全 文 :园 艺 学 报 2012,39(10):2061–2074 http: // www. ahs. ac. cn
Acta Horticulturae Sinica E-mail: yuanyixuebao@126.com
收稿日期:2012–05–16;修回日期:2012–06–12
基金项目:国家高技术研究发展计划(‘863’计划)项目(2012AA100104)
* 通信作者 Author for correspondence(E-mail:junmingli@mail.caas.net.cn)
番茄耐旱和耐盐遗传改良的研究进展及展望
孙玉燕,刘 磊,郑 峥,张春芝,周龙溪,宗园园,李 涛,李君明*
(中国农业科学院蔬菜花卉研究所,北京 100081)
摘 要:就番茄耐旱和耐盐遗传改良的研究进展进行了综述。主要包括番茄耐旱和耐盐的野生资源
及其遗传进化,基于基因组的 QTL 挖掘,QTL 的遗传与累加效应,以及利用基因工程转入包括离子运
输和区室化、渗透调节、活性氧清除、转录因子、胁迫蛋白等在内的外源基因,提高番茄的耐旱和耐
盐性。就目前番茄耐旱和耐盐遗传改良过程中存在的问题与未来的应对策略,包括番茄耐旱和耐盐表
型鉴定、全基因组关联分析、基因工程、基因的协同调控、小 RNA、表观遗传学等,进行了探讨与展
望。
关键词:番茄;非生物胁迫;耐盐性;耐旱性;遗传改良
中图分类号:S 641.2 文献标志码:A 文章编号:0513-353X(2012)10-2061-14
A Review and Perspectives on Genetic Improvement of Salt and Drought
Tolerance in Tomato
SUN Yu-yan,LIU Lei,ZHENG Zheng,ZHANG Chun-zhi,ZHOU Long-xi,ZONG Yuan-yuan,LI Tao,
and LI Jun-ming*
(Institute of Vegetables and Flowers,Chinese Academy of Agricultural Sciences,Beijing 100081,China)
Abstract:The genetic improvement of tomato tolerance to drought and salt stress was reviewed in
this paper. The contents mainly included the potential wild tomato species for drought and salt tolerance
and the evolution,QTL exploration,the genetic and stacking effects of the identified QTLs,and the genetic
engineering with exogenous genes,including ion transport and compartmentalization,osmotic regulation,
antioxidant protection,transcription factor,stress related proteins,for tomato genetic improvement with
drought and/or salt tolerance. Meanwhile,the present problems and future strategies,mainly including
phenotype determination of drought and salt tolerance in tomato,genome wide association study
(GWAS),genetic engineering,cross-talking,small RNA and epigenetics,were also discussed.
Key words:tomato;abiotic stress;salt tolerance;drought tolerance;genetic improvement
多数栽培番茄(Solanum lycopersicum)品种对干旱敏感,对盐中度敏感。本文中对干旱和盐胁
迫两种重要的非生物胁迫因子,就目前番茄遗传改良的研究进展进行了综述,并对目前存在的主要
问题及未来相关的应对技术与策略进行了探讨。
2062 园 艺 学 报 39 卷
1 番茄耐旱和耐盐的遗传资源
经过人类长期高压选择,现代番茄栽培种的遗传背景已变得十分狭窄(Shirasawa et al.,2010)
而分布在起源地南美洲的番茄野生种或野生近缘种,却蕴藏着极其丰富的优良基因资源。一些野生
种如 S. sitiens、潘那利番茄(S. pennellii)、S. corneliomulleri、智利番茄(S. chilense)等生长在极度
干旱的西安第斯高海拔沙漠地区(Chetelat et al.,2009;Xia et al.,2010),尤其是 S. sitiens 和智利
番茄(S. chilense),其生长地年降雨量仅为 0.9 ~ 1.5 mm,是世界上最干旱的地区之一(Chetelat et al.,
2009)。而另外一些野生种,如醋栗番茄(S. pimpinellifolium)、秘鲁番茄(S. peruvianum)、契斯曼
尼番茄(S. cheesmaniae)、潘那利番茄(S. pennellii),可在盐碱含量较高的土壤中生存(Tal,1971;
Tal & Shannon,1983)。这些野生种为了应对周围的逆境,自身演化形成了适应干旱和盐碱的特异
机制。如潘那利番茄(S. pennellii)叶片表皮具有较多气孔,可吸收和利用空气中的水分;智利番
茄(S. chilense)具有发达的根系,可摄取深层土壤水分;在盐胁迫下,秘鲁番茄(S. peruvianum)、
潘那利番茄(S. pennellii)、契斯曼尼番茄(S. cheesmaniae)仍能维持较高的相对水分含量,而且对
不同离子具有选择吸收的能力(Tal,1971;Rush & Epstein,1981)。这些野生种为番茄耐旱和耐盐
遗传改良提供了十分宝贵的资源材料(Chetelat et al.,2009;Xia et al.,2010)。
2 番茄野生资源耐旱和耐盐性的遗传进化
考古发现,早期人类对作物后代的选择通常是无意识的,而且最后仅固定驯化了很少的性状
(Tang et al.,2010)。野生种的地区适应机制及其进化历史,为研究生物进化提供了极具价值的证
据:(1)它们的生长区域跨越大范围的气候、生物地理和环境差异,从温热带雨林一直到极度干旱
的沙漠;(2)栽培种具有大量而丰富的基因组信息(Fischer et al.,2011)。通过对 12 个番茄野生种
或野生近缘种的分布研究发现,环境因子,尤其是温度和降雨梯度等非生物生态条件是这些野生种
适应多样性形成的主要驱动力(Moyle & Muir,2010)。现已发现,存在于大多数种子植物中的 Asr
(ABA/water stress/ripening induced)基因家族协同调控干旱和盐胁迫下的 ABA 响应(Maskin et al.,
2001)。Fischer 等(2011)对智利番茄(S. chilense)和秘鲁番茄(S. peruvianum)两个番茄野生近
缘种群体的 Asr 基因家族的分子变异进行分析,发现 Asr1 经过了高强度的选择,Asr2 没有发生正向
选择,Asr4 表现出与智利番茄(S. chilense)在极端干旱条件下相一致的适应性模式,并发现一个新
的成员 Asr5,诸多 Asr 基因组成一个动态的基因家族,这些串联排列基因在植物适应性中起到重要
作用。干旱胁迫下,Asr2 编码的转录因子在番茄叶片和根部上调,对多毛番茄(S. hirsutum)、契斯
曼尼番茄(S. cheesmaniae)、樱桃番茄(S. esculentum var. cerasiforme)、智利番茄(S. chilense)、矮
生秘鲁番茄(S. peruvianum var. humifusum)和 S. peruvianum f. glandulosum 等 6 个番茄野生种家系
的 Asr2 同源基因的编码序列进行分析,并对番茄野生种的适应进化进行比较,发现智利番茄(S.
chilense)和矮生秘鲁番茄(S. peruvianum var. humifusum)对干旱环境的适应性与其它野生种有显著
区别,智利番茄(S. chilense)和矮生秘鲁番茄(S. peruvianum var. humifusum)内 Asr2 基因的氨基
酸替换速率加速是其适应干旱环境的机制(Framkel et al.,2003)。Asr2 编码区的错义替换和同义替
换是智利番茄(S. chilense)和 S. arcanum 适应干旱和湿润环境的主要原因(Giombini et al.,2009)。
串联重复可能导致 Asr 基因家族成员发生不同的进化途径,最终参与形成了植物的特异适应性
(Fischer et al.,2011)。研究和明确野生种的耐旱和耐盐机制及其进化选择,将为番茄耐旱耐盐遗
10 期 孙玉燕等:番茄耐旱和耐盐遗传改良的研究进展及展望 2063
传改良提供必要的科学依据。
3 番茄野生资源耐旱和耐盐基因的挖掘
3.1 不同生长发育阶段耐旱和耐盐 QTL 定位
研究表明,番茄与其它作物一样,耐旱和耐盐性受QTL控制和不同生长发育阶段的影响(Foolad,
2004)。到目前为止,从醋栗番茄 LA0722、潘那利番茄 LA0716、类番茄茄 LA2951、契斯曼尼番茄
L2 等野生资源中,分别定位了不同生长发育阶段的 QTL(Breto et al.,1994;Foolad & Chen,1999;
Monforte et al.,1999;Villalta et al.,2007;Xu et al.,2008;Gong et al.,2010;Li et al.,2011;刘
磊 等,2011;Uozumi et al.,2012),结果表明,控制番茄耐旱、耐盐性的 QTL 遗传复杂,受多个
位点影响(表 1)。一些研究者对耐盐的潘那利番茄 LA0716 进行了盐胁迫条件下生理和生长发育相
关因子的分析,定位了 125 个氧化胁迫相关 QTL 和 311 个生理响应相关 QTL(Frary et al.,2010,
2011)。综合上述研究可以发现,一些 QTL 在染色体上成簇分布,并表现高度遗传连锁,而一些 QTL
同位,推测其来自野生种的特定染色体渐渗片段,这些片段可能为番茄耐旱或耐盐遗传改良提供一
定的基因资源。目前对于抗性相关的 QTL 研究相对较多,而产量相关 QTL 的研究还十分有限。此
外,由于存在评价方法的差异,如干旱胁迫程度、盐浓度等不同,一些结果也难以比较。
表 1 不同生长发育阶段定位的耐旱或耐盐 QTLs
Table 1 QTLs identified for salt or drought tolerance in different stages
性状
Trait
发育阶段
Development
stage
QTL 数
Number
of QTL
染色体
Chromosome
群体
Population
处理/(mmol · L-1)
Treatment
调查性状
Investigated trait
参考文献
Reference
耐盐
Salt
tolerance
芽期
Germination
stage
5 1,3,7,8,
12
(S. lycopersicum UCT5 ×
S. pennellii LA0716)F2
150 NaCl + 15 CaCl2
200 NaCl + 20 CaCl2
达到 50%发芽率的
天数 Days to 50%
germination rate
Foolad &
Jones,1993
芽期
Germination
stage
8 1,2,3,7,
8,9,12
(S. lycopersicum UCT5 ×
S. pennellii LA0716)F2
175 NaCl + 17.5
CaCl2
达到 50%发芽率的
天数 Days to 50%
germination rate
Foolad et
al.,1997
芽期
Germination
stage
7 1,2,5,7,
9,12
(S. lycopersicum NC84173
× S. pimpinellifolium
LA0722)BC1,BC1S1
150 NaCl + 15 CaCl2 发芽指数
Germination index
Foolad et
al.,1998
芽期
Germination
stage
8 1,3,5,6,
8,9
(S. lycopersicum UCT5 ×
S. pennellii LA0716)F2
175 NaCl + 17.5
CaCl2
发芽率
Germination rate
Foolad &
Chen,1998
芽期
Germination
stage
6 4,5,7,9,
11,12
(S. lycopersicum NC84173
× S. pimpinellifolium
LA0722)BC1
150 NaCl + 15 CaCl2 达到 50%发芽率的
天数 Days to 50%
germination rate
Foolad et
al.,2007
苗期
Seedling stage
6 & 4 4,6,9,
12 & 6,7,
11
S. lycopersicoides LA2951IL,
S. pennellii LA0716IL
700 NaCl + 70 CaCl2 耐盐级数
Salt tolerance scale
Li et al.,
2011
营养生长期
Vegetative
stage
5 1,3,5,9 (S.lycopersicum NC84173 ×
S. pimpinellifolium LA0722)
BC1,BC1S1
700 NaCl + 70 CaCl2 耐盐级数
Salt tolerance scale
Foolad &
Chen,1999
营养生长期
Vegetative
stage
5 1,3,5,6,
11
(S .lycopersicum NC84173
× S. pimpinellifolium
LA0722)BC1,BC1S1
700 NaCl + 70 CaCl2 耐盐级数
Salt tolerance scale
Foolad et
al.,2001
营养生长期
Vegetative stage
125 1 ~ 12 M82,S. pennellii LA0716,
S. pennellii LA0716IL
150 NaCl 抗氧化剂活性
Antioxidant activity
Frary et al.,
2010
营养生长期
Vegetative
stage
311 1 ~ 12 M82,S. pennellii LA0716,
S. pennellii LA0716IL
150 NaCl 生长参数、离子
含量 Growth
parameters,ion
concentration
Frary et al.,
2011
2064 园 艺 学 报 39 卷
续表 1
性状
Trait
发育阶段
Development
Stage
QTL 数
Number
of QTL
染色体
Chromosome
群体
Population
处理
Treatment
调查性状
Investigated Trait
参考文献
Reference
芽期和开花期
Germination,
floweing stage
1 & 1 8 & 8 S. pennellii LA716 IL8-3 150 NaCl 发芽率/顶腐病发病
率 Germination rate
/blossom-end rot
disease incidence
Uozumi et
al.,2012
结果期
Fruit production
stage
8 10,11,12 (S. lycopersicum ×
S. pimpinellifolium)F2
171.1 NaCl 总果质量、结果数、
单果质量 Total
fruit weight,fruit
number,average
fruit weight
Breto et al.,
1994
结果期
Fruit production
stage
12 4,5,12 (S. lycopersicum ×
S. pimpinellifolium)F2
171.1 NaCl 总果质量、结果数、
单果质量 Total
fruit weight,fruit
number,average
fruit weight
Monforte et
al.,1996
结果期 Fruit
Production stage
1 5 (S. lycopersicum E9 ×
S. cheesmaniae L2)F2
171.1 NaCl 早熟性、产量
Earliness,yield
Monforte et
al.,1999
全生育期
Whole
development
stages
15 & 16 1,2,3,4,
5,6,7,8,
10,11,12
(S. lycopersicum ×
S. pimpinellifolium)F7
(S. lycopersicum ×
S. cheesmaniae)F7
200 NaCl 生长参数、产量、离
子含量 Growth
parameters,yield,
ion concentration
Villalta et al.,
2007
耐旱
Drought
tolerance
芽期
Germination
stage
4 1,8,9,12 (S. lycopersicum NC84173
× S. pimpinellifolium
LA0722)BC1,BC1S1
14% PEG 发芽率、发芽天数
Germination rate,
germination days
Foolad et
al.,2003
芽期
Germination
stage
9 1,4,5,8,
9,12
(S. lycopersicum NC84173
× S. pimpinellifolium
L0A722)BC1
14% PEG 达到50%发芽的天数
Days to 50%
germination rate
Foolad et
al.,2007
苗期
Seedling
stage
1 5 S. pennellii LA0716 IL 碳同位素测量
Carbon isotope
measurement
碳同位素组分
Carbon isotope
composition
Xu et al.,
2008
苗期
Seedling stage
2 2,9 S. pennellii LA0716 IL 15% PEG 叶片电导率 Lesf
electric conductivity
Gong et al.,
2010
苗期
Seedling
stage
3 & 11 3,6,12 & 1,
2,3,4,5,
8,9,10,12
S. lycopersicoides LA2951IL,
S. pennellii LA0716IL
3 次干旱胁迫
Three times drought
stress
耐旱级数
Drought tolerance
scale
刘磊 等,
2011
3.2 耐旱和耐盐 QTL 的遗传及累加效应
目前,对于从野生资源鉴定出的 QTL 的遗传及互作效应仍有不同的结论。通过对来自醋栗番茄
LA0722 的 F2 和 BC1 群体的研究认为,芽期和苗期的耐旱、耐盐性受少数主效 QTL 和几个微效 QTL
控制,且主效 QTL 效应较大,部分耐盐的 QTL 在群体和种间是保守的,QTL 间仅存在很小或者无
上位效应(Foolad,2004);而其它研究表明,番茄耐旱和耐盐性受众多 QTL 控制,受环境影响较
大,每个 QTL 的效应较小,互作明显(Monforte et al.,1999;Villalta et al.,2007;Li et al.,2011;
刘磊 等,2011;Uozumi et al.,2012)。产生上述不同结论的主要原因可能是由于鉴定方法、作图群
体及资源材料等不同。通过对来自耐旱和耐盐的潘那利番茄渐渗系片段的遗传分析发现,一些 QTL
呈明显的显性效应,互作呈典型的小于加性的效应(Gur & Zamir,2004;Li et al.,2011)。通过将
耐旱的 IL7-5-5(显性效应,纯合体和杂合体在相对干旱条件下较对照 M82 增产 12% ~ 22%)、IL8-3
(纯合体产量较对照 M82 低 34%,杂合体增产 25%)、IL9-2-5(典型的加性效应)(Gur & Zamir,
2004)聚合,育成了美国加州主栽品种 AB2(Lippman et al.,2007)。虽然该成果为番茄耐旱和耐盐
新品种选育展示了一定前景,但其遗传效应更多受益于杂种优势,耐旱和耐盐性只是相对而言。因
此,如何进一步利用这些鉴定出的 QTL 育成真正耐旱或耐盐的番茄品种,仍然是一项庞大的工程和
十分艰巨的任务。
10 期 孙玉燕等:番茄耐旱和耐盐遗传改良的研究进展及展望 2065
4 基于基因工程的遗传改良
过去 20 年期间,利用具有离子运输和区室化、渗透调节、活性氧清除、转录因子、胁迫蛋白等功
能的基因,进行番茄耐旱和耐盐基因工程的遗传改良,已不同程度地提高了番茄的抗逆性(表 2)。
其抗逆性提高的主要机制包括:(1)离子运输和区室化:主要通过位于质膜和液泡膜的两种逆向转
运蛋白(Na+/H+ antiporter)限制 Na+的内流、增强 Na+的外排、维持较高的 K+/Na+以及将 Na+区室
化,从而降低细胞质内 Na+的浓度,消除 Na+对植物的毒害作用,使植物在逆境下维持正常的生长
发育;(2)渗透调节:甜菜碱、甘露醇、海藻糖、多胺、渗调蛋白等渗透调节物质在细胞内大量积
聚,稳定胞内的渗透平衡,增强细胞的保水能力。通过渗透调节,不仅提高了植物的耐旱和耐盐性,
而且提高了耐寒、耐高温、抗氧化胁迫等非生物胁迫的能力;(3)活性氧清除:草酸氧化酶、抗坏
血酸过氧化酶等抗氧化剂可以清除活性氧和自由基对细胞的损伤,维持离子平衡和膜的稳定,从而
抵抗非生物胁迫对植物造成的氧化伤害;(4)转录因子:也称为反式作用因子,能够与真核基因启
动子区域中顺式作用元件发生特异性的相互作用,通过它们之间以及与其它相关蛋白之间的相互作
用,激活或抑制转录。将调控抗逆相关基因的转录因子转入植物,可以启动多个胁迫相关基因的表
达,提高植物对非生物胁迫和生物胁迫的抗性;(5)胁迫蛋白:受 ABA、渗透或低温胁迫诱导产生,
具有很高的亲水性和热稳定性,可以重新定向细胞内的水分子,束缚盐离子,以减轻脱水对细胞造
成的不良影响;促进水分的长距离运输和细胞内外的跨膜水分运输;一些蛋白还可以维持细胞膜和
蛋白质结构及功能的稳定性。
表 2 利用基因工程转入番茄的耐旱和(或)耐盐相关基因
Table 2 The transformed genes conferring salt and/or drought tolerance by genetic engineering in tomato
分类
Catalog
基因
Gene
功能或编码蛋白质
Function/ Coding protein
作用机理
Mechanism
抗性
Resistance
参考文献
Reference
离子运输和
区室化 Ion
transportation
and compart-
menttalization
AtNHX1 液泡膜 Na+/H+逆向转运蛋白
Tonoplast Na+/H+ antiporter
Na+和 H+ 反向运输,使细胞质多余
的 Na+排入液泡
Reverse transportation of Na+ and H+,
extra Na+ flowing into vacuole
耐盐
Salt tolerance
Zhang &
Blumwald,2001
PgNHX1 液泡膜 Na+/H+逆向转运蛋白
Tonoplast Na+/H+ antiporter
Na+和 H+ 反向运输,使细胞质多余
的 Na+排入液泡
Reverse transportation of Na+ and H+,
extra Na+ flowing into vacuole
耐盐
Salt tolerance
Bhaskaran &
Savithramma,
2011
LeNHX2 K+/H+逆向转运蛋白
K+/H+ antiporter
促进 K+在细胞内区室化
Facilitating K+ compartmentalization
耐盐
Salt tolerance
Rodríguez-Rosales
et al.,2008
HAL1 耐盐的胞质蛋白
Salt tolerant cytoplasm
protein
促进 K+/ Na+的选择,细胞内 K+的积
累和 Na+含量的降低 Facilitating
K+/ Na+ selectivity and intracellular
K+ accumulation,decreasing
intracellular Na+ concentration
耐盐
Salt tolerance
Gisbert et al.,2000;
Rus et al.,2001
HAL2 二磷酸–3–核苷酸酶
Bisphosphate-3-nucleotidase
将 PAP 和 PAPS 去磷酸化
Dephosphorylating PAP and PAPS
耐盐
Salt tolerance
Arrillaga et al.,
1998
AVP1 液泡内 H+–焦磷酸酶
Vacuolar H+-PPase
促进离子积累;降低液泡渗透势;
促进根系生长 Facilitating ion
accumulation,reducing vacuolar
solute potential,promoting root
development
耐旱
Drought tolerance
Park et al.,2005
MdVHP1 液泡内 H+–焦磷酸酶
Vacuolar H+-PPase
促进离子积累;维持较高相对水分
含量;降低液泡渗透势 Facilitating
ion accumulation,maintaining high
RWC and low solute potential
耐盐、耐旱
Salt and drought
tolerance
Dong et al.,2011
2066 园 艺 学 报 39 卷
续表 2
分类
Catalog
基因
Gene
功能或编码蛋白质
Function/ Coding protein
作用机理
Mechanism
抗性
Resistance
参考文献
Reference
渗透调节
Osmotic
regulation
BADH 甜菜碱醛脱氢酶
Betaine aldehyde
dehydrogenase
催化甜菜碱醛转化为甜菜碱
Converting betaine aldehyde into
glycinebetaine
耐盐
Salt tolerance
Moghaieb et al.,
2000;
Jia et al.,2002
betA 胆碱脱氢酶
Choline dehydrogenase
催化胆碱生成甜菜碱
Converting choline into
glycinebetaine
耐盐
Salt tolerance
王淑芳 等,2001
CodA 胆碱氧化酶
Choline oxidase
催化胆碱生成甜菜碱
Converting choline into
glycinebetaine
耐盐、耐旱、耐寒、
抗氧化胁迫 Salt,
drought and cold
tolerance,
antioxidation
Park et al.,2007;
Goel et al.,2011
TPS1 海藻糖–6–磷酸合成酶
Trehalose-6-phosphate
synthase
参与糖类代谢和渗透调节
Participating in sugar metabolism
and osmoregulation
耐盐、耐旱、抗氧化
胁迫 Salt and
drought tolerance,
antioxidation
Cortina &
Culianez-Macia,
2005
AtIpk2β 肌醇多磷酸盐 6-/3-激酶
Inositol polyphosphate 6-/3-
kinase
参与胞内信号转导和维持 Ca2+平
衡 Cellular signal transduction and
Ca2+ homeostasis maintenance
耐旱、耐寒、抗氧化
胁迫 Drought and
cold tolerance,
antioxidation
Zhang et al.,2009
MtlD 甘露醇–1–磷酸脱氢酶
Mannitol-1-phosphate
dehydrogenase
参与甘露醇的形成
Involving in biosynthesis of
mannitol
耐盐、耐旱、耐寒
Salt,drought and cold
tolerance
Khare et al.,2010
Osmotin 24-kD 多功能胁迫响应蛋白
24-kD multifunction stress
response protein
参与细胞渗透调节;维持蛋白质结
构稳定
Cell osmoregulation and protein
structure stability maintenance
耐盐、耐旱
Salt and drought
tolerance
Goel et al.,2010
活性氧清除
Active oxygen
elimination
OXO 草酸氧化酶
Oxalate oxidase
降解草酸的毒性,参与胁迫防御
Oxalate toxicity degradation and
stress defense
耐盐
Salt tolerance
Dessalegne et al.,
1997
cAPX 细胞质抗坏血酸过氧化酶
Cytosolic ascorbate
peroxidase
清除活性氧的毒害
Eliminating ROS toxicity
耐盐、耐寒、耐高温、
抗 UV-B
Salt,cold,heat and
UV-B tolerance
Wang et al.,2005,
2006
SlGMEs GDP–甘露糖 3’,5’–表异
构酶
GDP-Mannose 3′,5′-epimerase
参与抗坏血酸的生物合成
Involving in biosynthesis of
ascorbic acid
耐盐、耐寒、抗氧化
胁迫 Salt and cold
tolerance,antioxidant
stress
Zhang et al.,2011
MdSPDS1 亚精胺合成酶 1
Spermidine synthase 1
促进亚精胺和精胺等多胺积累;提
高抗坏血酸过氧化酶的活性
Facilitating spermidine and
spermine accumulation,enhancing
APX activity
耐盐
Salt tolerance
Neily et al.,2011
PtADC 精氨酸脱羧酶
Arginine decarboxylase
促进多胺的积累,清除活性氧的毒
害
Facilitating polyamines
accumulation and eliminating ROS
toxicity
耐旱
Drought tolerance
Wang et al.,2011
Samdc S–腺苷甲硫氨酸脱羧酶
S-adenosylmethionine
decarboxylase
参与多胺的合成;自由基清除
Involving in biosynthesis of
polyamines;radicals scavenging
耐盐、耐旱、耐寒、
耐高温、抗病 Salt,
drought,cold and heat
tolerance;disease
resistance
Hazarika &
Rajam,2011
转录因子
Transcription
factor
CBF1 转录因子
Transcription factor
转录激活因子,对低温和水分胁迫
产生响应 Transcription activated
factor,response for low temperature
and water stress
耐盐、耐旱、耐寒
Salt,drought and cold
tolerance
Hsieh et al.,2002;
Lee et al.,2003
Osmyb4 MYB 转录因子
MYB transcription factor
诱导胁迫相关基因的表达
Inducing expression of stress
related genes
耐旱、抗病毒病
Drought tolerance;
viral disease
resistance
Vannini et al.,2007
10 期 孙玉燕等:番茄耐旱和耐盐遗传改良的研究进展及展望 2067
续表 2
分类
Catalog
基因
Gene
功能或编码蛋白质
Function/ Coding protein
作用机理
Mechanism
抗性
Resistance
参考文献
Reference
LeERF1 转录因子
Transcription factor
可溶性糖、脯氨酸在胞内积累;启
动胁迫相关基因的表达
Facilitating soluble sugar and
praline accumulation,inducing
expression of stress related gene
耐旱
Drought tolerance
Lu et al.,2010
S1AREB 类 AREB 转录因子
AREB-like transcription
factor
在 ABA 和非生物胁迫下诱导相关
基因的表达 Inducing expression
of stress-responsive genes under
ABA and abiotic stress
耐盐、耐旱
Salt and drought
tolerance
Hsieh et al.,2010
SlERF3△RD EAR 结构域缺失的转录因
子
EAR motif deletion
transcription factor
降低膜的脂质过氧化作用;诱导病
原相关蛋白基因的表达 Reducing
membrane lipid peroxidation,
inducing pathogen related protein
gene expression
耐盐、抗病
Salt tolerance,disease
resistance
Pan et al.,2010
SlERF1 AP2/ERF 转录因子
AP2/ERF transcription factor
可溶性糖、脯氨酸等在胞内积累;
启动胁迫相关基因的表达
Facilitating soluble sugar and
praline accumulation,inducing
expression of stress related gene
耐盐
Salt tolerance
Lu et al.,2011
SlERF5 AP2/ERF 转录因子
AP2/ERF transcription factor
诱导胁迫相关基因的表达
Inducing expression of stress
related genes
耐盐、耐旱 Salt and
drought tolerance
Pan et al.,2012
胁迫蛋白
Stress related
proteins
bspA 66-kD 热稳定蛋白
66-kD boiling stable protein
在 ABA 和非生物胁迫下,促进热
稳定蛋白在细胞内积累
Facilitating boiling stable protein
accumulation under ABA and
abiotic stress
耐旱
Drought tolerance
Roy et al.,2006
HVA1 胁迫诱导 LEA 蛋白
Stree induced LEA protein
LEA 蛋白积累,增强植株抵抗胁
迫的能力 LEA protein
accumulation to increase plants
stress resistance
耐盐
Salt tolerance
陈火英 等,2006
5 问题与展望
5.1 番茄耐旱和耐盐的表型鉴定
随着科学技术的快速发展,尤其是不同物种基因组测序的完成,获得了大量的基因组、转录组、
代谢组的数据,而对这些数据的注释,需要准确的表型数据以研究和揭示其功能。标准的表型数据
或者表型组学结果,不仅可用于不同地点、不同研究者、不同年份的比较分析,而且可用于对受效
应较小的多基因控制的基因组进行选择(Genome Selection,GS)(Cabrera-Bosquet et al.,2012)。
近几年,高通量和标准化表型分析或表型组学备受关注(Volk,2010;Cabrera-Bosquet et al.,2012)。
标准化表型数据将有助于基因型和表型分析,对作物的产量、品质及抗逆性进行改良(Volk,2010)。
Famoso 等(2010)建立了新的表型鉴定体系,对耐铝性差异较大且适应不同营养液生长的谷物和水
稻进行比较分析。番茄的耐旱和耐盐性受众多 QTL 控制,不同研究者采用不同的处理和鉴定方法,
如耐旱时间、耐盐浓度、离子组分等不一致,导致一些结果无法比较分析。譬如,Katerji 等(2000)
将番茄划分为中度盐敏感作物;Dasgan 等(2002)将 200 mmol · L-1 NaCl 胁迫下的番茄基因型生长
期盐害级数(Salinity Scale Classes)分为 1 ~ 5 级;而为了鉴定芽期、苗期、营养生长期、开花结果
期的耐盐 QTL,采用了不同的盐处理浓度(mmol · L-1)和方法:150 NaCl + 15 CaCl2,175 NaCl + 17.5
CaCl2,200 NaCl + 20 CaCl2,700 NaCl + 70 CaCl2,150 NaCl,171.1 NaCl,200 NaCl 等(表 1)。
就海水而言,大约含有 3%的 NaCl,其中 Na+ 浓度为 460 mmol · L-1,Mg2+ 浓度为 50 mmol · L-1,
2068 园 艺 学 报 39 卷
Cl- 浓度为 540 mmol · L-1(Chen,1946),而不同类型的土壤盐渍化则存在更大的差异。对于番茄耐
旱性鉴定,则采用 ABA 和 PEG 处理,一次干旱胁迫和多次干旱胁迫等不同的处理方法(Karaba,
2007;Gong et al.,2010;刘磊 等,2011)。因此,耐盐和耐旱标准鉴定方法的确立,已成为深入挖
掘番茄野生资源优异目标基因和培育耐盐、耐旱新品种亟待解决的问题。
5.2 基于全基因组关联分析的野生资源基因的挖掘
近几年,基于脊椎动物的不相关个体基因型和表型连锁分析的关联作图(Association Mapping),
为作物遗传改良提供了新的思路(Rafalski,2010)。随着第二代测序技术的飞速发展,大量物种全
基因组测序的完成,关联作图更显示出明显的优势。与传统的连锁作图相比,关联作图具有以下优
点:(1)利用不相关的个体,不需要构建作图群体,省时、省费用;(2)可以进行多点、多次重复
试验;(3)可获得高分辨率的图谱,检测多个等位点;(4)广泛的参考群体。目前,该策略已应用
于水稻、玉米、大豆、大麦、甜菜等作物遗传资源的挖掘与改良(McMullen et al.,2009;Stich,2009;
Rosenberg et al.,2010)。最典型的是利用巢式关联作图(Nested Association Mapping)对玉米的遗
传组成进行分析(McMullen et al.,2009;Tian et al.,2011)。实践证明,关联作图是深入挖掘作物
有益基因和 QTL 的有效途径(Stich,2009)。番茄作为经典的双子叶模式植物,对其研究极其深入
而广泛。但利用关联分析挖掘现有资源和野生资源的报道却十分有限,仅对少数栽培种和野生种进
行了初步探讨(Arunyawat et al.,2007;van Berloo et al,2008;Labate et al.,2009),其主要原因是
栽培种遗传背景狭窄(Shirasawa et al.,2010)。野生种秘鲁番茄和智利番茄自然群体的连锁不平衡
(Linkage Disequilibrium,LD)衰减极其迅速,为未来进行关联作图,分析其功能变异展示了十分
可观的前景(Arunyawat et al.,2007)。Causse 等(2011)成功利用 S. lycopersicum var. cerasiforme 群
体,对影响番茄品质的性状进行了关联分析。另外,由于野生资源长期通过昆虫授粉,重组度非常
高,为高精度作图和精细定位功能位点提供了十分有利的条件(Rosenberg et al.,2010)。番茄栽培
种基因组测序已经完成,野生种醋栗番茄 LA1589 和潘那利番茄(S. pennellii)LA0716 的测序正在
进行,这不仅为开发大量覆盖全基因组的 SNP 标记奠定了的基础,也为利用全基因组关联分析,深
入、广泛地挖掘野生资源耐旱和耐盐基因提供了可能。
5.3 基因工程
大规模植物基因组测序以及宏基因组学工程的开展,为作物抗逆基因工程提供了更为丰富的基
因来源(Mittler & Blumwald,2010)。目前,通过基因工程将基因聚合以提高番茄耐旱或耐盐性的
报道不多,在两个基因的转化方面,刘晶等(2005)将 BADH 导入转 AtNHX1 的番茄中得到二价转
基因植株,其耐盐性及各项生理指标均优于野生型和单基因植株;AVP1 和 PgNHX1 在番茄中共同
表达使植株的耐盐性均优于野生型和单基因植株(Bhaskaran & Savithramma,2011)。对于多基因的
转化,由于多个外源酶蛋白的掺入,应注意转基因表达的位置、水平及时间,并确保每种酶反应所
需要的条件,避免复合基因转化可能带来的副作用(Holmberg & Bulow,1998)。另外,通过转入单
个转录因子启动多个目标基因的表达也是一种十分有效的策略。到目前为止,虽然得到了不同作物
的大量转基因后代,但获得的耐旱和耐盐品种却极少。因此,如何利用基因工程技术进一步提高作
物的耐旱和耐盐性,仍值得思考。
5.4 耐旱和耐盐基因协同和特异调控
植物在生长发育过程中,一般要同时应对多种生物或非生物胁迫,尤其是干旱和盐碱通常重叠
10 期 孙玉燕等:番茄耐旱和耐盐遗传改良的研究进展及展望 2069
交叉发生。在适应环境的过程中,植物演化形成了应对不同逆境的相同或特异的响应机制(Verslues
et al.,2006)。番茄对干旱和盐胁迫响应的基因包括转录因子、胁迫防御、信号转导、ROS清除、细
胞壁代谢、激素代谢等(Gong et al.,2010;Sun et al.,2010)。植物具有多个胁迫识别和信号转导
途径,一些途径交互发生,一些途径特异调控(Zhu,2002),如植物对干旱和高盐引发的渗透胁迫
的调控存在着显著差异,干旱诱导的渗透胁迫可通过降低气孔开度和表皮水分散失来提高水分利用
率;而盐害产生的渗透胁迫则通过渗透调节保持离子平衡。现已发现,植物对多种胁迫和一种胁迫
的反应并不相同,应对多种胁迫受一系列复杂和特异的调控网络的调控(Atkinson & Urwin,2012),
因此,利用单一胁迫技术对多重胁迫进行鉴定可能不适合(Mittler & Blumwald,2010)。耐旱和耐
盐基因的协同和特异调控机制的明确,将为番茄耐旱和耐盐遗传改良提供必要的依据。
5.5 小 RNA 分子
小 RNA(Small RNAs)包括 microRNAs(miRNAs)和小干扰 RNA(siRNAs),其中最保守、
最典型的为 miRNAs。近几年,大量文献报道 20 多种 miRNAs 参与植物的耐旱和耐盐调控,其中
miR393、miR160、miR167、miR169 等在受到干旱或盐胁迫时,均被上调或下调,这类 miRNAs 在
植物抗逆过程中发挥着重要作用(Sunkar et al.,2007;Naqvi et al.,2008)。但相关研究在番茄中还
较少,Sly-miR169c 在番茄中过表达,可减少气孔张开,降低蒸腾速率,提高耐旱性(Zhang et al.,
2011)。目前,对于小 RNA 的调控机制还不十分清楚,而且其鉴定主要依赖于测序谱,存在一定偏
差,需逐个鉴定(Sunkar et al.,2007),但其为明确植物抗逆的复杂调控提供了新的技术手段,也
为利用小 RNA 介导基因调控,提高植物的耐旱和耐盐性提供了可能。
5.6 表观遗传调控
表观遗传学是指基于非基因序列改变所引起的基因表达水平的变化。环境信号诱导基因组的表
观修饰,如 DNA 甲基化、组蛋白修饰、染色体重塑等,可改变染色体的结构,影响基因的表达,
并可遗传给下一代,提高植物后代的抗逆性(Chinnusamy & Zhu,2009)。现已发现,几种核染色质
相关蛋白,包括组蛋白修饰酶、链接组蛋白 H1 和核染色质重塑复合体,影响胁迫响应的基因调控
(Kim et al.,2010)。目前,已鉴定出的与番茄耐旱有关的链接组蛋白包括 H1-D 和 H1-S,其中 H1-S
具有多个功能,包括参与气孔电导的负调控、在不同时间点控制植株的水分状态等(Wei & OConnell,
1996;Scippa et al.,2004)。Gonzalez 等(2011)证明了跨越番茄 Asr1 基因(一种非转座的蛋白编
码基因)的 CNN–甲基化等位基因(CNN-methylated epialleles)的存在,另外,为对表观遗传修饰
和作物对非生物胁迫的适应性存在相关性的假设进行验证,对叶片内 Asr1 DNA 的胞嘧啶甲基化状
态进行了研究,发现干旱胁迫导致所分析的 110 个非对称位点中的 75 个位点甲基化标记去除,并伴
随着抑制性 H3K27me3 表观遗传标记的减少和 RNA 水平表达的大幅度降低,这些去甲基化大多数
发生在内含子区域。非生物胁迫诱导表观遗传变异,使植物发生适应性响应,有利于植物生存,而
且还可传给后代,即植物具有胁迫记忆性(Chinnusamy & Zhu,2009)。这种跨代表观遗传变异
(transgenerational epigenetic variation)有可能产生新的改变转录的等位点,从而影响植物表型的多
样性,在植物进化过程中发挥重要作用(Turner,2011),也可利用其最大程度地挖掘作物后代的产
量等潜力(Chinnusamy & Zhu,2009)。另外,人们还发现,植物小 RNA 也介导表观遗传修饰(Simon
& Meyers,2011)。番茄 12 个野生或野生近缘种,具有丰富的表型变异,分布极其广泛,适应不同
的生态地理区域。应用表观遗传学,比较分析栽培种和野生种对干旱和盐碱的适应性差异,有望为
深入了解野生资源的耐旱和耐盐性并为番茄遗传改良提供新的线索。
2070 园 艺 学 报 39 卷
综上所述,虽然通过从野生资源中挖掘抗性基因或 QTL 以及利用基因工程来提高番茄的耐旱和
耐盐性已取得一些进展,但与实际生产需要仍存在较大差距。过去几十年,由于技术条件限制,从
野生资源挖掘出的耐旱和耐盐基因十分有限。随着不同物种全基因组测序的完成,全基因组关联分
析、小 RNA、表观遗传学等新技术和新策略的产生及利用,特别是对耐旱和耐盐物种遗传进化机制
的明确,将为深入挖掘抗逆相关基因和理解抗逆机制提供新的线索与途径。挖掘出的大量野生资源
及基因经过进化选择,在所确定的栽培种基因组水平上,构建庞大而复杂的耐旱耐盐调控体系,仍
需对作物生长发育的调控网络进行深入了解。另外,在作物耐旱和耐盐遗传改良的同时,进一步提
高现有作物栽培种的产量,是应对干旱和盐碱环境的双重举措。
References
Arrillaga I,Gil Mascarell R,Gisbert C,Sales E,Montesinos C,Serrano R,Moreno V. 1998. Expression of the yeast HAL2 gene in tomato increases
the in vitro salt tolerance of transgenic progenies. Plant Science,136:219–226.
Arunyawat U,Stephan W,Stadler T. 2007. Using multilocus sequence data to assess population structure,natural selection,and linkage
disequilibrium in wild tomatoes. Molecular Biology and Evolution,24:2310–2322.
Atkinson N J,Urwin P E. 2012. The interaction of plant biotic and abiotic stresses:From genes to field. Journal of Experiment Botany,63 (10):
3523–3543.
Bhaskaran S,Savithramma D L. 2011. Co-expression of Pennisetum glaucum vacuolar Na+/H+ antiporter and Arabidopsis H+-pyrophosphatase
enhances salt tolerance in transgenic tomato. Journal of Experiment Botany,62 (15):5561–5570.
Breto M P,Asins M J,Carbonell E A. 1994. Salt tolerance in Lycopersicon species:III. Detection of quantitative trait loci by means of molecular
markers. Theoretical and Applied Genetics,88:395–401.
Cabrera-Bosquet L,Crossa J,von Zitzewitz J,Serret M D,Araus J L. 2012. High-throughput phenotyping and genomic selection:The frontiers of
crop breeding converge. Journal of Integrative Plant Biology,54 (5):312–320.
Causse M,Rance N,Munos S,Brunel D. 2011. Genome admixture of Solanum lycopersicum var. cerasiforme allows successful association mapping
of quality-traits and adds insight in tomato domestication. Málaga,Spain. XVIIth EUCARPIA Meeting-Section Vegetables Working Group
Tomato:11–14.
Cheng Huo-ying,Zhuang Tian-ming,Zhang Xiao-ning,Liu Yang,Zhang Ying,Xia Cong-mei. 2006. Transformation of HVA1 gene into
tomato and elementary identification of salt-tolerance. Journal of Shanghai Jiao Tong University:Agricultural Science,24 (1):1–12. (in
Chinese)
陈火英,庄天明,张晓宁,刘 杨,张 英,夏聪美. 2006. HVA1 基因转化番茄及转基因番茄耐盐性的初步鉴定. 上海交通大学学报:农业科
学版,24 (1):1–12.
Chen Y. 1946. On the terrestrial oligochaete from szechuan III. Journal of the West China Border Research Society,16:83–141.
Chetelat R T,Pertuze R A,Faundez L,Graham E B,Jones C M. 2009. Distribution,ecology and reproductive biology of wild tomatoes and related
nightshades from the Atacama Desert region of northern Chile. Euphytica,167:77–93.
Chinnusamy V,Zhu J K. 2009. Epigenetic regulation of stress responses in plants. Current Opinion in Plant Biology,12:1–7.
Cortina C,Culianez-Macia F A. 2005. Tomato abiotic stress enhanced tolerance by trehalose biosynthesis. Plant Science,169:75–82.
Dasgan H Y,Aktas H,Abak K,Cakmak I. 2002. Determination of screening techniques to salinity tolerance in tomatoes and investigation of
genotype responses. Plant Science,163:695–703.
Dessalegne L,Wetten A C,Caligari P D S. 1997. Production of transgenie tomatos expressing oxalate oxidase. Acta Horticulturae,447:457–
458.
Dong Q L,Liu D D,An X H,Hu D G,Yao Y X,Hao Y J. 2011. MdVHP1 encodes an apple vacuolar H+-PPase and enhances stress tolerance in
ransgenic apple callus and tomato. Journal of Plant Physiology,168:2124–2133.
Famoso A N,Clark R T,Shaff J E,Craft E,McCouch S R,Kochian L V. 2010. Development of a novel aluminum tolerance phenotyping platform
used for comparisons of cereal aluminum tolerance and investigations into rice aluminum tolerance mechanisms. Plant Physiology,153:
10 期 孙玉燕等:番茄耐旱和耐盐遗传改良的研究进展及展望 2071
1678–1691.
Fischer I,Camus-Kulandaivelu L,Allal F,Stephan W. 2011. Adaptation to drought in two wild tomato species:The evolution of the Asr gene family.
New Phytologist,190 (4):1032–1044.
Foolad M R,Chen F Q. 1998. RAPD markers associated with salt tolerance in an interspecific cross of tomato(Lypersicon esculentum × L. pennellii).
Plant Cell Reports,17:306–312.
Foolad M R,Chen F Q. 1999. RFLP mapping of QTLs conferring salt tolerance during vegetative stage in tomato. Theoretical and Applied Genetics,
99:235–243.
Foolad M R,Chen F Q,Lin G Y. 1998. RFLP mapping of QTLs conferring salt tolerance during germination in an interspecific cross of tomato.
Theoretical and Applied Genetics,97:1133–1144.
Foolad M R,Chen F Q,Lin G Y. 2001. Identification and validation of QTLs for salt tolerance during vegetative growth in tomato by selective
genotyping. Genome,44:444–454.
Foolad M R,Jones R A. 1993. Mapping salt-tolerance genes in tomato(Lycopersicon esculentum)using trait-based marker analysis. Theoretical and
Applied Genetics,87:184–192.
Foolad M R,Stoltz T,Dervinis C,Rodriguez R L,Jones R A. 1997. Mapping QTLs conferring salt tolerance during germination in tomato by
selective genotyping. Molecular Breeding,3 (4):269–277.
Foolad M R,Zhang L P,Subbiah P. 2003. Genetics of drought tolerance during seed germination in tomato:Inheritance and QTL mapping. Genome,
46:536–545.
Foolad M R. 2004. Recent advances in genetics of salt tolerance in tomato. Plant Cell Tissue and Organ Culture,76 (2):101–119.
Foolad M R,Subbiah P,Zhang L P. 2007. Common QTL affect the rate of tomato seed germination under different stress and nonstress conditions.
International Journal of Plant Genomics,doi:10.1155/2007/97386.
Framkel N,Hasson E,Iusem N. 2003. Adaptive evolution of the water stress-induced gene Asr2 in Lycopersicum species dwelling in arid habitats.
Molecular Biology and Evolution,20 (12):1955–1962.
Frary A,Gol D,Keles D,Okmen B,Pinar H,Sigva H O,Yemenicioglu A,Doganlar S. 2010. Salt tolerance in Solanum pennellii:Antioxidant
response and related QTL. BMC Plant Biology,10:58.
Frary A,Keles D,Pinar H,Gol D,Doganlar S. 2011. NaCl tolerance in Lycopersicon pennellii introgression lines:QTL related to physiological
responses. Biologia Plantarum,55 (3):461–468.
Giombini M I,Frankel N,Iusem N D. 2009. Nucleotide polymorphism in the drought responsive gene Asr2 in wild populations of tomato. Genetics,
136:13–25.
Gisbert C,Rus A M,Bolarin M C,Coronado J M,Arrillaga I,Montesinos C,Caro M,Serrano R,Moreno V. 2000. The yeast HAL1 gene improves
salt tolerance of transgenic tomato. Plant Physiology,123:393–402.
Goel D,Singh A K,Yadav V,Babbar S B,Bansal K C. 2010. Overexpression of osmotin gene confers tolerance to salt and drought stresses in
transgenic tomato(Solanum lycopersicum L.). Protoplasma,245:133–141.
Goel D,Singh A K,Yadav V,Babbar S B,Murata N,Bansal K C. 2011. Transformation of tomato with a bacterial codA gene enhances tolerance
to salt and water stresses. Journal of Plant Physiology,168 (11):1286–1294.
Gong P J,Zhang J H,Li H X,Yang C X,Zhang C J,Zhang X H,Khurram Z,Zhang Y Y,Wang T T,Fei Z J,Ye Z B. 2010. Transcriptional
profiles of drought-responsive genes in modulating transcription signal transduction,and biochemical pathways in tomato. Journal of
Experimental Botany,61 (13):3563–3575.
Gonzalez R M,Ricardi M M,Lusem N D. 2011. Atypical epigenetic mark in an atypical location:Cytosine methylation at asymmetric(CNN)sites
within the body of a non-repetitive tomato gene. BMC Plant Biology,11:94.
Gur A,Zamir D. 2004. Unused natural variation can lift yield barriers in plant breeding. PLoS Biology,2 (10):245.
Hazarika P,Rajam M V. 2011. Biotic and abiotic stress tolerance in transgenic tomatoes by constitutive expression of S-adenosylmethionine
decarboxylase gene. Physiology Molecular Biology Plant,17 (2):115–128.
Holmberg N,Bulow L. 1998. Improving stress tolerance in plants by gene transfer. Trends in Plant Science,3 (2):61–66.
Hsieh T H,Lee J T,Yang P T,Chiu L H,Charng Y Y,Wang Y C,Chan M T. 2002. Tomato plants ectopically expressing Arabidopsis CBF1 show
2072 园 艺 学 报 39 卷
enhanced resistance to water deficit stress. Plant Physiology,130:618–626.
Hsieh T H,Li C W,Su R C,Cheng C P,Sanjaya Tsai Y C,Chan M T. 2010. A tomato bZIP transcription factor,SlAREB,is involved in water
deficit and salt stress response. Planta,231:1459–1473.
Jia G X,Zhu Z Q,Chang F Q,Li Y X. 2002. Transformation of tomato with the BADH gene from Atriplex improves salt tolerance. Plant Cell
Reports,21:141–146.
Karaba A. 2007. Improvement of water use efficiency in rice and tomato using Arabidopsis wax biosynthetic genes and transcription factors[Ph. D.
Dissertation]. The Netherlands:Wageningen University.
Katerji N,van Hoorn J W,Hamdy A,Mastrorilli M. 2000. Salt tolerance classification of crops according to soil salinity and to water stress day index.
Agricultural Water Management,43:99–109.
Khare N,Goyary D,Singh N K,Shah P,Rathore M,Anandhan S,Sharma D,Arif M,Ahmed Z. 2010. Transgenic tomato cv. Pusa Uphar
expressing a bacterial mannitol-1-phosphate dehydrogenase gene confers abiotic stress tolerance. Plant Cell,Tissue and Organ Culture,
103:267–277.
Kim J M,To T K,Nishioka T,Seki M. 2010. Chromatin regulation functions in plant abiotic stress responses. Plant,Cell and Environment,33:
604–611.
Labate J A,Robertson L D,Baldo A M. 2009. Multilocus sequence data reveal extensive departures from equilibrium in domesticated tomato
(Solanum lycopersicum L.). Heredity,103:257–267.
Lee J T,Prasad V,Yang P T,Wu J F,David Ho T H,Charng Y Y,Chan M T. 2003. Expression of Arabidopsis CBF1 regulated by an ABA/stress
inducible promoter in transgenic tomato confers stress tolerance without affecting yield. Plant,Cell & Environment,26 (7):1181–1190.
Li J M,Liu L,Bai Y L,Zhang P J,Frinkers R,Du Y C,Visser R G F,van Heusden A W. 2011. Seedling salt tolerance in tomato. Euphytica,
178:403–414.
Lippman Z B,Semel Y,Zamir D. 2007. An integrated view of quantitative trait variation using tomato interspecific introgression lines. Current
Opinion in Genetics & Development,17:545–552.
Liu Lei,Song Yan,Li Jun-ming. 2011. Mapping of QTLs for drought tolerance during seedling stage using introgression line populations in tomato.
Acta Horticulturae Sinica,38 (10):1921–1928. (in Chinese)
刘 磊,宋 燕,李君明. 2011. 利用渐渗系群体初步定位番茄苗期耐旱 QTL. 园艺学报,38 (10):1921–1928.
Liu Jing,Zhou Shu-feng,Chen Hua,Han He-ping,Li Yin-xin. 2005. Agrobacterium mediated transformation of BADH to the AtNHX1 transgenic
tomato(Lycopersicum esculentum L. Moneymaker). Scientia Agricultura Sinica,38 (8):1636–1644. (in chinese)
刘 晶,周树峰,陈 华,韩和平,李银心. 2005. 农杆菌介导的双价抗盐基因转化番茄的研究. 中国农业科学,38 (8):1636–1644.
Lu C W,Li Y C,Chen A J,Li L,Zuo J H,Tian H Q,Luo Y B,Zhu B Z. 2010. LeERF1 improves tolerance to drought stress in tomato(Lycopersicon
esculentum)and activates downstream stress-responsive genes. African Journal of Biotechnology,9 (38):6294–6300.
Lu C W,Shao Y,Li L,Chen A J,Xu W Q,Wu K J,Luo Y B,Zhu B Z. 2011. Overexpression of SlERF1 tomato gene encoding an ERF-type
transcription activator enhances salt tolerance. Russian Journal of Plant Physiology,58:118–125.
Maskin L,Gudesblat G E,Moreno J E,Carrari F O,Frankel N,Sambade A,Rossi M,Iusem N D. 2001. Differential expression of the members
of the Asr gene family in tomato(Lycopersicon esculentum). Plant Science,161:739–746.
McMullen M D,Kresovich S,Villeda H S. 2009. Genetic properties of the maize nested association mapping population. Science,325:
737–740.
Mittler R,Blumwald E. 2010. Genetic engineering for modern agriculture:Challenges and perspectives. Annual Review of Plant Biology,61:
443–462.
Moghaieb R E A,Tanaka N,Saneoka H,Kussein H A,Yousef S S,Ewada M A,Aly M A M,Fujita K. 2000. Expression of betaine aldehyde
dehydrogenase gene in transgenic tomato hairy roots leads to the accumulation of glycine betaine and contributes to the maintenance of the
osmotic potential under salt stress. Soil Science Plant Nutrition,46 (4):873–883.
Monforte A J,Asins M J,Carbonell E A. 1996. Salt tolerance in Lycopersicon species. IV. Efficiency of marker-assisted selection for salt tolerance
improvement. Theoretical and Applied Genetics,95:284–293.
Monforte A J,Asins M J,Carbonell E A. 1999. Salt tolerance in Lycopersicon spp. VII. Pleiotropic action of genes controlling earliness on fruit yield.
10 期 孙玉燕等:番茄耐旱和耐盐遗传改良的研究进展及展望 2073
Theoretical and Applied Genetics,98:593–601.
Moyle L C,Muir C D. 2010. Reciprocal insights into adaptation from agricultural and evolutionary studies in tomato. Evolutionary Applications,3:
409–421.
Naqvi A R,Choudhury N R,Rizwanul Haq Q M,Mukherjee S K. 2008. MicroRNAs as biomarker in Tomato leaf curl virus(ToLCV)disease.
Nucleic Acids Symposium Series,52:507–508.
Neily M H,Baldet P,Arfaoui I,Saito T,Li Q L,Asamizu E,Matsukura C,Moriguchi T,Ezura H. 2011. Overexpression of apple spermidine
synthase 1(MdSPDS1)leads to significant salt tolerance in tomato plants. Plant Biotechnology,28:33–42.
Pan I C,Li C W,Su R C,Cheng C P,Lin C S,Chan M T. 2010. Ectopic expression of an EAR motif deletion mutant of SlERF3 enhances tolerance
to salt stress and Ralstonia solanacearum in tomato. Planta,232:1075–1086.
Pan Y,Seymour G B,Lu C G,Hu Z L,Chen X Q,Chen G P. 2012. An ethylene response factor(ERF5)promoting adaptation to drought and salt
tolerance in tomato. Plant Cell Reports,31:349–360.
Park E J,Jeknic Z,Pino M T,Murata N,Chen T H H. 2007. Glycinebetaine accumulation is more effective in chloroplasts than in the cytosol for
protecting transgenic tomato plants against abiotic stress. Plant,Cell & Environment,30:994–1005.
Park S G,Li J S,Pittman J K. 2005. Up-regulation of a H+-pyrophosphatase(H+-PPase)as a strategy to engineer drought-resistant crop plants.
Processing of the National Academy of Sciences of the United States of America,102 (5):18830–18835.
Rodríguez-Rosales M P,Jiang X Y,Gálvez F J,Aranda M N,Cubero B,Venema K. 2008. Overexpression of the tomato K+/H+ antiporter LeNHX2
confers salt tolerance by improving potassium compartmentalization. New Phytologist,179 (2):366–377.
Rosenberg N A,Huang L,Jewett E M,Szpiech Z A,Jankovic I,Boehnke M. 2010. Genome-wide association studies in diverse populations. Nature
Reviews Genetics,11:356–366.
Roy R,Purty R S,Agrawal V,Gupta S C. 2006. Transformation of tomato cultivar Pusa Ruby with bspA gene from Populus tremula for drought
tolerance. Plant Cell,Tissue and Organ Culture,84:55–67.
Rafalski J A. 2010. Association genetics in crop improvement. Current Opinion in Plant Biology,13:174–180.
Rus A M,Estan M T,Gisbert C,Garcia-Sogo B,Serrano R,Caro M,Moreno V,Bolarín M C. 2001. Expressing the yeast HAL1 gene in tomato
increases fruit yield and enhances K+/Na+ selectivity under salt stress. Plant,Cell & Environment,24:875–880.
Rush D W,Epstein E. 1981. Comparative studies on the sodium,potassium and chloride relations of a wild halophytic and a domestic salt-sensitive
tomato species. Plant Physiology,68:1308–1313.
Scippa G S,Di Michele M,Onelli E,Patrignani G,Chiatante D,Bray E A. 2004. The histone-like protein H1-S and the response of tomato leaves
to water deficit. Journal of Experimental Botany,55:99–109.
Shirasawa K,Isobe S,Hirakawa H,Asamizu E,Fukuoka H,Just D,Rothan C,Sasamoto S,Fujishiro T,Kishida Y,Kohara M,Tsuruoka
H,Wada T,Nakamura Y,Sato S,Tabata S. 2010. SNP discovery and linkage map construction in cultivated tomato. DNA Research,17:
381–391.
Simon S A,Meyers B C. 2011. Small RNA-mediated epigenetic modifications in plants. Current Opinion in Plant Biology,14:148–155.
Stich B. 2009. Comparison of mating designs for establishing nested association mapping populations in maize and Arabidopsis thaliana. Genetics,
183:1525–1534.
Sun W,Xu X N,Zhu H S,Liu A H,Liu L,Li J M,Hua X J. 2010. Comparative transcriptomic profiling of a salt-tolerant wild tomato species and
a salt-sensitive tomato cultivar. Plant & Cell Physiology,51 (6):997–1006.
Sunkar R,Chinnusamy V,Zhu J,Zhu J K. 2007. Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends in Plant
Science,12:301–309.
Tal M. 1971. Salt tolerance in the wild relatives of the cultivated tomato:Responses of Lycopersicon esculentum,L. peruvianum,and L. esculentum
minor to sodium chloride solution. Australian Journal of Agriculture Research,22:631–638.
Tal M,Shannon M C. 1983. Salt tolerance in the wild relatives of the cultivated tomato:Responses of Lycopersicon esculentum,L. cheesmanii,
L. peruvianum,Solanum pennellii and F1 hybrids to high salinity. Australian Journal of Plant Physiology,10:109–117.
Tang H B,Sezen U,Paterson A H. 2010. Domestication and plant genomes. Current Opinion in Plant Biology,13:160–166.
Tian F,Bradbury P J,Brown P J,Hung H,Sun Q,Flint-Garcia Sherry,Rocheford T R,McMullen M D,Holland J B,Buckler E S. 2011.
2074 园 艺 学 报 39 卷
Genome-wide association study of leaf architecture in the maize nested association mapping population. Nature Genetics,43 (2):159–
162.
Turner B M. 2011. Environmental sensing by chromatin:An epigenetic contribution to evolutionary change. Federation of European Biochemical
Societies Letters,585:2032–2040.
Uozumi A,Ikeda H,Hiraga M,Kanno H,Nanzyo M,Nishiyama M,Kanahama K,Kanayama Y. 2012. Tolerance to salt stress and blossom-end
rot in an introgression line,IL8-3,of tomato. Scientia Horticulturae,138:1–6.
van Berloo R,Zhu A G,Ursem R,Verbakel H,Gort G,van Eeuwijk F A.. 2008. Diversity and linkage disequilibrium analysis within a selected set
of cultivated tomatoes. Theoretical and Applied Genetics,117:89–101.
Vannini C,Campa M,Marcello Iriti M. 2007. Evaluation of transgenic tomato plants ectopically expressing the rice Osmyb4 gene. Plant Science,
173:231–239.
Verslues P E,Agarwal M,Katiyar-Agarwal S,Zhu J,Zhu J K. 2006. Methods and concepts in quantifying resistance to drought,salt and freezing,
abiotic stresses that affect plant water status. The Plant Journal,45:523–539.
Villalta I,Bernet G P,Carbonell E A,Asins M J. 2007. Comparative QTL analysis of salinity tolerance in terms of fruit yield using two Solanum
populations of F7 lines. Theoretical and Applied Genetics,114:1001–1017.
Volk G M. 2010. Advantages for the use of standardized phenotyping in database. HortScience,45:1310–1313.
Wang B Q,Zhang Q F,Liu J H,Li G H. 2011. Overexpression of PtADC confers enhanced dehydration and drought tolerance in transgenic tobacco
and tomato:Effect on ROS elimination. Biochemical and Biophysical Research Communications,413 (1):10–16.
Wang Shu-fang,Wang Jun-ling,Zhao Yan-xiu,Zhang Hui. 2001. Transformation of choline dehydrogenase gene and identification of salt-tolerance
in transgenic tomato,Acta Phytophysiologica Sinica,27 (3):248–252. (in Chinese)
王淑芳,王峻岭,赵彦修,张 慧. 2001. 胆碱脱氢酶基因的转化及转基因番茄耐盐性的鉴定. 植物生理学报,27 (3):248–252.
Wang Y J,Wisniewski M,Meilan R,Cui M G,Fuchigami L. 2006. Transgenic tomato(Lycopersicon esculentum)overexpressing cAPX exhibits
enhanced tolerance to UV-B and heat stress. Journal of Applied Horticulture,8 (2):87–90.
Wang Y J,Wisniewski M,Meilan R,Cui M G,Webb R,Fuchigami L. 2005. Overexpression of cytosolic ascorbate peroxidase in tomato confers
tolerance to chilling and salt stress. Journal of the American Society of Horticultural Science,130 (2):167–173.
Wei T,OConnell M A. 1996. Structure and characterization of a putative drought-inducible H1 histone gene. Plant Molecular Biology,30:255–
268.
Xia H,Camus-Kulandaivelu L,Stephan W,Tellier A,Zhang Z. 2010. Nucleotide diversity patterns of local adaptation at drought-related candidate
genes in wild tomatoes. Molecular Ecology,19:4144–4154.
Xu X Y,Martin B,Comstock J P,Vision T J,Tauer C G,Zhao B G,Pausch R C,Knapp S. 2008. Fine mapping a QTL for carbon isotope
composition in tomato. Theoretical and Applied Genetics,117:221–233.
Zhang C J,Liu J X,Zhang Y Y,Cai X F,Gong P J,Zhang J H,Wang T T,Li H X,Ye Z B. 2011. Overexpression of SlGMEs leads to ascorbate
accumulation with enhanced oxidative stress,cold,and salt tolerance in tomato. Plant Cell Reports,30:389–398.
Zhang H X,Blumwald E. 2001. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nature Biotechnology,19:765–
768.
Zhang X H,Zou Z,Gong P J,Zhang J H,Ziaf K,Li H X,Xiao F M,Ye Z B. 2011. Over-expression of microRNA169 confers enhanced drought
tolerance to tomato. Biotechnology Letter,33:403–409.
Zhang Y,Liu H,Li B,Zhang J T,Li Y Z,Zhang H X. 2009. Generation of selectable marker-free transgenic tomato resistant to drought,cold and
oxidative stress using he Cre/loxP DNA excision system. Transgenic Research,18:607–619.
Zhu J K. 2002. Salt and drought stresses signal transduction in plants. Annual Review of Plant Biology,53:247–273.