[目的] 提出一种基于数学形态学的木材单板节子识别改进算法,对木材单板表面节子进行快速识别和面积判断,旨在转化生产中由计算机智能控制自动分等代替人力分拣,提高木材单板分等效率。[方法] 选取带有节子的木材单板为研究对象,以图像识别初步结果为基础,首先采集木材单板图像并进行灰度变换; 然后根据灰度图像中节子和背景占据的不同灰度级范围,运用最大熵原理选择灰度阈值对图像进行分割,使节子从背景中初步分离出来; 接着通过形态学运算去除各初选节子外部的干扰特征量,使节子外轮廓得以较准确显现; 最后增加检出特征的外形轮廓判定,以防止板面可能存在的裂缝、污痕等其他特征量因颜色较深从背景中分离出来,被误检识别为节子。[结果] 图像分割处理后节子周围存在的一些干扰特征量,通过形态学膨胀处理可切断干扰特征量和节子之间的联系,膨胀后继续进行腐蚀操作可保持节子真实大小,比较形态学开闭运算2种处理方法,形态学闭运算处理后节子更容易被识别出; 检出的特征轮廓在进行椭圆拟合后辅以符合节子外形的条件限制可以提高识别精度,防止非节子被检出,其中通过计算特征轮廓点和拟合椭圆的匹配度大小可以初选是否符合节子特征,节子外形的条件限制主要用于过滤一些虽能拟合为椭圆但为长形物体比如裂隙等的影响。[结论] 通过本项研究,可直观获取单板表面的节子数量和节子相对大小,其实际生产中使用硬件对接后,根据图像采集设备与待采集对象的相对位置、采集图像的分辨率等情况,结合系统判定结果可得出节子的真实大小,实现木材单板的自动分等。
[Objective] Knot is an important evaluation index in the classification of wood veneer. The quantity of veneer knots and the maximum knot area can, to some extent, determine the grade of a wood veneer. Whereas by now, the classification of wood veneer processed in China mainly depends on visual inspection, which is of low efficiency. Therefore, quick identification and area assessment are performed to the surface knot of wood veneer with image recognition. Instead of artificial sorting is automatic classification by computer smart control, which can significantly promote the classification efficiency of wood veneer and is of great significance for the development and progress of wood industry. [Method] The wood veneer with knots are selected as object in this study. Bases on the preliminary results of image identification, an improved identification calculation for wood veneer knots using mathematical morphology is proposed. In order to solve the problem of missing characteristic quantity of partial knots or identification of non-knot characteristic quantity existing in the image identification of wood veneer, this work can be divided into 5 steps, those were, original image extraction, graying processing, image segmentation, margin inspection of characteristic quantity and knot identification. Firstly, images of wood veneer are collected, and grey level transformation is performed for the images for sequential image identification. Secondly, according to the knots in the gray images and different gray scope in the background, the image is split with the gray threshold chosen by the maximum entropy principle, so as to preliminarily separate the knots from the background. Then the interference characteristics outside the knots preliminarily selected are removed with morphological algorithm, thus the outer contour of knots can be accurately presented. Finally, outline assessment is performed for the characteristics detected, to prevent other factors such as crack and dirt being separated from the background due to their dark color and considered as knots. [Result] This study shows that, there are some interference characteristics around the knots after image segmentation, the relationship between interference characteristics and knots can be cut off by morphological expansion, and the corrosion operation after expansion can maintain the real size of knots. By comparing the morphological opening-and-closing operations, it is found that the knots processed by morphological closing operation can be more easily identified. The identification accuracy can be improved by performing ellipse fitting and outline condition restriction for the characteristic profile inspected, to prevent the identification of non-knots. Furthermore, knots can be preliminary assessed by calculating the characteristic profile points and the matching degree of ellipse, and the knots outline restriction is mainly used for filtering the influence of rectangular objects (such as crack) that can be fitted into ellipse. [Conclusion] The knots quantity and relative size on the surface of wood veneer can be obtained by visual inspection, in the practical production processes, after interfacing with hardware, the real size of knots can be obtained according to the relative position of image collecting equipment and collecting objects and the resolution of images collected, etc. by combining the system assessment results, thus to realize the automatic classification of wood veneer.
全 文 :第 51 卷 第 9 期
2 0 1 5 年 9 月
林 业 科 学
SCIENTIA SILVAE SINICAE
Vol. 51,No. 9
Sep.,2 0 1 5
doi:10.11707 / j.1001-7488.20150912
收稿日期: 2014 - 08 - 11; 修回日期: 2014 - 10 - 11。
基金项目: 中国林业科学研究院林业新技术研究所基本科研业务费专项基金项目“基于图像识别的装饰单板外观分等技术研究”
(CAFINT2013C06)。
* 郭文静为通讯作者。
基于数学形态学的木材单板节子识别改进算法*
陈勇平1,2 郭文静1 王 正1
(1. 中国林业科学研究院林业新技术研究所 北京 100091; 2. 中国林业科学研究院木材工业研究所 北京 100091)
摘 要: 【目的】提出一种基于数学形态学的木材单板节子识别改进算法,对木材单板表面节子进行快速识
别和面积判断,旨在转化生产中由计算机智能控制自动分等代替人力分拣,提高木材单板分等效率。【方法】选
取带有节子的木材单板为研究对象,以图像识别初步结果为基础,首先采集木材单板图像并进行灰度变换; 然
后根据灰度图像中节子和背景占据的不同灰度级范围,运用最大熵原理选择灰度阈值对图像进行分割,使节子
从背景中初步分离出来; 接着通过形态学运算去除各初选节子外部的干扰特征量,使节子外轮廓得以较准确显
现; 最后增加检出特征的外形轮廓判定,以防止板面可能存在的裂缝、污痕等其他特征量因颜色较深从背景中
分离出来,被误检识别为节子。【结果】图像分割处理后节子周围存在的一些干扰特征量,通过形态学膨胀处理
可切断干扰特征量和节子之间的联系,膨胀后继续进行腐蚀操作可保持节子真实大小,比较形态学开闭运算 2
种处理方法,形态学闭运算处理后节子更容易被识别出; 检出的特征轮廓在进行椭圆拟合后辅以符合节子外形
的条件限制可以提高识别精度,防止非节子被检出,其中通过计算特征轮廓点和拟合椭圆的匹配度大小可以初
选是否符合节子特征,节子外形的条件限制主要用于过滤一些虽能拟合为椭圆但为长形物体比如裂隙等的影
响。【结论】通过本项研究,可直观获取单板表面的节子数量和节子相对大小,其实际生产中使用硬件对接后,
根据图像采集设备与待采集对象的相对位置、采集图像的分辨率等情况,结合系统判定结果可得出节子的真实
大小,实现木材单板的自动分等。
关键词: 木材单板; 节子; 图像识别; 图像分割; 数学形态学; 自动分等
中图分类号: S781. 5 文献标识码: A 文章编号: 1001 - 7488(2015)09 - 0090 - 06
An Improved Algorithm of Veneer Knot Image Recognition Based on
Mathematical Morphology
Chen Yongping1,2 Guo Wenjing1 Wang Zheng1
(1 . Research Institute of Forestry New Technology,CAF Beijing 100091; 2 . Research Institute of Wood Industry,CAF Beijing 100091)
Abstract: 【Objective】Knot is an important evaluation index in the classification of wood veneer. The quantity of
veneer knots and the maximum knot area can,to some extent,determine the grade of a wood veneer. Whereas by now,
the classification of wood veneer processed in China mainly depends on visual inspection,which is of low efficiency.
Therefore,quick identification and area assessment are performed to the surface knot of wood veneer with image
recognition. Instead of artificial sorting is automatic classification by computer smart control,which can significantly
promote the classification efficiency of wood veneer and is of great significance for the development and progress of wood
industry. 【Method】The wood veneer with knots are selected as object in this study. Bases on the preliminary results of
image identification,an improved identification calculation for wood veneer knots using mathematical morphology is
proposed. In order to solve the problem of missing characteristic quantity of partial knots or identification of non-knot
characteristic quantity existing in the image identification of wood veneer,this work can be divided into 5 steps,those
were,original image extraction,graying processing,image segmentation,margin inspection of characteristic quantity and
knot identification. Firstly,images of wood veneer are collected,and grey level transformation is performed for the images
for sequential image identification. Secondly,according to the knots in the gray images and different gray scope in the
background,the image is split with the gray threshold chosen by the maximum entropy principle,so as to preliminarily
第 9 期 陈勇平等: 基于数学形态学的木材单板节子识别改进算法
separate the knots from the background. Then the interference characteristics outside the knots preliminarily selected are
removed with morphological algorithm,thus the outer contour of knots can be accurately presented. Finally,outline
assessment is performed for the characteristics detected,to prevent other factors such as crack and dirt being separated
from the background due to their dark color and considered as knots. 【Result】This study shows that,there are some
interference characteristics around the knots after image segmentation,the relationship between interference characteristics
and knots can be cut off by morphological expansion,and the corrosion operation after expansion can maintain the real size
of knots. By comparing the morphological opening-and-closing operations, it is found that the knots processed by
morphological closing operation can be more easily identified. The identification accuracy can be improved by performing
ellipse fitting and outline condition restriction for the characteristic profile inspected,to prevent the identification of non-
knots. Furthermore,knots can be preliminary assessed by calculating the characteristic profile points and the matching
degree of ellipse,and the knots outline restriction is mainly used for filtering the influence of rectangular objects ( such as
crack) that can be fitted into ellipse. 【Conclusion】The knots quantity and relative size on the surface of wood veneer can
be obtained by visual inspection,in the practical production processes,after interfacing with hardware,the real size of
knots can be obtained according to the relative position of image collecting equipment and collecting objects and the
resolution of images collected,etc. by combining the system assessment results,thus to realize the automatic classification
of wood veneer.
Key words: wood veneer; knot; image recognition; image segmentation; mathematical morphology; automatic classification
节子是木材单板分等的重要评价指标,板面节子
的数量和最大一个节子的面积在一定程度上决定了
其等级归属。以往乃至现在很多加工企业对木材单
板的节子识别,大多采用肉眼观测方法,效率较低,为
此,有必要寻求新的节子识别方法,比如图像识别技
术。在诸多关于木材节子图像识别的研究中,以特征
量的边缘检测(Duan et al.,2005; Maini et al.,2009;
Ruz et al.,2005; Zhi et al.,2004)、特征处理为多,基
本思路是图像采集、特征分割、节子提取及识别
(Funck et al.,2003; Pham et al.,2006; Cavalin et al.,
2006; 张怡卓等,2012),较普遍的方法是将图像按规
定阈值裁剪出的部分区域为节子候选,圆形度较大的
作为节子检出的标准。综观以往研究,检测精度一直
是个难点问题,即: 1) 节子周边存在干扰特征量导致
节子未被检出; 2) 非节子特征量被检出识别为节子。
为此,本研究在图像处理中引入了数学形态学(张大
坤等,2010; 王树文等,2005; 李朝锋等,2009)以去
除节子周边干扰特征量,对算法加以改进以过滤非节
子特征量(田俊霞等,2002; 张新明等,2011; 闫蓓
等,2008),提高节子识别的精度。
1 材料与方法
1. 1 试验材料
木材单板取自浙江德清,裁剪板面带有节子的
部分,幅面大小为 10 cm × 10 cm。
1. 2 试验方法
基于数学形态学的木材单板节子图像识别,大
致分为 5 个步骤,即提取原始图像→灰度化处理→
图像分割→特征量边缘检测→节子识别。
1. 2. 1 图像采集与处理 1) 图像采集与灰度化处
理 在图像处理算法中,大多是在灰度图像上进行,
因此需要把彩色图像转换为灰度图像。试验首先用
扫描仪采集待甄别木材单板的表面彩色图像,然后
对采集到的彩色图像进行灰度化处理。图像灰度化
处理的基本原理和方法如下: 在 RGB 颜色模型中,
当 R,G,B 3 个颜色分量值不同时,表现为彩色图
像; 灰度图像是 R,G,B 3 个分量相同的一种特殊的
彩色图像,其取值范围均为 0 ~ 255。灰度图像的描
述与彩色图像一样,仍然反映了整幅图像的整体和
局部的色度和亮度等级的分布和特征。图像的灰度
化处理中,实际常用的方法是根据 RGB 和 YUV 颜
色空间的变化建立亮度 Y 与 R,G,B 3 个颜色分量
的对应关系。在 YUV 色彩空间中,亮度也就是灰阶
值 Y 和色度 U,V 是分离的;如果只有 Y 分量而没有
U,V 分量,表示的图像就是黑白灰度图像,并以此亮
度值表达图像的灰度值。YUV 与 RGB 相互转换的
公式(姜柯等,2013)为:
Y = 0. 299R + 0. 587G + 0. 114B。 (1)
式中: Y 为灰度值; R 为红色亮度值; G 为绿色亮度
值; B 为蓝色亮度值。
2) 运用一维最大熵法的灰度阈值选择 图像
分割是图像处理中的一个重要问题,因本研究目标
节子和背景占据不同灰度级范围,故可运用最大熵
原理选择灰度阈值对图像进行分割。其基本思路
19
林 业 科 学 51 卷
是: 利用图像的灰度分布密度函数定义图像的信息
熵,根据假设的不同或视角的不同提出不同的熵准
则,然后通过优化该准则得到熵值。在灰度范围为
[0,L - 1]的图像中,熵函数定义(吴鹏,2014)为:
φ( t) = lgpt(1 - pt) +
Ht
pt
+
HL-1 - Ht
1 - pt
。 (2)
式中: pt = ∑
t
i = 0
pi, Ht = - ∑
t
i = 0
pi lgpi, HL-1 = -
∑
L -1
i = 0
pi lgpi,pi 为灰度级 i出现的概率; L 为灰度等级,
其取值范围为 1 ~ 256。当熵函数取得最大值时,对
应的灰度值 t 就是所求的最佳分割阈值 T。
3) 根据阈值 T 对灰度图像进行分割 设原始
图像为 f( x,y),按照一维最大熵的计算方法在该图
像中找到特征值(上述步骤中所求得的阈值 T),根
据特征值将图像分割为 2 部分,分割后的图像 (王
游等,2013)为:
g( x,y) =
b0…f( x,y) < T;
b1…f( x,y) ≥ T{ 。 (3)
式中: b0 为黑,b1 为白。该处理过程即为图像的二
值化,处理后图像显示出黑和白 2 种颜色,从而将所
有初选节子(N 个,N≥0)和其他特征量从背景中分
离出来。
1. 2. 2 形态学运算 经过二值化处理后的图像,初
选节子(黑色区域)周边会有很多参差不齐的特征
量与节子相连,影响节子外轮廓的提取和识别,所以
有必要通过形态学运算去除各初选节子外部的干扰
特征量,使节子外轮廓得以较准确显现。
数学形态学最基本的变换是膨胀、腐蚀、开运算
和闭运算,膨胀的结果是使二值图像扩大一圈,腐蚀
的结果是使二值图像减小一圈,先膨胀后腐蚀为闭
运算,先腐蚀后膨胀为开运算。需要说明的是,本技
术腐蚀、膨胀都是针对白色目标区域的,腐蚀为白色
区域减少一圈,膨胀为白色区域扩大一圈。
1. 2. 3 节子的识别 进行数学形态学运算后的图
像,利用 NET 调用 FindContours 函数找出所有连通
区域,并统计每个连通区域的轮廓点个数,通过最小
二乘法获取与轮廓点最匹配的椭圆,后利用该椭圆
进行节子识别。
2 结果与分析
本研究应用的开发工具为 Visual Studio 2010,
编程语言为 C#,图像处理为 OpenCV 2. 1,原图像由
扫描仪直接扫描获得。以某张单板节子识别为例,
阐述详细算法如下。
2. 1 节子的初步识别
首先,采集单板原始图像(图 1),该图像为彩色
图像,故需要根据式(1)进行灰度变换,原图像经灰
度变换后转为灰度图像(图 2)。
图 1 原始图像
Fig. 1 The original image
图 2 灰度图像
Fig. 2 The gray image
对灰度图像进行统计分析可得到灰度直方图
(图 3),可以看出每个灰度级所对应的点数,节子和
背景在灰度直方图中具有明显的特征(灰度图像共
256 级,0 代表全黑,255 代表全白); 从图中也可以
看出,要将节子和背景分开,其分割阈值必须选择在
2 个波峰所对应的灰度级之间。据此根据式(2)求
取灰度图像(图 2)的一维最大熵,并将该一维最大
熵对应的灰度值设为分割阈值,对图像进行二值化
处理,使图像显示出只有黑和白 2 种颜色(图 4)。
二值化处理后的图像明显存在 2 个物体特征
量,但从图 4 可以看出特征量中尤其是下侧特征量
边缘存在干扰因素,直接提取轮廓可能会存在一定
29
第 9 期 陈勇平等: 基于数学形态学的木材单板节子识别改进算法
的偏差,同时图中明显存在 2 道离缝特征量。为此
对图 4 进行数学形态学运算,以切断待检特征量和
干扰因素之间的联系,二值化图像进行数学形态学
运算结果见图 5。
为了保持节子原有的特征大小,本研究分别对
图像进行了开运算(图 5a)和闭运算(图 5b)处理。
从图 5a 可以看出,开运算变换后,节子周边干扰特
征更为明显,导致下侧节子特征未被识别出来; 闭
运算变换(图 5b)后,节子周边干扰特征量被切断,
节子外轮廓得以明显显现,节子被识别出。这一点
从图 5c(形态学膨胀处理)也可以看出,首先进行膨
胀处理,使背景区域扩大一圈,可以去除节子周边的
细小干扰特征。
图 3 灰度直方图
Fig. 3 The gray scale histogram
图 4 二值化图像
Fig. 4 The binary image
2. 2 节子的最终判定
通过上述处理,木材单板表面的节子能够被初
步识别出来,但实际木材单板生产中可能会存在裂
隙、污痕等其他特征量。为了更好地检出节子及过
滤非节子,有必要研究节子特征,并对识别的特征量
加以条件限制。本研究在上述带有 2 个节子①和③
的拼合木材单板上加了 2 个干扰项⑤和⑦,如图 6。
从图 6 可以看出,2 个节子和 2 个其他特征量
均被明显识别,若不加以条件限制,4 个特征量的外
轮廓均可以获得拟合椭圆并检出。但一般来说,节
子为近椭圆形,所以必须过滤不符合椭圆规则的特
征量(图 6 中⑦)以及符合椭圆规则但是非近圆的
特征量(图 6 中⑤)。为此,分别引入了 Goodness of
fit 算法和拟合椭圆长轴长度 /短轴长度 2 个概念。
图 5 形态学开闭运算处理结果
Fig. 5 The opened and closed operation of mathematical morphological
Goodness of fit 算法主要计算连通区域轮廓
点和拟合椭圆的匹配度 (选择之前连通区域的轮
廓点,计算每个点到拟合椭圆的最小距离的平方
值,汇总后除以轮廓点总数,再取开方 ),匹配度
大于某个数值(这里选择为 3 )判定非节子; 拟合
椭圆长轴长度 /短轴长度主要用于过滤一些长形
物体比如裂隙等的影响,根据节子普遍的外形,
选定长轴 /短轴 > 2 判定为非节子。至此,图 6 中
⑦根据 Goodness of fit 算法距离大于 3,图 6 中⑤
长轴 /短轴 > 2,识别为干扰特征量非节子;同时,
图 6 中离缝明显长轴 /短轴 > 2,识别为干扰特征
量非节子。
最终识别结果为节子个数: 2,最大节子的面积
(像素数): 3 484,图像分割阈值: 129。
39
林 业 科 学 51 卷
图 6 节子识别结果
Fig. 6 The detection of veneer knot defect image
3 结论
图像识别技术可以应用于木材单板表面节子的
快速检出,但在其检出过程中常受到一些干扰特征
量的影响,所以有必要在识别过程中进行一些算法
改进。通过本研究可知:
1) 二值化处理后的图像在节子周围可能会存
在一些干扰特征量,通过数学形态学运算,可切断干
扰特征量和节子之间的联系,使节子更容易被识
别出。
2) 检出的特征轮廓在进行椭圆拟合后辅以符
合节子外形的条件限制(如拟合椭圆的长轴 /短轴
比、拟合椭圆和被检出特征外轮廓点的匹配度)可
以提高检测精度,从而过滤掉木材单板中裂隙、污
痕、腐朽等其他特征量因颜色较深被检出的影响。
3) 根据图像采集设备与待采集对象的相对位
置、采集图像的分辨率等情况,能得出节子的真实大
小,结合系统判断结果和外部设备的接入,可实现木
材单板的自动分等。
参 考 文 献
姜 柯,李艾华,苏延召 . 2013. 结合边缘纹理和抽样推断的自适应
阴影检测算法 .西安交通大学学报,47(2) :39 - 46.
( Jiang K, Li A H, Su Y Z. 2013. An adaptive shadow detection
algorithm using edge texture and sampling deduction. Journal of
Xi’an Jiaotong University,47(2) :39 - 46. [in Chinese])
李朝锋,潘婷婷 . 2009. 基于形态学开闭运算和梯度优化的分水岭
算法的目标检测方法 .计算机应用研究,26(4) : 1593 - 1594.
( Li C F, Pan T T. 2009. Object detection method based on
morphological opening-and-closing operation and gradient
optimization. Application Research of Computers,26(4) : 1593 -
1594. [in Chinese])
田俊霞,穆国燕 . 2002. 基于边界特征的一维最大熵图像分割算法
的研究与实现 . 计算机工程与科学,24(6) : 46 - 47.
(Tian J X,Mu G Y. 2002. Research and implementation of one-
dimensional maximum-entropy threshold images segmentation based
on edge feature. Computer Engineering & Science,24 (6) : 46 -
47. [in Chinese])
王树文,闫成新,张天序,等 . 2005. 数学形态学在图像处理中的应
用 .计算机工程与应用,40(32) : 89 - 92.
(Wang S W,Yan C X,Zhang T X, et al. 2005. Application of
mathematical morphology in image processing. Computer
Engineering and Applications,40(32) : 89 - 92. [in Chinese])
王 游,石成英,高明贺,等 . 2013. 基于直方图阈值改进方法的缝
隙图像二值化研究 .现代电子技术,36(6) : 97 - 99.
(Wang Y,Shi C Y,Gao M H,et al. Research on gap image binarization
based on histogram threshold improved method. Modern Electronic
Technique,36(6) : 97 - 99. [in Chinese])
吴 鹏 . 2014. 萤火虫算法优化最大熵的图像分割方法 . 计算机工
程与应用,50(12) : 115 - 118.
(Wu P. 2014. Image segmentation method based on firefly algorithm and
maximum entropy method. Computer Engineering and Applications,
50(12) : 115 - 118. [in Chinese])
闫 蓓,王 斌,李 媛 . 2008. 基于最小二乘法的椭圆拟合改进算
法 . 北京航空航天大学学报,34(3) : 295 - 298.
(Yan P,Wang B,Li Y. 2008. Optimal ellipse fitting method based on
least-square principle. Journal of Beijing University of Aeronautics
and Astronautics,34(3) : 295 - 298. [in Chinese])
张大坤,罗三明 . 2010. 形态学中闭运算功能的扩展及其应用 . 计算
机工程与应用,46(27) : 185 - 187.
(Zhang D K,Luo S M. 2010. Function extension of morphological
closing operation and its application. Computer Engineering and
Applications,46(27) : 185 - 187. [in Chinese])
张新明,张爱丽,郑延斌,等 . 2011. 改进的最大熵阈值分割及其快速
实现 . 计算机科学,38(8) : 278 - 283.
(Zhang X M,Zhang A L,Zheng T B,et al. Improved two-dimensional
maximum entropy image thresholding and its fast recursive
realization. Computer Science,38(8) : 278 - 283.[in Chinese])
张怡卓,佟 川,李 想 . 2012. 梯度算子与灰度阈值融合的实木地
板节子识别方法研究 .林业科技,37(1) :18 - 20.
49
第 9 期 陈勇平等: 基于数学形态学的木材单板节子识别改进算法
(Zhang Y Z,Tong C,Li X. 2012. Research of solid wood floor knot
recognition based on gradient operators and gray level threshold ,
Forestry Science & Technology,37(1) :18 - 20. [in Chinese])
Cavalin P,Oliveira L S,Koerich A L, et al. 2006. Wood defect
detection using grayscale images and an optimized feature set.
Industrial Electronics,IECON 2006 - 32th Annual Conference on,
3408 - 3412.
Duan R,Li Q,Li Y. 2005. Summary of image edge detection. Optical
Technique,3(3) : 415 - 419.
Funck J W,Zhong Y,Butler D A,et al. 2003. Image segmentation
algorithms applied to wood defect detection. Computers and
Electronics in Agriculture,41(1) : 157 - 179.
Maini R,Aggarwal H. 2009. Study and comparison of various image
edge detection techniques. International Journal of Image Processing
( IJIP),3(1) : 1 - 11.
Pham D T,Soroka A J,Ghanbarzadeh A, et al. 2006. Optimising
neural networks for identification of wood defects using the bees
algorithm. Industrial Informatics, 2006 IEEE International
Conference on,1346 - 1351.
Ruz G A,Estévez P A,Perez C A. 2005. A neurofuzzy color image
segmentation method for wood surface defect detection. Forest
Products Journal,55(4) : 52 - 58.
Zhi W,Saixian H. 2004. An adaptive edge-detection method based on
Canny algorithm. Journal of Image and Graphics, 9 ( 8 ) :
957 - 962.
(责任编辑 石红青)
59