGAACGGAATCCAG3′)。犇犮犆犃犇 -
› ¹ J š É $ À DcCADF(5′CGGATAAGC
CTCTGGACCTACCT3′)· DcCADR(5′TTGA
CAACTTCGATACCACACCTGAT3′),:!-[
犜狌犫狌犾犻狀×3Ît。hi£3ÞC$%fö,¿
"£…º»¥¼—#Jš

1.2.6 lmRf uv Excel2003·SPSS16.0
£€$з-›¹Jš

uvDuncanÓi
Jš€º»¥¼™

2 ±²[Jš
2.1 456犇犮犆犃犇,=?@
PCR±²(õ1)¥¦,èyz{‘|}~’Ž
cDNAÀS%Ît„[1000bp&Þ$,½’ç[
Ññ ¾ × (

Ó  ± ² ¥ ¦
,犇犮犆犃犇 -  ’
1074bp,†‡357“”-•(õ2),ÑÓ½Ÿ a
¾¿JKa°À39.09kD,FÛg6.7。
2.2 n,oabpCqrstuRf
¿DcCADŽ”-•‘£BLASTpØٙ
¿)

±²

õ

›œ
:DcCADŽ”-•‘[*+
(犃狉犪犫犻犱狅狆狊犻狊狋犺犪犾犻犪狀犪,NP_195643.1)、,-(犃狉狋犲
犿犻狊犻犪犪狀狀狌犪,ACB54931.1)、.N(犆犪犿犲犾犾犻犪狊犻狀犲狀狊犻狊,
ACV74414.1)、/0(犆犪狆狊犻犮狌犿犪狀狀狌狌犿,ACF17645.1)、
,1
(犆狌犮狌犿犻狊狊犪狋犻狏狌狊,XP_004136373.1)、|CD(犔狅
犾犻狌犿狆犲狉犲狀狀犲,AAL99536.1)、2²(犕犪犾狌狊犱狅犿犲狊狋犻犮犪,
XP_008359757.1)、3 D (犖犻犮狅狋犻犪狀犪犪狋犲狀狌犪狋犪,
AFP43763.1)、4 5 6 (犛狅犾犪狀狌犿狋狌犫犲狉狅狊狌犿,XP_
006356896.1)、OC(犜狉犻狋犻犮狌犿犪犲狊狋犻狏狌犿,CDM85988.1)、
78
(犣犲犪犿犪狔s,NP_001136687.1)、—9(犗狉狔狕犪狊犪狋犻狏犪,
NP_001052290.1)、3 E (犛狅狉犵犺狌犿犫犻犮狅犾狅狉,XP_
002446076.1)、:I(犛狆犻狀犪犮犻犪狅犾犲狉犪犮犲犪,KNA09004.1)·
õ1 yz{犇犮犆犃犇-‚õ;
Fig.1 PCRamplificationof犇犮犆犃犇genefromcarrot
õ2 yz{犇犮犆犃犇-é½†‡”-•‘
Fig.2 Thenucleotideacidanddeducedaminoacidsequencesof犇犮犆犃犇genefromcarrot
6921 ! " # $ % &                   36<
=>›¦3“?¤@±ðkg;AB›¦3“@±ðkg;CADŸ C}>DÞÀ:EF(XP_011083448.1)、:I(KNA09004.1)、
.N
(ACV74414.1)、3E(XP_002446076.1)、|CD(AAL99536.1)、yz{(ALN38479.1)、,1(XP_004136373.1)、
,-
(ACB54931.1)、/0(ACF17645.1)、456(XP_006356896.1)、*\+(NP_195643.1)、2²(XP_008359757.1)、
—9
(NP_001052290.1)、OC(CDM85988.1)、3D(AFP43763.1)·78(NP_001136687.1)
õ3 yz{DcCADŽ”-•‘[½G$ZHIŸ a”-•‘Žôfò¿
Theasteriskmarksthe3catalyticZnbindingsites;Thearrowmarksthe3structuralZnbindingsites;TheaccessionnumbersofCAD
fromdifferentplantswere:犚犻犮犻狀狌狊犮狅犿犿狌狀犻狊(XP_011083448.1),犛狆犻狀犪犮犻犪狅犾犲狉犪犮犲犪(KNA09004.1),犆犪犿犲犾犾犻犪狊犻狀犲狀狊犻狊(ACV74414.1),
犛狅狉犵犺狌犿犫犻犮狅犾狅狉(XP_002446076.1),犔狅犾犻狌犿狆犲狉犲狀狀犲(AAL99536.1),犇犪狌犮狌狊犮犪狉狅狋犪(ALN38479.1),犆狌犮狌犿犻狊狊犪狋犻狏狌狊
(XP_004136373.1),犃狉狋犲犿犻狊犻犪犪狀狀狌犪(ACB54931.1),犆犪狆狊犻犮狌犿犪狀狀狌狌犿 (ACF17645.1),犛狅犾犪狀狌犿狋狌犫犲狉狅狊狌犿 (XP_006356896.1),
犃狉犪犫犻犱狅狆狊犻狊狋犺犪犾犻犪狀犪(NP_195643.1),犕犪犾狌狊犱狅犿犲狊狋犻犮犪(XP_008359757.1),犗狉狔狕犪狊犪狋犻狏犪(NP_001052290.1),犜狉犻狋犻犮狌犿犪犲狊狋犻狏狌犿
(CDM85988.1),犖犻犮狅狋犻犪狀犪犪狋狋犲狀狌犪狋犪(AFP43763.1),and犣犲犪犿犪狔狊(NP_001136687.1)
Fig.3 AlignmentofaminoacidsequencesofcarrotDcCADandotherdifferentplants
79217ñ              ;<=,F:yz{ˆ‰Š‹Œ-Ž‚齿ÚC$ÆǎÊË
v1 456犇犮犆犃犇wxn,oy``RArstuRf
Table1 Thecomparisonofcompositionandphysicalandchemicalcharacterizationofaminoacidsequence
ofpartofcarrotDcCAD
#$
Plant
C}>
Accession
number
”-•J-
Numberof
aminoacids
ÐK¾¿JKa°
Theoretical
relativemolecular
mass/Da
ÐKFÛg
Theoretical
pI
•™”-•òL
Ratioofpositive
aminoacids/%
M™”-•òL
Ratioofnegative
aminoacids/%
×NW”
-•O
Aliphatic
index/%
#Ș—™
Averageof
hydrophobicity
yz{犇.犮犪狉狅狋犪 ALN38479.1 357 39088.0 6.730 11 12 87.09 -0.133
OC犜.犪犲狊狋犻狏狌犿 CDM85988.1 354 38503.6 6.384 12 15 86.98 -0.093
*\+犃.狋犺犪犾犻犪狀犪 NP_195643.1 360 43058.5 6.668 12 15 90.51 -0.077
,-犃.犪狀狀狌犪 ACB54931.1 361 47931.5 5.629 12 16 96.23 -0.003
.N犆.狊犻狀犲狀狊犻狊 ACV74414.1 360 52691.5 7.095 13 15 92.29 -0.144
/0犆.犪狀狀狌狌犿 ACF17645.1 357 53961.2 6.179 13 16 94.14 -0.143
,1犆.狊犪狋犻狏狌狊 XP_004136373.1 362 59078.9 7.497 13 15 90.59 -0.210
|CD犔.狆犲狉犲狀狀犲 AAL99536.1 370 72474.2 6.696 13 16 97.15 -0.122
2²犕.犱狅犿犲狊狋犻犮犪 XP_008359757.1 366 78411.9 8.122 13 15 94.79 -0.193
3D犖.犪狋狋犲狀狌犪狋犪 AFP43763.1 357 82483.4 5.413 13 16 97.14 -0.189
456犛.狋狌犫犲狉狅狊狌犿 XP_006356896.1 360 87503.2 6.567 13 16 97.33 -0.213
78犣.犿犪狔狊 NP_001136687.1 361 38711.3 7.269 13 16 92.33 -0.143
—9犗.狊犪狋犻狏犪 NP_001052290.1 360 43535.1 7.230 13 16 92.57 -0.145
3E犛.犫犻犮狅犾狅狉 XP_002446076.1 362 47805.7 6.575 13 16 93.91 -0.143
:I犛.狅犾犲狉犪犮犲犪 KNA09004.1 359 57354.5 7.286 13 16 89.81 -0.195
EF犚.犮狅犿犿狌狀犻狊 XP_011083448.1 362 52929.3 6.868 13 16 94.25 -0.199
EF
(犚犻犮犻狀狌狊犮狅犿犿狌狀犻狊,XP_011083448.1)F#$
Ž”-•‘ÖɃ3Ž¾Iç

¾I™È³60%
èá

õ3)。
¿áP#$£”-•~ññJéФ™aJ
š

±²

›1)UV,\#$”-•J-³354~
370"Q5F;ÐK¾¿JKa°Žº»ƒ`,ÐK
FÛg³5.413~8.122"Q;M™”-•ÁRòL
S3ž•™”-•

×NW”-•ŽòL³86.98%
~97.33%"Q;Ÿ aKp™ÑӀ#Ș—™À
-0.213~-0.003,½€,-Ž˜—™«æ,456
Ž˜—™«T

2.3 n,oz{t/|{tRfA}~Rf
¿DcCAD”-•‘£˜—™/–—™J
š

±²

õ4)›œ,DcCAD˜—rU€,Ë187~
202k˜—™ƒæ,Ë165kŽV”•(Ala)·Ë
189k、276kŽW”•(Val)˜—™«æ。–—r
U€182~187k–—™ƒæ,Ë33kŽXYZ[
(Asn)、112kŽ\”•(Glu)·223kŽ]”•
(Lys)˜—™«æ。±²›œ,DcCADž–—™
Ÿ 

¿yz{ DcCAD†‡Ž”-•‘£
BlastpØٙ¿),±²¥¦yz{DcCADž
MDR^eW,_ÀCAD1eW,ÖÉô“Zn±ð
õ4 yz{DcCAD”-•‘Ž–—™·˜—™
Fig.4 Predictedhydrophilicityandhydrophobicty
ofdeducedaminoacidsequenceofDcCADfromcarrot
kg

žô±*UŸ ‘

2.4 wx€}~‚ƒq„sRf
yz{DcCAD£Ÿ aø`±*ØÙ7S
JšŽ±²7õ5Á¦。yz{DcCADŸ É9
“αab·16“βcd,[*\+ŽCADŸ É
ƒ3Ž¾I™

LLBlastp¿),ÀDcCADŽ”
-•‘[GenBank)&xŽ½G#$ŽCADŸ
 ‘£ò¿

v Mega5*7¡¢£¤N(õ6)。
8921 ! " # $ % &                   36<
õ6 yz{DcCAD[½G#$CADŽ¡¢£¤N
Fig.6 PhylogenetictreeofDcCADfromcarrotandCADfromotherspecies
õ5 yz{DcCADø`±*
Fig.5 Thethreedimensionstructuralmodelof
DcCADfromcarrot
õ€Oefg›¦0.05—#º»¥¼™
õ7 yz{犇犮犆犃犇-³5Ø~†€Ž›¹ˆ‰
Thedifferentlettersmeansignificantdifferenceat0.05level
Fig.7 Expressionanalysisofthe犇犮犆犃犇genein
differenttissuesofcarrot
±²›œ

yz{[¨,Ž§¨–©ª¡«¬

hO
”-•¾I™¹78.89%。[:I、.N、ijCAD
£¤ª¡ƒ¬

[kl,Ž2²

yF,ŽmF

n
.,ŽEFèéMo,ŽMN·p²MCAD£¤
ª¡ƒq

[rs,Ž,1

t1èéuNCAD£
vÏá.5Øfg^›Ø×Ïг0.05—#Ꮊ»¥¼™
õ8 yz{犇犮犆犃犇-³5ØÕïèé5Ø]Qw
ÏЎ›¹
Differentlettersontheverticalbarsindicatesignificantdifference
inthesametreatmentat0.05level
Fig.8 Expressionprofilesofthe犇犮犆犃犇geneunder
differentabioticstresstreatmentsincarrot
¤ª¡«q

2.5 456犇犮犆犃犇 ,=…†‡yˆA†‡DE
FGH‰Š‹>vŒ
  èyz{‘|}~’Ž´、µ¸·µ¶À{|,
LL­®¯°PCR¿Ó犇犮犆犃犇 -³yz{5
Ø~†€Ž›¹ˆ‰

±²

õ7)¥¦,犇犮犆犃犇-
³yz{5Ø~†€Ž›¹°5Ø

껃`

µ¶€›¹°3žµ¸·´

µ¶€›¹°J©ò
´Ž10Ä、µ¸Ž17.7Ä。
v­®¯°PCR.Ó¯yz{‘|}~’
³3Á
(38℃)、ÂÁ(4℃)、ÃÄ(20%PEG)·Å
(0.2mol·L-1NaCl)4ZÆÇÏÐю›¹ˆ‰。
±²

õ8)¥¦,38℃ÏЇ,1、2、4、8·24h›¹
°Èƒ3

J©ò®Ïп™Ž65.8、7.28、8.79、
39.66·21.47Ä。4℃ÏЇâ4ÏÐ]QŽÓ
99217ñ              ;<=,F:yz{ˆ‰Š‹Œ-Ž‚齿ÚC$ÆǎÊË
’,犇犮犆犃犇-Ž›¹°xVÂ3Žy6,Î
ÏÐ2hћ¹°«3,ò¿™Ž18.75Ä。20%
PEGÏЇ,z2h·24hê,½{ÏÐ]QŽ›
¹Âž¿™
,2h›¹°¹[|",ò¿™Ž3.95
Ä

ÅÏЇ
,犇犮犆犃犇 -°2›VÀ}á~,Ñ
‡

ۇ~

‚ž24h¹[|"。
3  K
ˆ‰Š‹Œ³#$ÛaÜC$ðñ€U‚4
fEŽNv

½>™Ž3ÂvÊ4#$Ûa܎b
°·ÛaÜ12Ž~ñ
[2021]。
:#)ƒFôZ#
$€J݆‡ˆ‰Š‹Œ-

‚LL--.
¿½+,£…iH

zABè

|}~

yz
{ÀAB¿„

‚ƒ„†‡ˆ‰Š‹Œ-
犇犮犆犃犇。”-•Ð¤™aJš±²¥¦,DcCAD
–—™Ÿ 

…5Ø$ZQŽ”-•Ð¤™aY
³×¯º»

†K,[½õ[5؎ÕïøùÉ
ª
[22]。
LL¿yz{犇犮犆犃犇 -é†‡Ÿ Ž
ØٙJšUV

[DcCAD¾I™«3Žò§¨
CAD。DcCAD[ij,、n.,、‡,ŽCAD¾
I™ƒ3

[1Kµˆz,

rs,

Mo,ŽCAD
–©ª¡ƒq

#”€ŽCAD³5Ø,"QŸ‰
™‚53
,DcCAD[½G$ZØÙ-Ž¾I™Š
É60%&。zABLL¿5Ø$ZCAD£¤
ª¡£Jš

À‹#$€CAD3Ù·£¤ã
äׯŽŒã

#$¿êëîïa¤ŽøùúûJö÷

Ž
ϞÕïÏЇ]

\~†`ö½‘¯ŽC
ÐC¤+,

ÞC¾ËŽË¿—s
[2325]。
Ûa¤L
’Gò#$ÊËÕïÆǎ×Z.T

âK,6“
”

f.

ÃÄ

?ê•

—–—˜

™š›FÕï
ÁœU
[2629]。
ˆ‰Š‹ŒLLÀH-¤À¾
ˎŠHéõ[Ûa܎C$ðñ

Ø]âž[#
$ŽÕï˟ɪ
[26,3031]。
Ž#”Z[êëîïŽ
˜›]
,`
ðñÛaÜéÊËÕïÆÇ

zAB€
¿yz{#”£3Á

ÂÁ

ÃÄ

ÅÆÇÏÐ

U
V犇犮犆犃犇-¿ÚC$ÆÇʘ¥。 ê犇犮
犆犃犇-³yz{5Ø~†€Ž›¹°5Ø,³µ
¶€Ž›¹°«3

µ¸€Ž›¹°«Â

†0±
²ÿœyz{犇犮犆犃犇 -¿ÕïÆÇÉÊË,ó
 KÒÓâ¿yz{ŽÔՙ34ׯŽNv

Ž!T

[1] PETERG,NEALED.Molecularbasisfortheevolutionof
xylemlignification[J].犆狌狉狉犲狀狋犗狆犻狀犻狅狀犻狀犘犾犪狀狋犅犻狅犾狅犵狔,
2004,7(6):737742.
[2] GUOD M,RANJH,WANGXQ.Evolutionofthecin
namyl/sinapylalcoholdehydrogenase(CAD/SAD)genefami
ly:Theemergenceofrealligninisassociatedwiththeorigin
ofbonafideCAD[J].犑狅狌狉狀犪犾狅犳犕狅犾犲犮狌犾犪狉犈狏狅犾狌狋犻狅狀,2010,
71(3):202218.
[3] WENGJK,CHAPPLEC.Theoriginandevolutionoflignin
biosynthesis[J].犖犲狑犘犺狔狋狅犾狅犵犻狊狋,2010,187(2):273285.
[4] ¡¢£,\ `,¤¥æ,F.#$ˆ‰Š‹Œé½-A
B£¦
[J].!"#$%&,2011,31(1):204211.
ZHANGLB,GUH,GONGDQ,犲狋犪犾.Researchprogressof
cinnamylalcoholdehydrogenaseanditsgene[J].犃犮狋犪犅狅狋犪狀犻
犮犪犅狅狉犲犪犾犻犗犮犮犻犱犲狀狋犪犾犻犪犛犻狀犻犮犪,2011,31(1):204211.
[5] §¨æ,© ª,M «,F.ÛaÜC$ðñ€ˆ‰Š‹Œ
-
(CAD)ŽAB£¦[J].JK#$YZ,2014,10(5):
10341043.
CAOJQ,LIB,YANGY,犲狋犪犾.Advancedprogressinthe
cinnamylalcoholdehydrogenasegeneinvolvedinligninbiosyn
thesis[J].犕狅犾犲犮狌犾犪狉犘犾犪狀狋犅狉犲犲犱犻狀犵,2014,10(5):1034
1043.
[6] OMALLEYD M,PORTERS,SEDEROFFRR.Purifica
tion,characterization,andcloningofcinnamylalcoholdehy
drogenaseinloblolypine(犘犻狀狌狊狋犪犲犱犪L.)[J].犘犾犪狀狋犘犺狔狊犻
狅犾狅犵狔,1992,98(4),13641371.
[7] HIBINOT,SHIBATED,CHENJQ,犲狋犪犾.Cinnamylalco
holdehydrogenasefrom犃狉犪犾犻犪犮狅狉犱犪狋犪:cloningofthecDNA
andexpressionofthegeneinlignifiedtissues[J].犘犾犪狀狋犆犲犾犾
犘犺狔狊犻狅犾狅犵狔,1993,34(5):659665.
[8] BRILLEM,ABRAHAMSS,HAYESCM,犲狋犪犾.Molecular
characterizationandexpressionofawoundinduciblecDNA
encodinganovelcinnamylalcoholdehydrogenaseenzymein
lucerne(犕犲犱犻犮犪犵狅狊犪狋犻狏犪L.)[J].犘犾犪狀狋犕狅犾犲犮狌犾犪狉犅犻狅犾狅犵狔,
1999,41(2):279291.
[9] VANDOORSSELAEREJ,BAUCHERM,FEUILLETC,犲狋
犪犾.IsolationofcinnamylalcoholdehydrogenasecDNAsfrom
twoimportanteconomicspecies:alfalfaandpoplar.Demon
strationofahighhomologyofthegenewithinangiosperms
[J].犘犾犪狀狋犘犺狔狊犻狅犾狅犵狔犪狀犱犅犻狅犮犺犲犿犻狊狋狉狔,1995,33(1):105
109.
[10] LYNCHD,LIDGETTA,MCINNESR,犲狋犪犾.Isolationand
characterisation ofthreecinnamylalcoholdehydrogenase
homologuecDNAsfromperennialryegrass(犔狅犾犻狌犿狆犲狉犲狀狀犲
L.)[J].犑狅狌狉狀犪犾狅犳 犘犾犪狀狋犘犺狔狊犻狅犾狅犵狔,2002,159(6):
653660.
[11] TSURUTAS,EBINAM,NAKAGAWAH,犲狋犪犾.Isolation
0031 ! " # $ % &                   36<
andcharacterizationofcDNAencodingcinnamylalcoholde
hydrogenase (CAD)insorghum (犛狅狉犵犺狌犿犫犻犮狅犾狅狉 (L.)
Moench)[J].犑犪狆犪狀犲狊犲犛狅犮犻犲狋狔狅犳犌狉犪狊狊犾犪狀犱犛犮犻犲狀犮犲,2007,
53(2):103109.
[12] EUDESA,GEORGEA,MUKERJEEP,犲狋犪犾.Biosynthesis
andincorporationofsidechaintruncatedligninmonomersto
reduceligninpolymerizationandenhancesaccharification[J].
犘犾犪狀狋犅犻狅狋犲犮犺狀狅犾狅犵狔犑狅狌狉狀犪犾,2010,10(5):609620.
[13] MAQH.Functionalanalysisofacinnamylalcoholdehydro
genaseinvolvedinligninbiosynthesisinwheat[J].犑狅狌狉狀犪犾
狅犳犈狓狆犲狉犻犿犲狀狋犪犾犅狅狋犪狀狔,2012,61(10):27352744.
[14] BUKHC,NORDLARSENPH,RASMUSSENSK.Phy
logenyandstructureofthecinnamylalcoholdehydrogenase
genefamilyin犅狉犪犮犺狔狆狅犱犻狌犿犱犻狊狋犪犮犺狔狅狀[J].犑狅狌狉狀犪犾狅犳
犈狓狆犲狉犻犿犲狀狋犪犾犅狅狋犪狀狔,2012,63(17):62236236.
[15] ¬­®,¯°±,²³´,F.yz{YZߵ馶[J].
€dHI
,2008,15(3):4144.
ZHUANGFY,OUCG,ZHAOZW,犲狋犪犾.Reviewand
prospectofcarrotbreeding[J].犆犺犻狀犪犞犲犵犲狋犪犫犾犲狊,2008,15
(3):4144.
[16] XUZS,TANH W,WANGF,犲狋犪犾.CarrotDB:agenomic
andtranscriptomicdatabaseforcarrot[J].犇犪狋犪犫犪狊犲狋犺犲
犑狅狌狉狀犪犾狅犳犅犻狅犾狅犵犻犮犪犾犇犪狋犪犫犪狊犲狊牔犆狌狉犪狋犻狅狀,2014,40(5):
18.
[17] TAMURA K,PETERSON D,PETERSON N,犲狋犪犾.
MEGA5:molecularevolutionarygeneticsanalysisusingmax
imumlikelihood,evolutionarydistance,andmaximumparsi
monymethods[J].犕狅犾犲犮狌犾犪狉犅犻狅犾狅犵狔犪狀犱犈狏狅犾狌狋犻狅狀,2011,
28(10):27312739.
[18] GASTEIGERE,GATTIKERA,HOOGLANDC,犲狋犪犾.
ExPASy:theproteomicsserverforindepthproteinknowl
edgeandanalysis[J].犖狌犮犾犲犻犮犃犮犻犱狊犚犲狊犲犪狉犮犺,2003,31
(13):37843788.
[19] TIANC,JIANGQ,WANGF,犲狋犪犾.Selectionofsuitable
referencegenesforqPCRnormalizationunderabioticstresses
andhormonestimuliincarrotleaves[J].犘犔犗犛犗狀犲,2015,
10(2):128136.
[20] PILATEG,GUINEYE,HOLTK.Fieldandpulpingper
formancesoftransgenictreeswithalteredlignification[J].
犖犪狋狌狉犲犅犻狅狋犲犮犺狀狅犾狅犵狔,2002,20(4):607612.
[21] CHABANNESM,BARAKATEA,LAPIERREC,犲狋犪犾.
Strongdecreaseinlignincontentwithoutsignificantalteration
ofplantdevelopmentisinducedbysimulataneousdownregu
lationofcinnamoylCoAreductase(CCR)andcinnamylalco
holdehydrogenase(CAD)intobaccoplants[J].犘犾犪狀狋犑狅狌狉
狀犪犾,2001,28(3):257270.
[22] YAMAGUCHISHINOZAKIK,SHINOZAKIK.Transcrip
tionalregulatorynetworksincelularresponsesandtoleranceto
dehydrationandcoldstresses[J].犃狀狀狌犪犾犚犲狏犻犲狑狅犳犘犾犪狀狋犅犻狅犾狅
犵狔,2006,57(6):781803.
[23] HUY,LIWC,XUYQ,犲狋犪犾.Differentialexpressionof
candidategenesforligninbiosynthesisunderdroughtstressin
maizeleaves[J].犑狅狌狉狀犪犾狅犳犃狆狆犾犻犲犱犌犲狀犲狋犻犮狊,2009,50
(3):213223.
[24] ZELLERG,HENZSR,WIDMERCK,犲狋犪犾.Stressin
ducedchangesinthe犃狉犪犫犻犱狅狆狊犻狊狋犺犪犾犻犪狀犪transcriptomeana
lyzedusingwholegenometilingarrays[J].犘犾犪狀狋犑狅狌狉狀犪犾,
2009,58(6):10681082.
[25] WALLEYJW,DEHESHK.Molecularmechanismsregula
tingrapidstresssignalingnetworksin犃狉犪犫犻犱狅狆狊犻狊[J].犑狅狌狉
狀犪犾狅犳犐狀狋犲犵狉犪狋犻狏犲犘犾犪狀狋犅犻狅犾狅犵狔,2010,52(4):354359.
[26] RICHETN,TOZOK,ATIFD,犲狋犪犾.Theresponsetoday
lightorcontinuousozoneofphenylpropanoidandligninbio
synthesispathwaysinpoplardiffersbetweenleavesandwood
[J].犘犾犪狀狋犪,2012,236(2):727737.
[27] BETZG,KNAPPEC,LAPIERREC,犲狋犪犾.Ozoneaffects
shikimatepathwaytranscriptsandmonomericlignincomposi
tioninEuropeanbeech(犉犪犵狌狊狊狔犾狏犪狋犻犮犪L.)[J].犈狌狉狅狆犲犪狀
犑狅狌狉狀犪犾狅犳犉狅狉犲狊狋犚犲狊犲犪狉犮犺,2009,128(2):109116.
[28] TRONCHETM,BALAGU?C,KROJT,犲狋犪犾.Cinnamyl
alcoholdehydrogenasesCandD,keyenzymesinligninbio
synthesis,playanessentialroleindiseaseresistancein犃狉犪
犫犻犱狅狆狊犻狊[J].犕狅犾犲犮狌犾犪狉犘犾犪狀狋犘犪狋犺狅犾狅犵狔,2010,11(1):
8392.
[29] ZHAOQ,DIXONRA.Transcriptionalnetworksforlignin
biosynthesis:morecomplexthanwethought[J].犜狉犲狀犱狊犻狀
犘犾犪狀狋犛犮犻犲狀犮犲,2011,16(4):227233.
[30] BIC,CHENF,JACKSONL,犲狋犪犾.Expressionofligninbi
osyntheticgenesinwheatduringdevelopmentanduponinfec
tionbyfungalpathogens[J].犘犾犪狀狋犕狅犾犲犮狌犾犪狉犅犻狅犾狅犵狔犚犲
狆狅狉狋犲狉,2011,29(1):149161.
[31] KAURH,SHAKERK,HEINZELN,犲狋犪犾.Environmental
stressesoffieldgrowthalowcinnamylalcoholdehydrogen
asedeficient犖犻犮狅狋犻犪狀犪犪狋狋犲狀狌犪狋犪 plantstocompensatefor
theirstructuraldeficiencies[J].犘犾犪狀狋犘犺狔狊犻狅犾狅犵狔,2012,
159(4):15451570.

!"

#$%
)  
10317ñ              ;<=,F:yz{ˆ‰Š‹Œ-Ž‚齿ÚC$ÆǎÊË