免费文献传递   相关文献

STUDY ON WEED ECOLOGICAL RELATIONSHIPS IN AUTUMN-HARVESTED DRY CROP FIELDS IN JINHUA,ZHEJING PROVINCE

金华地区秋旱作物田杂草生态相似关系研究



全 文 :武汉植物学研究    ,  ! ∀# ∃ % & 一 ∋ !
( ) ∗ +, − #). / ∗ 0 − , 1 ) 2− , 34 − # 5 6 76 − +4 0
金华地区秋旱作物田杂草
生态相似关系研究 ’
郭水良 李扬汉
∀浙江师范大学生物系 金华 & 8 9 9 ∋∃ ∀南京农 业大学农学 系 南京 8 9 9  : ∃
提 要 对浙江金华地 区秋旱作物 田 ; 个样点的杂草优势度等级进行了七级目测调查 , 计
测了 8 8 种主要杂草的生态位宽度和生态位重叠值 , 作出了反映它们间生态学相似程度的最
小生成树 。 结果表明 , 马唐 < 3= 32− +3 − 7− , = ∗ 3, − #3 7 、狗尾草 > 62 − +3 − ? 3+3 ≅ 37 、 千金子 Α6 户, ) 40 #)−
6人3, 6, 737 、 碎米莎草 〔乡户6+ ∗ 7 3+3 − 、 牛筋草 艺#6 ∗ 73, 6 3,己34 − 、 石胡要 Β6 ) 23Χ6≅ − Δ 3, 3Δ − 、旱稗
Ε 4 人3, ) 4入Φ)− ‘+ ∗ 7= − ΦΦ3 ? − + Γ 入3护3≅ ∗ #− 的生态位宽度在 9 Γ & 以上 , 它们是本地 区秋旱作物 田的
主要杂草 Η 8 种杂草中 , 马唐 、狗尾草 、碎米莎草 、香附子 〔乡户6+ ∗7 +) 2∗ , ≅ ∗Γ2 、牛筋草等杂草间 ,
以及千金子 、鲤肠 Ε 6Φ3Χ2− Χ+)7 2+− 2 − 、粟米草材。∗ ∗ = ) Χ+, 2− Χ勺##− 、泥花草 Α 3, ≅ 6+, 3− − , 23Χ)≅ − 、
丁香寥 Α ∗ ≅ Ι 3= 3− Χ+) 7 2+− 2− 、石胡姿 Β6 , 23Χ6 ≅ − Δ 3, % 3Δ − 、通泉草材口 Φ ∗ 7 ϑ− Χ) , 34 ∗ 7 等杂草 #可的
生 态位重叠值较大 , 黄花菜 Β Φ6) Δ 6 ? 37 4)7 − 、球柱草 召∗ #, ) 7勺8% 加+#,− 2− 、 水花生 八Φ26 + − , % 2人∗ 7
Κ 0汀。Λ 6 +) 3≅ 6Γ, 等杂草与其它杂草的生态位重叠值较小 , 说明它们的生态要求比较特殊 。
关键词 秋旱作物 田 , 生态位 , 杂草 , 最小生成树
金华地处浙江中部 , 旱地面积有 : Γ 9 ∋ 万 0Δ Μ , 占耕地总面积的  Ν以上 , 棉花 、大豆
等秋旱作物是该地区重要的经济作物 。几年来 , 由于农村劳动力转移 , 中耕除草减少 , 草害
已 日趋严重 。 应用化学除草剂是解决旱 田草害的有效方法 。 但是 , 实践证明 , 除草剂的长
期单一使用 , 极 易引起农 田杂草种群的迅速更迭 , 增加除草难度 。因此 , 预测除草剂作用下
杂草种群的演变趋势 , 是当前杂草防除工作者迫切要解决的问题〔’一 〕。
除草剂作用下杂草种群的迅速变化 , 涉及到不同杂草对所用除草剂的敏感性差异和
杂草之 间生态学相似性的差异 。生态位是研究植物种群生态和群落生态的重要理论问题 。
生态位重叠可以作为植物种间生态学相似性的测度 , 用作种群间相互竞争和更替竞争模
型中的竞争 系数 , 可以预测种群竞争结局和群落演替的方向 Η生态位宽度可以作为物种对
环境资源利用多样性的一种测度 。 因此 , 研究杂草的生态位宽度 , 能够 比较不同杂草对农
收稿 日 %    ! 一。   , 修回日 %   !  8  ! 。 第一作者 % 郭水 良 , 男 , & 岁 , 副教授 ∀博士后 ∃ Γ 从事植物分类 、 生态
及杂草科学方面研究 。
Γ 浙江 师范大学青年科学基金资助项 目。
武 汉 植 物 学 研 究 第 ! 卷
田环境资源利用的多样性 Η通过计测不同杂草间的生态位重叠值 , 可以明确不同杂草的生
态学相似程度 。我们研究的 目的是阐明金华地区秋旱作物 田杂草种间生态学相似关系 , 为
预测除草剂作用下该地 区秋旱作物 田杂草种群的可能演变趋势 , 提供理论指导 。
研究范围与方法
 Γ  研究区域和杂草重要值计测
于    : 年 ; Ο  月间 , 在金华市所辖的武义 、永康 、 义乌 、金华 、兰溪和婆城区的秋旱
作物田中 , 根据土壤水份状况 、酸碱度的差异 、土壤物理性砂粒 的含量 , 按变化梯度 , 选择
; 个样点 , 每个样点随机选择环境条件相对一致 、面积约 ! !; Δ Μ的样方 9 个 。 运用七级
目测法 , 计测每个样方中每种杂草的优势度级 〔’〕。 所有被调查的样点当季都没有进行专门
人工和化学除草 。
根据 目测结果 , 计算样点中主要杂草的重要值 ∀Π ? ∃ 。 计算方法如下 %
ΠΘ 一 艺 Ρ · 式 Σ: · 4 ∀# ∃
式中 % Ρ , 表示杂草在第 3 优势度级的代表值 Η 1 , 表示杂草在第 3级优势度级出现 的样
方数 Η Β 为该样点中的样方数 。 重要值在 。一  之间 。
 Γ 8 生态位宽度计算
生态位宽度计算公式如下 %
∀8 ∃
7 · 艺 ∀ 认 Σ万 Π? 。∃ “
式中 % 1 为杂草的生态位宽度 Η > 为样点数 , 本文中 , > Ο  ; Η ΠΘ , 为该种杂草在第 3 样
点中的重要值 。
 Γ & 生态位重叠值计算
 Γ & Γ  群落相似矩 阵计算
本研究采用王刚提出的生态位重叠计算公式 , 并以群落梯度差异代替生态距离间隔 ,
用作计算中的加权因子 。
用频率超过 89 Ν 的杂草的重要值作指标 , 以样点为样本 。 用夹角余弦法计算 ; 个样
点的群落相似系数 Τ ’“」。
万 ΠΘ 、 · ΠΘ 户
“‘’ Ο注燕孤 ∀& ∃Υ一  走一 #
式中 % 凡,为第 3 , ( 两样点的群落相似 系数 Η 八 (一  , 8 , & , ⋯  ; Η Δ 为杂草数 , 本文中 , ” ,
Ο 8 Η Π? Η , , Π叭 ς分别表示 八( 两样点中第 Υ 种杂草的重要值 。
根据计算结果 , 得出样点之间的相似系数矩阵 。
 Γ & Γ 8 群落生态距离间隔计算
计算每个样点与其它所有样点的相异 系数总值 , 以具有最大相异系数总值的样点作
的Ω9的卜帅Ω曰的ΩΞ工Ω卜Ξ9卜
刘 Γ 9 9 9 吧工二 吧目Β 9 9 《∀ 优 % 铭公卜 力 阅宁 Β Ω 一
Ω4) Γ9Ω甲帅Γ9
∀(巴Ξ闪闰呈=工ΞΩΞΞ=Ω呼的巴Γ9
工 !∀∀吹一曰#∃ ∃ %& 寸
帅囚∋()
∗+一,∃ 三邑()()∃囚叫∋∃ 的()寸
∃合岭(−的∋
(∃ 仍(∃%&
∃仍− ∋(.卜工∃ 洲∋(臼
∃的
∃的− ∋ 卜∃ /(阅

∃的−∃的( ∋(哪∋(仍∋() ∋∃的∋(∃卜∋(
。渭的

(() )−∃的−((0叫∋(0( ∋∃寸∋(∃的− ∋( 的( ∋∃的卜∋∃ (叮/
∃的( ∋闪 曰∋∃帅/
((− ∋∃卜( ∋(∃ 工∋∃ ( ∋(((− ∋∃的( ∋∃工 ∃的仍∋(∃ 卜∋(∃曰 ∋∃ (闪的∋∃ (门寸∋∃ (寸− ∋(((/∃
城壮
哪)( ∋ 阅( ∋ 伪( ∋()( ∋价∃寸∋(∃才− ∋( 工∋(∃卜( ∋ 哪才∃
∃卜((0 ∋∃的(∃卜仍( ∋
(仍∋(的∃
(洲∋∃卜洲∋∃ (卜的∋(∃的( ∋ ∃洲∋(∃卜门∋(
∃寸(∃叮− ∋(1 ∋( 寸− ∋(−( (的∃ ∋((−( ∋的%&洲 洲仍∋( (甘∋闪工仍∋(卜∃对寸
哪的( ∋
(的0 ∋∃卜)− ∋
旧∃ ∋∃侧(2
(∃ 工(2() ∋(( −叮工,
(− ∋ #仍∋(∃囚甘∋(∃ 寸∋∃ ( 工∋((−门∋ 叶− ∋( ∃卜∋(
旧3上4共5。的6#‘一7认78&9妇∋卜门:·已,川月;冬司<4已=祠
本埃恻娥州1瓣嵌眯田浑举衅豁凶裂黔一彬
∃ 呼∋(∃的(瞬∋
卜曰)−瞬工寸尸伏认−>?>口试忆已月民一
洲出:司一
勺飞, ,
书−‘卜、#≅
荟习呀超
峨3竹之9八Α久叭#Β#、勺,Β4Χ
润搽
峨、6工八∀‘、吮,9ΔΑ心久试身勺乏、Ε
州裸书
,,、Β人比‘勺妞Α沁(−八+
扛嘴扣
之,、Φ(9认气Α工≅闰
盛戮
之、入心久勺、9、气。∗扁哎
瓣兴睐
9‘(−户勺∋6,钱&。之+
理断黑
勺叫4Α内氏附勺6、气、Β‘礼亡
沐写冲
;之9、Β‘&气妞、;魏 勺芝
瓣碟叫
勺、电‘娇之叭之比Α6匀卜活闷
铃枷卜
峡,#勺耘Β;落哎久乃Ε
拱撼举
晓3Α#嗯工哎、电气书4魏,‘&蚀之。
殊佃衅
时4魏Α6&含、橇认3勺9卜妞气
蜂鉴寡
;二6Β3#Α99、包力≅
串盔物
妞9名9之心花、户晒&:#3勺
瓣坦粉
之过、久七心∋9比=ΑΓ#勺叭二,七−−妞气讥3从闰
歇衅
之竹。≅叭Α户9阳4&灿Γ切
然粉核
花6、9和妞,‘忿的
瓣叫凛
之七6、Η‘Α;3灿工闰
瓣堤分
勺Α‘;3包力+瓣渝兴浩
叭Α9、·人#之≅勺&#<八Ι闷
州十串
峨−−之9钱二比人勺飞Α‘勺、自
御阶的6。冬瓣掇
。 , 。 。 卜 。 。 日 口 巴 口 艺 巴 三 公 臼 ? 飞 ?二ϑ ∋ 叫 卜〕 买 拙∋(.中处
武 汉 植 物 学 研 究 第  ! 卷
为始端样点 。 根据与始端样点的相似系数大小 , 对其余样点进行排列〔川 。
按下式计算出各样点与始端样点的生态距离 仁‘8〕。
< , Ψ ∀#= − 一  8 矛∃ Σ  8 ∀∋ ∃
式中 % < ‘为第 3样点与始端样点的生态距离 Η Μ , 为第 3样点与始端样点的相似系数 Η −
为始端样点 9 个样方间平均相似系数 。 用夹角余弦法计算始端样点中 9 个样方间的相
似系数 , − 值为样方间相似 系数的平均值 , 计算指标用样方中杂草出现优势度级的代表值 。
在得到各样点与始端样点的生态距离的基础上 , 用下式计算样点间的生态距离间隔〔‘, 〕%
#‘ Ψ < 、一 < 、一 , ∀: ∃
始端样点的生态距离间隔用第 8 号样点的值代替 。
 Γ & Γ & 生态位重 登值计算
在得到各样点生态距离间隔的基础上 。 根据下式计算杂草间的生态位重叠值〔‘, 〕%
万Δ 3, Τ.ϑ ∀Ζ ‘∃ , 无一  ∀Λ ‘∃[ #‘
Ξ Γ 9 Γ 一—Δ − Λ 仁万儿∀Ζ ‘∃“, 万式一 , ∀Λ 不∃, , ϑ ∀! ∃式中 % Ξ Γ 9 Γ 为第 ϑ , ϑ一  种杂草间的生态位重叠值 Η + 为样点数 Η .3 ∀+ ∃ , .ϑ 一 , ∀+ ∃分别表示 ϑ , ϑ一  两种杂草在第 3 个样点中的重要值 Η #’为第 3 个样点的生态距离间隔 。 Γ & Γ ∋ 杂草生态学相似关 系的图形表示为直观地表现出杂草的生态学特性 , 以生态位重叠值作指标 , 运用图论聚类分析中的最小生成树法 , 作出反映杂草生态学相似性的最小生成树 仁‘& [ 。本文所有计算用 1Ρ >Π Β 语言编程 , 在 Π∴ 1 一ΧΒ 机上完成运算 。8 结果与分析
对浙江金华地区秋旱作物田 ; 个样点杂草分布进行七级 目测调查 , 所得数据转换成
重要值 , 结果见表  。
根据 ∀8∃ 式计算得出它们的生态位宽度见表 8 。
表 8 金华地区秋旱作物田主要杂草的生态位宽度
] − ⊥ #6 8 ] 06 , 36 0 6 ⊥ + 6 − ≅ 20 6 7 ) . Δ − 3, Ι 6 6 ≅ 7 3, 20 6 − ∗ 2 ∗ Δ , 一0 − + ? 6 7 26 ≅ ≅ +_ #− , ≅ 6 + ) Κ .36 #≅ 7 3, (3, 0 ∗ −
序号 杂草 生态位宽度 ⋯序号 杂草 生态位宽度Ξ ) Γ / 6 6 ≅ 7 Ξ 36 0 6 ⊥ + 6 − ≅ 2 0 ⎯Ξ ) · / 6 6 ≅ ‘
# 马唐 及= 32− + 3− % − , % = ∗ 3 , ,− #3, 9 Γ : ! :  8 铁觅菜 八 4 − #ϑ沪0− − ∗ 7 ++ − Φ37 9 Γ 8  9 &
8 千金 子 了沁户+)4 人俪 认3 , %尸 , ,:  % 9 Γ ∋ ; : & 8 & 丁香萝 Α ∗ % 6,≅ 3= 3− Χ+ ) 7 ++− +− 9 Γ 8 8 9 && 碎米莎草 〔乡户6 + ∗ 7 3+ 3− 9 Γ ∋ 8 8   ∋ 通泉草 材口 二 ∗ 7 Φ − Χ ) , % 3) ∗ 7 9 Γ 8  9 
∋ 牛筋草 Ε Π亡∗ 7 3, % 尸 3, % ≅ 36 − 9 Γ &  ! !  : 石胡萎 价, , +小6 ≅ − Δ 3, % 3、 − 9 Γ & ; & &
: 狗尾草 > + +− + , − ? 3 + 3≅ 3, 9 Γ ! : !  8 ! 狗牙根 ∀沙, , )≅ ) , % ≅ − 62_ #‘, , % 9 Γ  ∋ 8 ;
! 黄花菜 口6 ) Δ £ ? 374 ) 7 − 9 Γ 8  9   ; 粟米草 入‘记Φ∗ = ) Χ + , % +− Χ#_ #− 9 Γ 8 ; & !; 旱 稗 Ε 4 0 3 , % )’0 Φ)− 4 + ∗ 7= − ΦΦ3 ? − + Γ  鲤肠 Ε . #3Χ +− Χ + ) 7 ++− +− 9 Γ  & ! 丁厂’ 一丫 ’ Η 一 Η 一 ’ 一 一 一 台 一 ” ’ 9 Γ &  9 ∋  青箱 ∀’尸#。、山 ∗ + = ‘, , , +尸∗ 9 Γ 8 & ∋ &0 37Χ 3≅ ∗ #− 89 刺览 Ρ 。 %口 +− , % +0 ∗ 7 、Χ 3, , 。 7∗ 7 9 Γ 9 ! & 8 球柱草 1 ∗ #⊥ ) 72_ #3% ⊥− + ⊥− 2∗ 9 Γ 9  ; 8  水花生 Ρ #+‘, Φ二 , , +0 ∗ , Χ0 3#‘, Λ ‘, + ‘, Η ≅ ‘,、 9 Γ  & & 
 香附子 〔砂6 + ∗ 7 + ) +∗ , , ≅ ∗ 、 9 Γ 8  : 8 8 8 泥花草 Α Η , , ≅ ‘, + , % 3− − , , +Η Χ) ≅ − 9 Γ  & :9 细柄 黍 Κ − , % 34 ∗ 刀 % Χ7 3Φ)Χ心3∗ 。 , 9 Γ  8: :
  旱苗萝 Κ )#_ = ) , % ∗ , % #− Χ− +0 #州石#3∗ 。 % 9 Γ 9  ; !
自一叮9
一ΒΩ笛砂囚9 Γ

Β 〕 Β二
Κ(
阶∗+的一∋(Λ匕(一一( ∋卜∃ ∋(
一 Μ自吹()的一)的 ∋(一∃
一2旧(

∋‘,,⋯Α⋯#⋯ΝΟ##
的口工甘山汾

∗工∃自∃一
门3国4以三
一 ?闷 匕,二? ? ??二 ∃ ! 二
0囚乏∃笑呼∋(−卜 的<闪价∋悦一Π曰姆口2洲∋自∋(0甘匀田∋(0瞬门Π ∋廿卜囚心的(呼0一 ∃)们,.1 ∋∋0(己门一( ∋0卜∃甘−叫∋们的目∋州 (−0帅∋(曰)一∋∃ 的>)寻∋口卜自洲∋(门旧仍0甘0的卜 ∋(仍∋叩寸/∃门闰呼瞬一旧囚)州曰洲Κ0 ∋(8∃0 ∋仍的卜呼∋()们一洲写<瞬>阅工1 ∋0田寸(一∃( ∋) 曰的叫∋仍姆琳甘0们洲寸0伪卜1呻闪(−2 ∋
一的已/∃仍∋( 1 ∋卜呼囚姆)旧山−门曰甘ΘΡ们0) ∋(
曰)一的∋(卜旧0囚∋们0甘寸)姆∃Β2仍 −门洲
一的畔( ∋−). ∋0闰∃ 呼甘寸洲囚)匀
洲的<& ∋(0门∋口一)叫仍卜−∃曰工呼
洲仍卜0一∋∃ (Κ价) ∋门们−呼的0闪Ρ
洲(甘一∋呼囚)(卜的∋门∃曰Α 仍
一的乏曰∋(0自瞬2寸∋呻帕仍门∃囚 们洲)Σ
洲∃呻呼1 ∋(0的∋对(们卜一侧)
一0卜工曰∋(的乏∋∃ 呻仍,叫∋) ∋(
曰口∃< ∋(仍 的∋卜∋(2洲呼门∋
洲的∃们∋(卜 叫呼Α曰寸
一甘的∋((廿)帅囚∃1

。工:戈∋>三的Τ≅毛州4佗任巴叱 之− ∋之7口8尸卜”≅&
。应年名工邢帅粼<鱿中发处邵于。坦
的6#田一74∋工扮。&9。祠=国白日3#门三沐囚 书8:上扫
划喇侧箱妇州1厘瓣戒念闪田浑举衅豁凶黔裂烟门形
帅∋:曰卜
()的 ∋

臼 国 义 口 艺 写 写 上 巴 巳 民 文 哭7
&∋ 中处料<
武 汉 植 物 学 研 究 第  ! 卷
由公式 ∀& ∃ 、 ∀∋ ∃ 、 ∀: ∃ 、 ∀!∃ 计算 , 得到 8 种杂草的生态位重叠值 ∀见表 & ∃ 。
根据最小生成树法得到 8 种杂草生态学相似性关系的最小生成树 ∀见图  ∃ 。 生态位
图  中序号  Ο 8 所代表的种类同表  , 数据为杂草生态位重叠 值
> Κ 6 6 36 7 ) . Ξ ) Γ #一 8 8 − + 6 2 0 6 7 − Δ 6 − 7 2 − ⊥ #6  Γ
206 ≅ − 2 − − + 6 206 , 3606 ) ? 6 + #− Κ 7 − Δ ) , = 20 6 Ι 6 6 ≅ 7
金华地区秋旱作物田杂草种间生态相似关系分析最小生成树
] 06 Δ 3, 3Δ − # 7 Κ − , , 3, = 2 + 6 6 ) . 6 6 ) #) = 36 − # 7 3Δ 3#− + 32_ − , − #_7 37
) . Ι 6 6 ≅ 7 3, − ∗ 2 ∗ Δ , 一0 − + ? 6 7 2 6 ≅ 6 + ) Κ ≅ + _ .36 #≅ 7 3, (3, 0 ∗ −
宽度计测表明了 8 种杂草的生态
适应 幅度 , 按 生态位 宽度数值大
小 , 本地区的秋旱作物 田杂草可分
成 ∋ 个类型 。
类型 Π % 包 括马 唐 、 狗尾草 、
千金子 、碎 米莎草 、牛 筋草 、 石胡
萎 、旱稗等 , 它们的生态位宽度在
9Γ & 以上 , 是本地 区最为重要的秋
旱作物田杂草 。
类型 # % 包括黄花菜 、通泉草 、
粟米草 、香 附子 、 铁觅 菜 、丁 香萝
等 , 它 们 的生 态位 宽 度在 9 Γ 8 Ο
9 Γ & 司 。
类型 班 % 包括狗牙根 、鲤肠 、青
箱 、水花生 、泥花草 、细柄黍等 , 它
们的生态位宽 度在 9 Γ  一。Γ 8 之
间 。
类型 / % 包括刺觅 、旱苗寥 、球柱草 , 其生态位宽度在 9 Γ  以下 , 它们不是本区的主要
杂草 。
8 种杂草之间的生态特性相似程度也有差异 。 图  简明扼要地反映了浙中秋旱作物
田 8 8 种主要杂草的生态学相似关系 , 根据杂草的生态位重叠值 , 结合它们的实际分布 , 当
生态位重叠值 ∀Ξ Γ 9 Γ ∃α 9 Γ ∋9 : 时 , 8 种杂草可以划出生态学要求明显有异的二大组 。
组 Π % 由马唐 ∀ ∃ 、狗尾草 ∀: ∃ 、黄花菜 ∀! ∃ 、牛筋草 ∀∋ ∃ 、碎米莎草 ∀& ∃ 、香附子 ∀ ∃等杂草
构成 。 分析发现 , 这些杂草都分布于丘陵缓坡旱地 , 对水分的要求不高 。
组 卜 由千金子 ∀8 ∃ 、丁香寥 ∀ & ∃ 、石胡萎 ∀ : ∃ 、通泉草 ∀ ∋ ∃ 、粟米草 ∀; ∃ 、泥花草 ∀8 8 ∃ 、
鲤肠 ∀ ∃ 等杂草组成 , 这些杂草多分布于土壤含水量相对较高的平贩上的秋旱作物 田中 。
另外 , 青箱 ∀  ∃ 、狗牙根 ∀ ! ∃ 、球柱草 ∀ ∃ 、 水花生 ∀8 ∃ 等杂草位于最小生成树的边缘 ,
这说明它们的生态要求比较特殊 。 例如 , 青箱多分布于红壤丘陵缓坡地段 , 土质疏松而且
贫痔 Η 狗牙根分布于翻耕较少的一些旱地 Η 水花生在含水量丰富的地段生长旺盛 Η球柱草
则多见于沿江两侧的细沙性土壤 中 。
马唐是本地 区秋 旱作物 田最重要的杂草 , 与之生态要求比较接近 的杂草有狗尾草
∀9 Γ ∋ & 9 ∃ 、黄花菜 ∀9 Γ & & 9 ∃ 、干金子 ∀9 Γ 8 ; 9 ∃ 、牛筋草 ∀9 Γ 8 ! 9 ∃ 、碎米莎草 ∀9 Γ 8 & ! ∃ 、球柱草
∀9 Γ  !  ∃ 、香附子 ∀9 Γ  & & ∃等 。
& 讨论
预测除草剂作用下农 田杂草群落的演变 , 除明确杂草间的生态学相似性外 , 还应了解
第 # 期 郭水 良等 % 金 华地区秋旱作物田 杂草生态相似 关系研究
各种杂草对所用除草剂的敏感性 。农 田杂草防除中 , 应特别重视那些与 田间优势杂草生态
学特性相似程度比较大 ∀即生态位重叠值比较大 ∃ , 对所用的除草剂又有耐药性的杂草 。在
本地区 , 千金子 、丁香寥 、石胡姜 、通泉草 、粟米草 、泥花草 、鲤肠的生态学要求相对较近 , 大
多分布于土壤含水量相对较高的平贩上的秋旱作物 田中 。 目前在该类作物 田中使用的乙
草胺对禾草类杂草干金子有较好的防效 , 但对双子叶杂草鲤肠 、石胡姜 、丁香寥等防效并
不理想 , 随着乙草胺的长期使用 , 这些阔叶杂草在本地 区秋旱作物田中的危害很可能会加
剧 。
参 考 文 献
冯文煦 , 陈碧莲 、余敬堂等 Γ 化学除草对麦田杂草种群变化的影响 Γ 杂草学报 ,   9 , ∋∀  ∃ % 8& 一 8
朱 国泉 , 顾一心 , 金土泉 Γ 上海县麦田杂草的种群变化及防除对策 Γ 杂草科学 ,  8 , & % 8: 一 8;
王开永 , 柳克明 Γ 江苏 省里下河地区麦田禾本科杂草种群演变及其原因分析 Γ 杂草学报 Γ #    Γ :∀ #∃ % &∋ Ο &!
涂鹤龄 Γ 麦田长期化除后杂草群落的演变与对策Γ 杂草学报 ,   ; ,  ∀8 ∃ % & 一 ;
车俊义 , 杨峰 Γ 陕西省麦田杂草群落变化及防除对策 Γ 杂草科学 ,   , & %  Ο !
徐秋叶 , 傅迎春 Γ 陈铁保 Γ 黑龙江省北部地区大豆田杂草种群的变化 Γ 杂草学报 ,  & , ; ∀∋ ∃ % & :一 &;
Χ ∗ #6 0 6 + ∴ , β ∗ + #6 χ Γ / 6 6 ≅ .#) +− − , ≅ Ι 6 6 ≅ 7 6 6 ≅ ⊥ − , Υ 3, Ι 06 − 2 Δ ) , ) 6 ∗ #2 ∗ + 6 ∗ , ≅ 6 + ≅ 3..6 + 6 , 2 #6 − ? 6 #7 ) . 6 + ) Κ Κ + ) 26 6 δ
23) , Γ / 6尸≅ Ρ ⊥ 7++− 4 + ,   ∋ , & & ∀ 9 ∃ % & ∋ 
Μ 6 , , − , 6 Υ ( Γ ] 0 6 3, .#∗ 6 , 6 6 ) . − , , ∗ , − # − Κ Κ #36 − 2 3) , 7 ) . 0 6 + ⊥ 36 3≅ 6 7 ) , 2 0 6 6 0 − , = 6 ) . Ι 6 ≅ 6 ) Δ Δ ∗ , 32 36 7 ) , Κ #) = 0#− , ≅ Γ
/ + 尸≅ Ρ ⊥7 +阳‘ + ,   ;; , 8 ! ∀ ∃ % &
郭水 良 , 李扬汉 , 王明鑫 Γ 浙江金华地区小麦一 杂草群落的研究 Γ 武汉植物学研究 ,   & ,  ∀& ∃ % 8 & 一 8 ∋!
阳含熙 , 卢泽 Γ 植物生 态学的数量分类方法 Γ 北京 %科学 出版社 Γ   Γ ! Ο 
王刚 , 杜 国祯 Γ 尉 鼠土丘植被演替过程中的种生态位分析Γ 生态学杂志 , ”。, ∀  ∃ %  Ο !
王刚 Γ 植物群落中生态位的计测 Γ 植物生态学与地植物学丛 刊 ,  ∋ , ∀∋ ∃ % & &9 Ο &&:
张明理 Γ 最小生成树 ∴ > ] 的系统学和 生物地理学意义 , 西北植物学报 ,   : , : ∀8 ∃ % :∋ Ο  !9
9曰八」,#咭Λ人
∋ ! 武 汉 植 物 学 研 究 第 ! 卷
>] ε < φ Ω Ξ 丫Θ Ε Ε < Ε Β Ω Α Ω γ ΠΒ Ρ Α 5 Ε Α Ρ ] ΠΩ Ξ >β ΠΧ >
ΠΞ Ρ ε ] ε ∴ Ξ 一β Ρ 5 Θ Ε >] Ε < < 5 φ Β 5 Ω Χ ηΠΕ Α < >
ΠΞ (ΠΞ β ε Ρ , Μ β Ε (ΠΞ γ Χ 5 Ω Θ ΠΞ Β Ε
γ ∗ ) > 0 ∗ 3#3− , = Α 3 φ − , = 0 − ,
∀< 心沪− 叮Δ 翻2 ). 1 ΠΩΠ Ω = 夕 , Μ 0心3− ” = ∀刀尸户− +2 Δ 6 ) 2 ). Ρ = 月4 ∗ 3+ ∗ 。 , Ξ − ,访 , % =
Ξ ) + Δ − # ε ,Φ 3? 6+7 32_ (3, 0 ∗ − & 8 9 9 ∋ ∃ Ρ = 二 ∗#2 ∗+− # ε , Ο 2_ Ξ − ,ϑ 3, = 8 9 9  : ∃
Ρ ⊥ 72+ − 62 Π, 20 6 − ∗ 2 ∗ Δ , 一0− + ? 6 7 2 6 ≅ ≅ + _ 6 + ) Χ .36 #≅ 7 3, (3, 0 ∗ − ,  ; 7 32 6 7 ) , ≅ 3..6 + 6 , 2 6 6 ) #) = δ
36 − # 6 ) , ≅ 323) , 7 Ι 6 + 6 7 ∗ + ? 6 _ 6 ≅ 3, ≅ 6 2− 3# Ι 320 7 6 ? 6 , 7 6 − #6 7 ⊥ _ ? 37 ∗ − #3Φ − 2 3) , ) . Ι 6 6 ≅ ≅ ) Δ 3δ
, − , 6 6 2 ) 6 + ) Κ 2 ) ) ⊥ 2− 3, 2 06 Ι 6 6 ≅ 3Δ Κ ) + 2 − , 2 ? − #∗ 6 7 , 206 7 Κ 6 6 36 7 , 36 06 ⊥ + 6 − ≅ 2 06 7 − , ≅ , 36 06
) ? 6 + #− Χ7 ) . 8 8 7Χ 6 6 36 7 Ι 6 + 6 20 6 , Ι ) + Υ 6 ≅ ) ∗ 2 ) , 206 ⊥ − 7 37 ) . 20 6 ≅ − 2− − ⊥) ? 6 Γ ] 0 6 Δ 3, 3Δ − #
7 Κ − , , 3, = 2 + 6 6 + 6 ? 6 − #3, = Ι 6 6 ≅ 6 6 ) #) = 36 − # 7 3Δ 3#− + 32_ Ι − 7 ≅ + − Ι , ⊥ − 7 6 ≅ ) , 20 6 , 360 6 ) ? 6 + δ
#− Κ 7 Γ ] 06 + 6 7 #∗ 27 7 0) Ι 6 ≅ 20− 2 < 3= 32− +3 − 7 − , = ∗ 3, − #37 、 > 6 2− + 3− ? 3+3 ≅ 37 ϑ 亡户2 ) 4 0 #6 − 4 03, 6 , 7 37 、
〔孙6 + ∗ 7 3+3 − 、 Ε #6 ∗ 7 3, 6 3, ≅ 34 − 、 Β6 , 23Χ 6 ≅ − Δ 3, 3Δ − 、 Ε 4 0 3, )4 0#6 − 4 + ∗ 7=− ##3 ? − + Γ 0 37Χ 3≅ ∗ #−
Ι 6 + 6 2 06 Δ − 3, Ι 6 6 ≅ 7 3, − ∗ 2 ∗ Δ , 一 0− + ? 6 7 2 6 ≅ ≅ + _ 6 +) Κ .36 #≅ 7 3, ∴ 3≅ ≅ #6 Μ 0 6ϑ3− , = Γ Ρ Δ ) , =
2 0 6 8 8 Ι 6 6 ≅ 7 , 2 06 , 34 06 ) ? 6 + #− Κ 7 ) . 八= 32 − + 3− 7 − , = ∗ − #37 、 > 6 2− + 3− ? 3+3 ≅ 3% 、 〔孙6 + ∗ 7 3+ #’− 、
〔孙 6 + ∗ 7 +) 2 ∗ , ≅ ∗ 7 、 Ε #6 ∗ 7 3, 6 3, ≅ 34 − Ι 6 + 6 0 3= 0 , Ι 0 3#6 206 , 36 06 ) ? 6 + #− Κ 7 ) . 及Χ2)4 0#)− ‘人3δ
, , 6 , 7 37 、 Ε 6 #3Χ2 − Χ+) 7 2 + − 2− 、材。##∗ = ) Χ6 , 2 −Χ0_ ##− 、 Α 3, ≅ 6 + , 3− − , +3Χ) ≅ − 、 Α ∗ Ι ≅ 3= 3− Χ+) 7 2+− 2− 、
Β6 , 2护6 ≅ − Δ 3, 3Δ − 、几入ΜΦ ∗ 7 ϑ− Χ) , 34 ∗ 7 Ι 6 + 6 − #7 ) 0 3= 0 , 2 0) 7 6 ) . Β# 6 ) Δ 6 ? 37 4 )7 − 、 1 ∗ #⊥) 72_ #37
⊥− +⊥ − 2− 、 Ρ #26 +, − , 20 6 + − Χ0 3#) Λ 6+) 3≅ 6 7 Ι 32 0 ) +0 6 + Ι 6 6 ≅ 7 Ι 6 +6 7 Δ − ##, Ι 0 36 0 3, ≅ 36 − 2 6 ≅ 20 − 2
206 3+ 6 6 ) #) = 36 − # ≅ 6 Δ − , ≅ 7 Ι 6 + 6 7 Κ 6 6 3− # 6 ) Δ Κ − + 6 ≅ Ι 320 ) 20 6 + Ι 6 6 ≅ 7 ’ 3, 206 − ∗ 2 ∗ Δ , 一0− + δ
? 6 7 26 ≅ ≅ + _ 6 + ) Χ .36 #≅ 7 3, (3, 0 ∗ − Γ
χ 6 _ Ι ) + ≅ 7 Ρ ∗ 2 ∗ Δ , 0− + ? 6 7 2 6 ≅ ≅ + _ 6 +) Κ .36 #≅ 7 , / 6 6 ≅ , Ξ 36 06 , ∴ 3, 3Δ − # 7 Κ − , , 3, = 2 + 6 6