免费文献传递   相关文献

Expression Analysis of Genes Involved in Peanut Seed Dormancy Release (Arachis hypogaea L.)

花生种子休眠解除过程中相关基因的表达分析


Seed dormancy is one of important agronomic traits in peanut (Arachis hypogaea L.). Seed dormancy can be released with exogenous ethephon. To understand the molecular mechanisms of switches from dormancy to germination in peanut seeds underlying the role of ethephon, we preformed transcriptome analyses among imbibed dormant seeds as control and dormancy-released seeds (AE1, AE2, AE3) treated by


全 文 :作物学报 ACTA AGRONOMICA SINICA 2015, 41(6): 845860 http://zwxb.chinacrops.org/
ISSN 0496-3490; CODEN TSHPA9 E-mail: xbzw@chinajournal.net.cn

本研究由山东省农业科学院青年英才培养计划项目, 山东省良种工程(高产优质花生新品种培育)项目, 青岛民生计划项目(13-1-3-77-
nsh)和青岛民生计划项目(14-2-3-34-nsh)资助。
* 通讯作者(Corresponding author): 万建民, E-mail: wanjm@njau.edu.cn, wanjianmin@caas.cn
第一作者联系方式: E-mail: mianbaohua2008@126.com
Received(收稿日期): 2014-12-15; Accepted(接受日期): 2015-03-09; Published online(网络出版日期): 2015-04-21.
URL: http://www.cnki.net/kcms/detail/11.1809.S.20150421.1115.003.html
DOI: 10.3724/SP.J.1006.2015.00845
花生种子休眠解除过程中相关基因的表达分析
陈 静 1,4 江 玲 1 王春明 1 胡晓辉 4 翟虎渠 3 万建民 1,2,*
1 南京农业大学作物遗传与种质创新国家重点实验室 / 江苏省植物基因工程技术研究中心, 江苏南京 210095; 2 中国农业科学院作物
科学研究所, 北京 100081; 3 中国农业科学院, 北京 100081; 4 山东省花生研究所, 山东青岛 266100
摘 要: 种子休眠性是花生重要的农艺性状, 外源乙烯利能诱导花生种子休眠的解除, 为了阐明乙烯利作用下花生
种子休眠解除的分子机制, 设置吸胀的休眠种子为对照, 100 mg L–1 乙烯利处理吸胀休眠种子后不同时间的样品
(AE1、AE2、AE3)进行转录组分析, 比较了花生种子休眠解除过程中 ABA、GA、ETH、auxin相关基因的表达。结
果表明, 15个与 GA、40个与 ABA、60个与 ETH、56个与 auxin相关的 unigenes在花生种子休眠解除过程中表现显
著差异表达。荧光定量 PCR结果显示, ABA合成关键基因 AhNCED2和代谢关键基因 AhCYP707A1在种子休眠解除
过程中均受外源乙烯利诱导, 表达差异显著; 在休眠和无休眠种子吸胀萌发过程中, AhNCED2 和 AhCYP707A1 的表
达趋势不同, AhNCED2对于种子休眠的维持发挥积极作用, 而 AhCYP707A1对于种子休眠解除发挥积极作用。
关键词: 花生; 休眠性; ABA; AhNCED2; AhCYP707A1
Expression Analysis of Genes Involved in Peanut Seed Dormancy Release
(Arachis hypogaea L.)
CHEN Jing1,4, JIANG Ling1, WANG Chun-Ming1, HU Xiao-Hui4, ZHAI Hu-Qu3, and WAN Jian-Min1,2,*
1 State Key Laboratory for Crop Genetics and Germplasm Enhancement / Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural
University, Nanjing 210095, China; 2 Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 3 Chinese Acad-
emy of Agricultural Sciences, Beijing 100081, China; 4 Shandong Peanut Research Institute, Qingdao 266100, China
Abstract: Seed dormancy is one of important agronomic traits in peanut (Arachis hypogaea L.). Seed dormancy can be released
with exogenous ethephon. To understand the molecular mechanisms of switches from dormancy to germination in peanut seeds
underlying the role of ethephon, we preformed transcriptome analyses among imbibed dormant seeds as control and dor-
mancy-released seeds (AE1, AE2, AE3) treated by 100 mg L–1 exogenous ethephon, and compared the expression of unigenes
related to ABA, GA, ETH and auxin. The results showed that there were 15, 40, 60, and 56 unigenes associated with GA, ABA,
ETH, and auxin respectively, which were significantly differentially expressed unigenes during the process from dormancy to
germination. The results of Real-time RT-PCR showed that the expressions of AhNCED2 and AhCYP707A1 were induced dis-
tinctly by exogenous ethephon in seed dormancy released process. In dormant and non-dormant seed imbibition and germination
processes, there were different roles between expresses of AhNCED2 and AhCYP707A1. AhNCED2 played a positive role in
maintaining seed dormancy, while AhCYP707A1 played a positive role for seed dormancy breaking.
Keywords: Peanut; Seed; Dormancy; ABA; AhNCED2; AhCYP707A1
休眠和萌发过程中, 激素扮演着非常重要的角
色。ABA对诱导和维持种子休眠有积极的调控作用,
GA对终止种子休眠与促进发芽有着重要的作用。种
子吸胀萌发过程中, ABA 合成量增加和 GA 含量降
低维持种子休眠, 反之促进种子萌发[1-2]。休眠态种
子吸胀时, ABA 将重新开始合成, 使种子保持休眠
态 ; 非休眠态种子吸胀时不会出现这种情况 [3-4]。
Ali-Rachedi 等[5]发现强休眠拟南芥 Cvi 种子胚中存
846 作 物 学 报 第 41卷


在高含量 ABA, 其含量随着种子的休眠解除而降
低。Cadman等[6]在转录组水平证实种子休眠与 ABA
生物合成有关。特别是 ABA生物合成关键酶 NCED
(9-cis-epoxycarotenoid dioxygenase)和 ABA 降解途
径关键酶 CYP707A[(+)-abscisic acid 8’-hydroxylase]
对于种子休眠具有普遍意义[7]。通过对拟南芥 ABA
代谢缺陷型突变体的研究发现, 编码 ABA 8’羟化酶
的基因(CYP707A1、CYP707A2)失活会导致种子休眠
性增强[8-9]。种子发育过程中, 乙烯对 ABA有拮抗作
用, 拟南芥乙烯受体突变体 etr1 种子休眠性较野生
型增强, 并且突变体干燥种子中 ABA的浓度是野生
型种子的 8 倍[13]。乙烯促进 GA 缺陷型突变体的萌
发表明乙烯的合成参与了种子休眠的解除[14-15], 同
时乙烯与 GA 有协同作用, 促进胚生长伸长, 软化胚
根周围组织, 是种子萌发所必需的[11-12]。
花生是我国重要的油料作物和经济作物 , 面
积、单产、总产均居世界前列。近年来我国花生生
产中多有报道[16-17], 在花生收获时期恰逢阴雨天气
导致花生在植株上发芽, 严重影响了花生的产量和
品质, 其主要根源是目前选育推广的花生新品种休
眠性较弱, 因此选育具有适度休眠性的花生新品种
是行之有效的解决方法。目前有关花生种子休眠性
的研究在休眠性检测方法、影响因素、品种鉴选和
遗传分析方面均有报道[18-27], 而花生种子休眠以及
解除休眠过程中的分子机制尚未见报道。本研究基
于转录组分析结果, 剖析了解除种子休眠过程中显
著性差异表达 unigenes 的变化 , 进而挖掘获得了
ABA 合成途径、代谢途径中的关键基因 AhNCED2
和 AhCYP707A1 的基因片段序列, 通过功能验证分
析, 以期为培育具有适度休眠的花生品种提供理论
指导。
1 材料与方法
1.1 供试材料
选用山东省花生研究所育成的小花生品种花育
52和花育 28。花育 52具有强休眠特性, 花育 28具
有弱休眠特性。以花育 52吸胀 24 h (28℃)的休眠种
子为对照(CK), 用 100 mg L–1乙烯利处理对照 2.5h
后取生长不同时间的种子用于转录组测序(表 1)。
花育 52 休眠种子(HY52-D)、花育 52 室温破除
休眠的种子(HY52-ND)、花育 28无休眠种子(HY28),
取样时间为吸胀 0、6、12、18和 24 h的种子, 以及
对照 CK、AE1、AE2和 AE3 (表 1)用于验证分析基
因的表达差异。

表 1 供试材料
Table 1 The tested materials
样品
Sample
取样时间
Sampling time
备注
Remark
AE1
2.5 h (含乙烯利处理时间
Including the ethephon treatment time)
种子外表无变化
No change in seed appearance
AE2
10.0 h (含乙烯利处理时间
Including the ethephon treatment time)
种子刚刚露白
Radicle barely breaks through the seed coat
AE3
24.0 h (含乙烯利处理时间
Including the ethephon treatment time)
种子胚根 2 mm左右
Radicle protrusion through the seed coat for 2 mm
CK 0
种子外表无变化
No change in seed appearance
CK未经乙烯利处理; AE1、AE2、AE3均经 100 mg L–1乙烯利处理 2.5 h。
CK was untreated with ethephon, and AE1, AE2, AE3 were treated with 100 mg L–1 ethephon for 2.5 hours.

1.2 文库构建与测序
采用 Illumina/Solexa 标准操作步骤(Directional
mRNA-Seq Sample Preparation Part # 15018460 Rev.
A, October 2010)制备转录组测序文库。其后用
Agilent2100 对文库建库片段大小进行质控, 采用
Illumina 2000平台对文库进行测序。
1.3 序列分析和注释
对所产生的原始 reads 进行质量评估和可信度
分析 , 去除低质量片段 (Q<20)。使用软件 Trinity
(trinityrnaseq_r2012-10-05)将花生 4 个样本的有效
reads 合并进行 de novo 拼接 , 获得 121412 个
Unigene。将获得的 Unigenes 进行注释, 包括 NR、
Swiss-Prot 等基本数据库注释、KOG 分类、GO 和
KEGG注释。
1.4 差异表达分析
使用 RPKM (Reads per kb per million reads)计算
第 6期 陈 静等: 花生种子休眠解除过程中相关基因的表达分析 847


基因表达量; 根据 unigenes 表达量采用 fold change
分析、fisher检验、chisq检验等进行差异表达分析。
样本 AE1、AE2、AE3均与 CK相比较, 取值 P≤0.05
且|fold change|≥2。
1.5 花生总 RNA的提取及 cDNA的合成
按照 RNA 试剂盒(TransGen)说明书提取花生种
子总 RNA, 用 Prime RT Reagent Kit (TaKaRa, 大连)
将提取的总 RNA反转录成 cDNA。
1.6 荧光定量 PCR
采用 LightCycle 2.0 (rRoche Diagnostics公司)荧
光定量 PCR仪。PCR程序为 95℃ 30 s; 95℃ 5 s, 60℃
20 s, 72℃ 10 s , 45个循环; 然后绘制溶解曲线。采
用 SYBR Premix Ex Taq试剂盒(TaKaRa, 大连), 按
照说明进行实时定量 PCR。每个样品重复 3 次, 取
平均值, 采用 2–ΔΔCt的方法。根据目的基因片段序列,
利用 Beacon Designer 7.91 软件设计荧光定量 PCR
引物, 内参基因为 Actin11 (表 2)。
1.7 目的基因片段生物信息学分析
利用 DNA MAN 6.0 对目的基因片段的氨基酸
序列、开放阅读框搜索进行分析 ; 利用在线 Blast
(http://www.ncbi.nlm.nih.gov/Blast/)进行序列比对、
同源序列搜索。

表 2 引物序列
Table 2 Primer sequence
引物名称
Primer Name
注释
Definition
正向序列
Forward sequence (5–3)
反向序列
Reverse sequence (5–3)
Ah NCED2 9-cis-epoxycarotenoid dioxygenase TAAGAAGCCACATCAACTG CTCCTCCTACACTATTATTAGC
Ah CYP707A1 (+)-abscisic acid 8’-hydroxylase ATAGTGAAGAGGAAGGAGAA CTTGAAGTCATTGGCATCT
Actin11 reference gene TTGGAATGGGTCAGAAGGATGC AGTGGTGCCTCAGTAAGAAGC

2 结果与分析
2.1 与 ABA、GA、ETH、auxin相关的 unigenes
表达差异显著性
基于转录组分析结果, AE1、AE2、AE3与吸胀休
眠种子(CK)相比较, 3 组对比数据中至少有一组数据
满足|fold change|≥2且 P≤0.05要求。通过比较获
得了 40个与 ABA、15个与 GA、60个与 ETH、56个
与 auxin相关 unigenes的表达存在显著差异(附表 1)。
2.2 ABA相关基因的表达分析
NCED是 ABA合成途径中的关键酶, CYP707A
是 ABA代谢途径中的关键酶。在外源乙烯利作用下
花生种子休眠解除过程中, 检测到 2 个 NCED 的
unigenes, 其表达下调。4个 CYP707A unigenes的表
达有一定差异, AE1表现显著上调表达。外源乙烯利
作用下花生种子休眠解除过程中, 检测到 8 个 ABA
受体(PYL) unigenes, 其中 4个在AE1表现显著上调,
6个在 AE2表现显著上调; 检测到 6个 ABA响应因
子(ABF) unigenes 均表现下调, 特别在种子露白阶
段均显著下调; 检测到 20 个可能的 PP2C unigenes,
其表达表现较为复杂(图 1和附表 1)。
2.3 GA相关基因的表达分析
GA20ox是 GA合成途径的关键基因, 花生种子
休眠解除过程中, 检测到 1个 GA20ox的 unigene表
达显著上调, 2个GA20ox1-like的 unigenes表达显著
下调。GA信号转导途径中, GID1是 GA受体, GID1
unigenes 的表达受到外源乙烯利诱导; DELLA 蛋白
是一类核蛋白, 属于转录调控因子 GRAS 家族[28],
是 GA 信号传导中非常重要的抑制因子, 外源乙烯
利作用下花生种子休眠解除过程中 , DELLA 蛋白
unigenes 均表现下调, 在种子露白阶段(AE2)均显著
下调。检测到 8个 GA调控蛋白 unigenes, AE1均未
达到显著差异表达, AE2 (种子露白)时 6个表现显著
上调、2个表现显著下调(图 2和附表 1)。
2.4 ETH相关基因的表达分析
植物体内乙烯通过 Yang Cycle由蛋氨酸转换产
生[29-30], ACS和 ACO是乙烯生物合成途径中的关键
限速酶。外源乙烯利作用下吸胀休眠种子萌发过程
中, 检测到 60个与 ETH相关的 unigenes (图 3, 附表
1)。外源乙烯利作用下, ACS unigenes迅速响应, AE1
处理上调表达 10 倍以上, 露白时上调表达 10 倍以
上; 检测到 12个差异表达的 ACO unigenes, 它们均
是在种子露白时表达达到峰值, 且都是显著上调表
达, 差异倍数变幅 5.099~14.661。另外检测到参与乙
烯信号转导途径中的 unigenes 有 EIN2 unigenes 2
个、6个 ETH受体(ETR和 ERS) unigenes、6个 EBF1-2
unigenes、33个 ETH响应因子(EREBP-like) unigenes。
外源乙烯利作用下, EIN2 unigenes 表达显著下调,
随即表达量有所上升但均未达到显著水平; ETH 受
体 unigenes 表现上调表达; EBF 是负责识别及结合
848 作 物 学 报 第 41卷


EIN3 等转录因子的 F-box 蛋白, 我们检测到 6 个
EBF1-2 unigenes, 它们均表现显著上调; ETH 响应
因子 unigenes表达模式有差异, 8个在AE1处理达表
达峰值, 10个在 AE2处理达表达峰值。

图 1 ABA相关 unigenes在种子休眠解除过程中的表达变化
Fig. 1 Expression trend of unigenes related to ABA during the process of seed dormancy release
数字对应 unigenes见附表 1。
A: log2(CK_RPKM/CK_RPKM); B: log2(AE1_RPKM/CK_RPKM); C: log2(AE2_RPKM/CK_RPKM); D: log2(AE3_RPKM/CK_RPKM).
Number corresponding to unigenes see Supplementary table 1.

图 2 GA相关 unigenes在种子休眠解除过程中的表达变化
Fig. 2 Expression trend of unigenes related to GA during the process of seed dormancy release
数字对应 unigenes见附表 1。
A: log2(CK_RPKM/CK_RPKM); B: log2(AE1_RPKM/CK_RPKM); C: log2(AE2_RPKM/CK_RPKM); D: log2(AE3_RPKM/CK_RPKM).
Number corresponding to unigenes see Supplementary table 1.
第 6期 陈 静等: 花生种子休眠解除过程中相关基因的表达分析 849



图 3 ETH相关 unigenes在种子休眠解除过程中的表达变化
Fig. 3 Expression trend of unigenes related to ETH during the process of seed dormancy release
数字对应 unigenes见附表 1。
A: log2(CK_RPKM/CK_RPKM); B: log2(AE1_RPKM/CK_RPKM); C: log2(AE2_RPKM/CK_RPKM); D: log2(AE3_RPKM/CK_RPKM).
Number corresponding to unigenes see Supplementary table 1.

2.5 auxin相关基因表达变化分析
生长素(auxin)作为一类重要的激素, 参与细胞
的分裂、生长、成熟和分化等过程。外源乙烯利作
用下吸胀休眠种子萌发过程中, 检测到与 auxin 相
关的 unigenes 56个(图 4和附表 1), 包括生长素诱导
蛋白、生长素响应蛋白、SAUR家族蛋白、AUX1 LAX
家族、生长素抑制蛋白、生长素响应因子等。其中
生长素抑制蛋白 unigenes 在种子休眠解除过程中显
著下调表达 ; 生长素诱导蛋白和生长素响应 GH3
unigenes 在种子休眠解除过程中的表达有分化; 其
他检测到与 auxin 相关基因的表达均在 AE2 种子露
白时达到峰值, 且显著上调表达。
2.6 花生 AhNCED2基因片段的 cDNA序列和表
达分析
通过转录组测序, 得到了 NCED 基因 cDNA 的
部分序列 (附表 2 ) , 序列长度为 1 7 4 8 b p。用
DNAMAN 软件分析该 cDNA 序列, 发现其5端有
88 bp 的非编码区(5-UTR), 编码553个氨基酸, 没
850 作 物 学 报 第 41卷


有终止密码子; 将该基因片段推导的氨基酸序列与
AhNCED1 (CAE00459.2)比对分析, 两者同源相似性
仅为 53.90%, 暂定名为 AhNCED2; 进一步在 NCBI
上进行 Blastp 比对, 表明该基因推导的氨基酸序列
与其他植物的 NCED 氨基酸序列相似性较高, 包含
RPE65 保守结构域 (图 5), 其中与鹰嘴豆 (Cicer
arietinum, XP_004504912.1)的相似性最高 , 达到
79%, 与豌豆 (Pisum sativum, BAC10551.1)、大豆
(Glycine max, NP_001241616.1)、金钱橘 (Citrus
clementina, ABC26010.1)、温州蜜柑(Citrus unshiu,
BAE92960.1)、烟草(Nicotiana tabacum, AFP57678.1)、
马铃薯 (Solanum tuberosum, AAT75152.1)、拟南芥
(Arabidopsis thaliana, NP_188062.1)等的相似性分别
为 73%、77%、71%、72%、71%、70%和 73%。

图 4 auxin相关 unigenes在种子休眠解除过程中的表达变化
Fig. 4 Expression trend of unigenes related to auxin during the process of seed dormancy release
数字对应 unigenes见附表 1。
A: log2(CK_RPKM/CK_RPKM); B: log2(AE1_RPKM/CK_RPKM); C: log2(AE2_RPKM/CK_RPKM); D: log2(AE3_RPKM/CK_RPKM).
Number corresponding to unigenes see Supplementary table 1.
第 6期 陈 静等: 花生种子休眠解除过程中相关基因的表达分析 851



图 5 花生 Ah NCED2基因片段的 RPE65保守结构域
Fig. 5 RPE65 superfamily of Ah NCED2 fragment of peanut

利用荧光定量技术检测 AhNCED2 基因在解除
吸胀花生种子休眠及萌发过程中的表达差异(图 6)。
花育 52具有强休眠性, AhNCED2在吸胀休眠态种子
(CK)中表达量最高, 随着种子休眠解除、萌发开始,
AhNCED2 的表达量呈下降趋势。AhNCED2 在不同
品种吸胀萌发过程中的表达差异很大, AhNCED2 在
HY52-D (休眠种子)吸胀过程中表达上调, 吸胀 18 h
时表达量达到最高, 上调 10倍以上, 随后下降; HY52-
ND (花育 52破休眠种子)和 HY28 (花育 28无休眠种
子)种子吸胀过程中 AhNCED2 的表达下调, 干种子中
的表达量最高(图 7)。组织特异性表达表明 AhNCED2
基因种子中的相对表达量最高, 其次是花、果针、茎、
叶, 根中 AhNCED2基因的表达量最低(图 8)。

图 6 乙烯利处理花育 52休眠态过程中 AhNCED2基因的相对
表达水平
Fig. 6 Relative expression of AhNCED2 at breaking Huayu 52
seed dormancy by ethephon

图 7 不同品种吸胀萌发过程中 AhNCED2基因的相对表达水平
Fig. 7 Relative expression of AhNCED2 gene at different
dormant stages of different varieties

图 8 AhNCED2基因在不同组织的相对表达水平
Fig. 8 Relative expression of AhNCED2 in different tissues

2.7 花生AhCYP707A1基因片段的 cDNA序列和
表达分析
通过转录组测序, 得到了 CYP707A1 基因片段
的 cDNA 序列(附表 2), 序列长度为 1672 bp。用
DNAMAN 软件对该 cDNA 序列进行分析, 发现其
5端有 349 bp的非编码区(5-UTR), 编码 442个氨基
酸。将该序列在 NCBI 网站上进行在线 Blastp 分析
表明, 该基因推导的氨基酸序列与花生 ABA 8’羟化
酶(CDJ80018.1)的氨基酸序列相似性为 98%, 证实
该序列为花生 ABA 8’羟化酶基因片段 , 名称为
AhCYP707A1。在 NCBI上进行 BlastP比对, 表明该
基因片段中包含 P450保守结构域(图 9)。
与其他植物的 ABA 8’羟化酶基因氨基酸序列相
比相似性很高, 与大豆(Glycine max, NP_001237490.1)、
蒺藜苜蓿(Medicago truncatula, XP_003629019.1)、菜
豆 (Phaseolus vulgaris, ABC86558.1) 、 拟 南 芥
(Arabidopsis thaliana, NP_974574.1) ABA 8’羟化酶
的氨基酸序列相似性分别为 81%、82%、82%和 73%。
利用荧光定量 PCR技术检测 AhCYP707A1基因
在外源乙烯利解除吸胀花生种子休眠及萌发过程中
的表达差异(图 10)。AhCYP707A1在吸胀休眠态种子
(CK)中表达量最低, 与休眠态相比, 解除休眠种子
萌发过程中 AhCYP707A1基因的表达上调 10倍以上,
其中 AE1处理表达量最高。HY52-D种子吸胀 0、6、
12、18和 24 h样品中 AhCYP707A1的表达量略有上
升, 差异表达倍数分别为 1.64、1.95、1.61 和 1.98
852 作 物 学 报 第 41卷



图 9 花生 AhCYP707A1基因片段的 RPE65保守结构域
Fig. 9 RPE65 superfamily of AhCYP707A1 fragment of the peanut


图 10 乙烯利处理花育 52休眠态过程中 AhCYP707A1基因的
相对表达水平
Fig. 10 Relative expression of AhCYP707A1 at breaking
Huayu 52 seed dormancy by ethephon

图 11 不同品种吸胀萌发过程中 AhCYP707A1基因的相对表达
水平
Fig. 11 Relative expression of AhCYP707A1 gene at different
dormant stages of different varieties

图 12 AhCYP707A1基因在不同组织器官的相对表达水平
Fig. 12 Relative expression of AhCYP707A1 in different tissues
and organs
倍; HY28 种子吸胀萌发过程中, AhCYP707A1 的表
达量急剧上升, 与干种子相比, 6、12、18和 24 h样
品中 AhCYP707A1的表达量差异表达倍数在 10倍以
上; HY52-ND种子吸胀萌发过程中, AhCYP707A1的
表达量呈上升趋势, 与干种子相比, 6、12、18和 24
h样品中 AhCYP707A1的差异表达倍数分别是 1.99、
4.42、5.50和 8.82倍(图 11)。AhCYP707A1基因在花
生不同组织的表达差异性分析表明, AhCYP707A1基
因在根中的相对表达量最高, 其次是在叶、茎、果
针和花, 种子中的相对表达量最小(图 12)。
3 讨论
3.1 ABA 合成代谢信号转导关键基因在花生种
子休眠萌发中的表达分析
大量研究表明 ABA 是种子休眠诱导的正调节
因子和萌发的负调节因子。过量表达 ABA生物合成
基因能增加种子中的 ABA含量, 从而促进种子休眠
或者延迟萌发[31-32]。NCED是 ABA合成途径中的关
键限速酶。拟南芥中有 5个 NCED基因, NCED6和
NCED9在发育种子中高效表达, NCED6在胚乳中特
异性表达, NCED9在胚和种皮中表达。大麦中, 2个
HvNCED 基因调控种子成熟期 ABA 积累 [33]。
CYP707A 是调控 ABA 代谢的关键限速酶。拟南芥
ABA 代谢缺陷型突变体中编码 ABA 8’羟化酶的基
因(CYP707A1、CYP707A2)失活会导致种子休眠性增
强[8-9]。休眠种子和无休眠种子吸胀时 ABA 含量均
下降; 但休眠种子(拟南芥和大麦)中维持较高水平
ABA含量、CYP707A转录水平表达量较低[34]。ABA
缺乏的突变体易形成非休眠种子或种子易在母体植
株上提早萌发[14,35-36]。
种子在吸胀过程中, 无论是休眠种子还是非休
眠态种子, 其内部生理生化和代谢水平均在发生巨
大变化。休眠花生种子吸胀过程中, ABA 合成关键
基因 AhNCED2 表达量上调以维持种子休眠特性 ,
吸胀 18 h时达到峰值, 随即开始下降。当以外源乙
烯利处理吸胀休眠态的种子时, AhNCED2表达量随
休眠解除和萌发进程下降; 无休眠种子吸胀过程中
AhNCED2 在干种子中表达量最高。ABA 代谢途径
第 6期 陈 静等: 花生种子休眠解除过程中相关基因的表达分析 853


关键基因 AhCYP707A1, 在休眠种子和非休眠态种
子吸胀过程中均上调, 但非休眠种子表达量高, 上
调倍数高 ; 外源乙烯处理吸胀休眠种子时 , Ah-
CYP707A1迅速上调表达。外源乙烯利作用下花生种
子休眠解除过程中, 检测到 6个 ABA信号转导途径
相关的 ABA响应因子 unigenes均下调表达, 特别在
种子露白阶段均显著下调。这些结果进一步推测外
源乙烯利对吸胀休眠态种子的 ABA 有影响, 一是
ABA 合成关键基因 AhNCED2 下调表达 , 切断了
ABA合成途径; 二是 ABA代谢途径中 AhCYP707A1
上调表达, 降解 ABA 以使种子中 ABA 含量减少;
三是对ABA信号途径中ABA响应因子有诱导作用。
3.2 GA 合成代谢关键基因在花生种子休眠萌发
中的表达分析
种子萌发过程中 GA 与乙烯间存在互作, 山毛
榉种子受到乙烯利处理时 GA20ox1 表达上调[37]。
GA20ox是 GA合成途径的关键基因, 花生种子休眠
解除过程中, 检测到 1个 GA20ox的 unigene和 2个
GA20ox1-like 的 unigenes, 外源乙烯利处理下
GA20ox的表达表现出多样性, 其中 1个表现显著上
调, 另外 2 个 GA20ox1-like的 unigenes表现显著下
调。DELLA蛋白是一类核蛋白, 属于转录调控因子
GRAS 家族[28], 是 GA 信号传导中非常重要的抑制
因子, 外源乙烯利作用下花生种子休眠解除过程中,
DELLA蛋白 unigenes下调, 在种子露白阶段显著下
调。GA调控蛋白 unigenes, AE1处理无显著差异表达,
AE2处理(种子露白) 6个显著上调、6个显著下调。
3.3 乙烯合成代谢关键基因在花生种子休眠萌
发中的表达分析
植物体内乙烯由 Yang Cycle 途径产生 [29-30],
ACS和 ACO是乙烯生物合成途径中的关键限速酶。
种子萌发过程中, 乙烯生物合成和信号途径是胚乳
弱化和破裂所必需的, ACO 是控制乙烯合成的关键
因子 [12,38-41]。在豌豆种子萌发过程中 , 乙烯通过
Ps-ACO1转录物的正反馈调节促进乙烯的生物合成,
而 Ps-ACS1 mRNA 的水平和 ACC 的总含量不被乙
烯处理影响。乙烯对豌豆种子萌发的促进作用与胚
轴胚根处的 β-1,3-葡聚糖酶有关[40,42]。本研究表明外
源乙烯利处理对乙烯合成途径 ACS 和 ACO 基因均
有影响, ACS unigenes表达响应早于 ACO unigenes,
ACO unigenes在种子露白时达表达峰值, 推测 ACO
与花生种子萌发密切相关。外源乙烯利对乙烯信号
转导途径中的 unigenes有影响, ETH受体上调表达、
负责识别及结合 EIN3 等转录因子的 F-box 蛋白显
著上调, 而 ETH响应因子 unigenes的表达模式复杂,
8个迅速响应、10个在种子露白时达表达峰值。
3.4 生长素合成代谢关键基因在花生种子休眠
萌发中的表达分析
生长素(auxin)作为一类重要的激素, 参与细胞
的分裂、生长、成熟和分化等过程[43-45]。生长素也
是诱导和维持种子休眠所必需的, 主要证据来自生
长素信号缺失突变体的种子休眠性不同程度减弱、
生长素合成缺陷突变体的休眠性减弱、生长素合成
过量突变体的种子休眠性得到显著提高[46]。外源乙
烯利作用下种子休眠解除过程中, 生长素抑制蛋白
unigenes 显著下调表达、生长素诱导蛋白和生长素
响应 GH3 unigenes、表达有分化、其他与 auxin 相
关的 unigenes 在种子露白时达到峰值, 且是显著上
调表达。
3.5 花生种子休眠解除过程中激素间的交互作

种子萌发过程中, ETH和ABA存在拮抗作用[39,47-48]。
GA-乙烯协同作用促进种子休眠解除、后熟和发芽[49]。
Lepidium sativum[41]和糖甜菜 [38]中 , 外源乙烯或
ACC 对 ABA 含量及 ABA 合成基因表达也没有影
响。然而, 与野生型相比, 拟南芥乙烯不敏感突变体
etr1和 ein2含有高含量 ABA, 萌发缓慢[49-51]。乙烯
不仅作用于 ABA 代谢降低 ABA 含量, 也负向调控
ABA 信号途径[52-53]。本研究中外源乙烯利处理下,
NECD、CYP707A、ABF、DELLA、ACS、EBF1-2、
EREBP-like (8 个)、ERS、ETR 受到明显诱导, 而
PYL、ACO、GA 调控蛋白、EREBP-like (10 个)以
及多数 auxin 相关 unigenes 的表达峰值与花生种子
露白时一致。
3.6 AhNCED2和 AhCYP707A1的表达分析
Liu 等 [54] 克 隆 了 花 生 AhCYP707A1 、
AhCYP707A2、 AhNCED1 基因 , AhCYP707A1 和
AhCYP707A2 基因均在根中高表达。LiCl 胁迫对
AhCYP707A1、AhCYP707A2、AhNCED1基因在根、
茎、叶中的表达均没有影响; PEG-6000和 NaCl胁迫
诱导 AhCYP707A2 基因在根、茎、叶中的表达明显
上调, 诱导 AhNCED1 基因在茎、叶中的表达上调,
诱导 AhCYP707A1 基因仅在根中表达上调。本研究
获得的 NCED 基因片段与 AhNCED1 (CAE00459.2)
的比对发现两者氨基酸序列的同源相似性为 53.90%,
推测两者不是同一个基因, 暂定名为 AhNCED2, 组
854 作 物 学 报 第 41卷


织特异性表明 AhNCED2 基因种子中的相对表达量
最高。另外获得了 CYP707A1 基因片段与花生
AhCYP707A1 (CDJ80018.1)的氨基酸序列相似性为
98%, 推测两者可能是同一个基因 , 组织特异性表
明该基因根中的相对表达量最高, 与 Liu 等的研究
结果一致。荧光定量 PCR 验证表明 AhNCED2 和
AhCYP707A1 受到外源乙烯利的诱导, 与花生种子
休眠维持及解除密切相关。
4 结论
外源乙烯利诱导花生种子休眠解除过程中, 与
GA、ABA、ETH及 auxin相关 unigenes表现显著差
异表达, 表明外源乙烯利通过 GA、ABA、ETH、auxin
相关基因的诱导作用来完成其对花生种子休眠的解
除。AhNCED2和 AhCYP707A1受外源乙烯利的诱导,
与花生种子休眠的维持及解除密切相关, 为培育具
有适度休眠性的花生新种质提供了候选基因。
References
[1] Bewley J D, Bradford K J, Hilhorst H W M, Nonogaki H. Seed
Physiology of Development, Germination and Dormancy (3rd
edn). London: Springer, 2013, pp 247–295
[2] 曹雅君, 江玲, 罗林广, 翟虎渠, 志村英二, 杨世湖, 万建民.
水稻品种休眠特性的研究. 南京农业大学学报, 2001, 24(2):
1–5
Cao Y J, Jiang L, Luo LG, Zhai H Q, Shimura E, Yang S H, Wan J
M. A study on seed dormancy in rice (Oryza sativa L.). J Nanjing
Agric Univ, 2001, 24(2): 1–5 (in Chinese with English abstract)
[3] 徐恒恒, 黎妮, 刘树君, 王伟青, 王伟平, 张红, 程红焱, 宋松
泉 . 种子萌发及其调控的研究进展 . 作物学报 , 2014, 40:
1141−1156
Xu H H, Li N, Liu S J, Wang W Q, Wang W P, Zhang H, Cheng
H Y, Song S Q. Research progress in seed germination and its
control. Acta Agron Sin, 2014, 40: 1141−1156 (in Chinese with
English abstract)
[4] Erwann A, Julien S, Francoise C, Loic R, Marion-poll A. ABA
crosstalk with ethylene and nitric oxide in seed dormancy and
germination. Plant Cell Biol, 2013, 4: 1−19
[5] Ali-Rachedi S, Bouinot D, Wagner M H, Bonnet M, Sotta B,
Grappin P, Jullien M. Changes in endogenous abscisic acid levels
during dormancy release and maintenance of mature seeds: stud-
ies with the Cape Verde Islands ecotype, the dormant model of
Arabidopsis thaliana. Planta, 2004, 219: 479−488
[6] Cadman C S, Toorop P E, Hilhorst H W, Finch-Savage W E.
Gene expression profiles of Arabidopsis Cvi seeds during dor-
mancy cycling indicate a common underlying dormancy control
mechanism. Plant J, 2006, 46: 805−822
[7] Nambara E, Okamoto M, Tatematsu K, Yano R, Seo M, Kamiya
Y. Abscisic acid and the control of seed dormancy and germina-
tion. Seed Sci Res, 2010, 20: 55−67
[8] Matakiadis T, Alboresi A, Jikumaru Y, Tatematsu K, Pichon O,
Renou J P, Kamiya Y J, Nambar E, Truong H N. The Arabi-
dopsis abscisic acid catabolic gene CYP707A2 plays a key
role in nitrate control of seed dormancy. Plant Physiol, 2009,
149: 949−960
[9] Okamoto M, Kuwahara A, Seo M, Kushiro T, Asami T, Hirai N,
Kamiya Y, Koshiba T, Nambara E. CYP707A1 and CYP707A2,
which encode abscisic acid 8’-hydroxylases, are indispensable for
proper control of seed dormancy and germination in Arabidopsis.
Plant Physiol, 2006, 141: 97–107
[10] Penfield S, Li Y, Gilday A D, Graham S, Graham I A. Arabidopsis
ABA INSENSITIVE4 regulates lipid mobilization in the embryo
and reveals repression of seed germination by the endosperm.
Plant Cell, 2006, 18: 1887–1899
[11] Matilla A J. Ethylene in seed formation and germination. Seed Sci
Res, 2000, 10: 111–126
[12] Siriwitayawan G, Geneve R L, Downie A B. Seed germination of
ethylene perception mutants of tomato and Arabidopsis. Seed Sci
Res, 2003, 13: 303–314
[13] Chiwocha S D S, Cutler A J, Abrams S R, Ambrose S J, Yang J,
Ross A R S, Kermode A R The etr1-2 mutation in Arabidopsis
thaliana affects the abscisic acid, auxin, cytokinin and gibberellin
metabolic pathways during maintenance of seed dormancy,
moist-chilling and germination. Plant J, 2005, 42: 35–48
[14] Karssen C M, Zagorski S, Kepczynski J, Groot S P C. Key role
for endogenous gibberellins in the control of seed germination.
Ann Bot (London), 1989, 63: 71–80
[15] Koornneef M, Karssen C M. Seed dormancy and germination. In:
Meyerowitz E M, Sommerville C R, eds. Arabidopsis. New York:
Cold Spring Harbor Laboratory, 1994. pp 313–334
[16] 禹山林. 中国花生遗传育种学. 上海: 上海科学技术出版社,
2011
Yu S L. Genetics and Breeding of China peanut. Shanghai:
Shanghai Science and Technology Press, 2011 (in Chinese)
[17] 周桂元, 梁炫强. 花生种子休眠性的研究进展. 江西农业学报,
2011, 23(11): 61–63
Zhou G Y, Liang X Q. Research advance in seed dormancy of
peanut. Acta Agric Jiangxi, 2011, 23: 61–63 (in Chinese with
English abstract)
[18] Kumarl S S, Patel S A. Seed dormancy in groundnut (Arachis
hypogaea L.): II. Estimation of gene effects in six crosses. Trop
Agric (Trinidad), 1999, 76: 188–192
[19] Upadhyaya H D, Nigam S N. Inheritance of fresh seed dormancy
in peanut. Crop Sci, 1999, 39: 98–101
[20] 胡晓辉, 苗华荣, 杨伟强, 张建成, 陈静. 花生种子休眠性的
遗传分析及其影响因素的研究 . 核农学报 , 2013, 27:
1449–1455
Hu X H, Miao H R, Yang W Q, Zhang J C, Chen J. Genetic
analysis and factors influencing peanut (Arachis hypogaea L.)
seed dormancy. J Nucl Agric Sci, 2013, 27: 1449–1455 (in
Chinese with English abstract)
[21] Toole V K, Bailey W K, Toole E H. Factors influencing dor-
mancy of peanut seeds. Plant Physiol, 1964, 39: 823–832
[22] Ketring D L, Morgan P W. P hysiology of Oil Seeds I. Regulation
of dormancy in Virginia-type peanut seed. Plant Physiol, 1970,
45: 268–273
[23] Ketring D L, Morgan P W. Physiology of oil seeds: II. Dormancy
第 6期 陈 静等: 花生种子休眠解除过程中相关基因的表达分析 855


release in Virginia-type peanut seeds by plant growth regulators.
Plant Physiol, 1971, 47: 488–492
[24] Ketring D L, Morgan P W. Ethylene as a component of the ema-
nations from germinating peanut seeds and its effect on dormant
Virginia-type seeds. Plant Physiol, 1969, 44: 326–330
[25] Wang M L, Chen C Y, Pinnow D L, Barkley N A, Pittman R N,
Lamb M, Pederson G C. Seed dormancy variability in the US
peanut Mini-core collection. Res J Seed Sci, 2012, 5: 84–95
[26] Issa F, Danièl F, Jean-François R, Hodo-Abolo T, Mbaye-Ndoye
S, Tahir D A, Ousmane N. Inheritance of fresh seed dormancy in
Spanish-type peanut (Arachis hypogaea L.): bias introduced by
inadvertent selfed flowers as revealed by microsatellite markers
control. Afr J Biotechnol, 2010, 9: 1905–1910
[27] Asibuo J Y, Akromah R, Safo-Kantanka O, Adu-Dupaah H, Seth
K O, Agyemen A. Inheritance of fresh seed dormancy in ground-
nut. Afr J Biotechnol, 2008, 7: 421–424
[28] Sun T P, Gubler F. Molecular mechanism of gibberellin signaling
in plants. Annu Rev Plant Biol, 2004, 55: 197–223
[29] Yang S F, Hoffman N E. Ethylene biosynthesis and its regulation
in higher plants. Annu Rev Plant Physiol Plant Mol Biol, 1984,
35: 155–189
[30] Lin Z, Zhong S, Grierson D. Recent advances in ethylene re-
search. J Exp Bot, 2009, 60: 3311–3336
[31] Gonzalez-Guzman M, Abia D, Salina J, Serrano R, Rodriguez P.
Two new alleles of the abscisic aldehyde oxidase 3 gene reveal its
role in abscisic acid biosynthesis in seeds. Plant Physiol, 2004,
135: 325–333
[32] Kushiro T, Okamoto M, Nakabayashi K, Yamagishi K, Kitamura
S, Asami T, Hirai N, Koshiba T, Kamiya Y, Nambara E. The
Arabidopsis cytochrome P450 CYP707A encodes ABA
8’-hydroxylases: key enzymes in ABA catabolism. EMBO J,
2004, 23: 1647–1656
[33] Chono M, Honda I, Shinoda S, Kushiro T, Kamiya Y, Nambara E,
Kawakami N, Kaneko S, Watanabe Y. Field studies on the regula-
tion of abscisic acid content and germinability during grain
development of barley: molecular and chemical analysis of
pre-harvest sprouting. J Exp Bot, 2006, 57: 2421–2434
[34] Millar A A, Jacobsen J V, Ross J J, Helliwell C A, Poole A T,
Scofield G, Reid J B, Gubler F. Seed dormancy and ABA metabo-
lism in Arabidopsis and barley: the role of ABA 8’-hydroxylase.
Plant J, 2006, 45: 942–954
[35] Thompson A J, Jackson A C, Parker R A, Morpeth D R, Burbidge
A, Taylor I B. Abscisic acid biosynthesis in tomato: regulation of
zeaxanthin epoxidase and 9-cis-epoxycarotenoid dioxygenase
mRNAs by light/dark cyeles, water stress and abscisic acid. Plant
Mol Biol, 2000, 42: 833–845
[36] White C N, Proebsting W M, Hedden P, White C N, Rivin C J.
Gibberellins and seed development in maize: I. Evidence that
gibberelllin/abscisic acid balance governs germination versus
maturation pathways. Plant Physiol, 2000, 122: 1081–1088
[37] Calvo A P, Nicola S C, Nicolas G, Rodriguez D. Evidence of a
cross-talk regulation of a GA 20-oxidase (FsGA20ox1) by gib-
berellins and ethylene during the breaking of dormancy in Fagus
sylvatica seeds. Physiol Plant, 2004, 120: 623–6301
[38] Hermann K, Meinhard J, Dobrew P, Linkies A, Pesek B, Hess B,
Machackova I, Fischer U, Leubner-Metzger G. 1-aminocyclo-
propane-1-carboxylic acid and abscisic acid during the germina-
tion of sugar beet (Beta vulgaris L.): a comparative study of fruits
and seeds. J Exp Bot, 2007, 58: 3047–3060
[39] Leubner-Metzger G, Petruzzelli L, Waldvogel R, Vogeli-Lange R,
Meins E. Ethylene-responsive element binding protein (EREBP)
expression and the transcriptional regulation of class I
beta-1,3-glucanase during tobacco seed germination. Plant Mol
Biol, 1998, 38: 785–795
[40] Petruzzelli L, Coraggio L, Leubner-Metzger G. Ethylene pro-
motes ethylene biosynthesis during pea seed germination by posi-
tive feedback regulation of 1-aminocyclo-propane-1-carboxylic
acid oxidase. Planta, 2000, 211: 144–149
[41] Linkies A, Müller K, Morris K, Tureckova V, Wenk M, Cadman
C S C, Corbineau F, Stmad M, Lynn J R, Finch-Savage W E,
Leubner-Metzger G. Ethylene interacts with abscisic acid to
regulate endosperm rupture during germination: a comparative
approach using Lepidium sativum and Arabidopsis thaliana.
Plant Cell, 2009, 21: 3803–3822
[42] Petruzzelli L, Sturaro M, Mainieri D, Leubner-Metzger G. Cal-
cium requirement for ethylene-dependent responses involving
1-aminocyclopropane-1-carboxylic acid oxidase in radical tissues
of germinated pea seeds. Plant Cell Environ, 2003, 26: 661–671
[43] Teale W D, Paponov I A, Palme K. Auxin in action: signalling
transport and the control of plant growth and development. Nat
Rev Mol Cell Biol, 2006, 7: 847–859
[44] Leyser O. Dynamic integration of auxin transport and signalling.
Curr Biol, 2006, 16: 424–433
[45] Quint M, Gray W M. Auxin signalling. Curr Opin Plant Biol,
2006, 9: 448–453
[46] Liu X D, Zhang H, Zhao Y, Feng Z, Li Q, Yang H Q, Luan S, Li J,
He Z H. Auxin controls seed dormancy through stimulation of
abscisic acid signaling by inducing ARF-mediated ABI3 activa-
tion in Arabidopsis. Proc Natl Acd Sci USA, 2013, 110:
15485–15490
[47] Matilla A J, Matilla-Vazquez M A. Involvement of ethylene in
seed physiology. Plant Sci, 2008, 175: 87–97
[48] Ghassemian M, Nambara E, Cutler S, Kawaide H, Kamiya Y,
McCourt P. Regulation of abscisic acid signaling by the ethylene
response pathway in Arabidopsis. Plant Cell, 2000, 12: 1117–1126
[49] Kende H, Van der Knaap E, Cho H T. Deepwater rice: a model
plant to study stem elongation. Plant Physiol, 1998, 118:
1105–1110
[50] Beaudoin N, Serizet C, Gosti F, Giraudat J. Interactions between
abscisic acid and ethylene signaling cascades. Plant Cell, 2000,
12: 1103–1116
[51] Wang Y, Liu C, Li K, Sun F, Hu H, Li X, Zhao Y, Han C, Zhang
W, Duan Y, Liu M. Arabidopsis EIN2 modulates stress response
through abscisic acid response pathway. Plant Mol Biol, 2007, 64:
633–644
[52] Gazzarrini S, McCourt P. Genetic interactions between ABA,
ethylene and sugar signaling pathways. Curr Opin Plant Biol,
2001, 4: 387–391
[53] Kucera B, Cohn M A, Leubner-Metzger G. Plant hormone inter-
actions during seed dormancy release and germination. Seed Sci
Res, 2005,15: 281–307
[54] Liu S, Lv Y, Wan X R, Li LM, Hu B, Li L. Cloning and expres-
856 作 物 学 报 第 41卷


sion analysis of cDNAs encoding ABA 8’-hydroxylase in peanut plants in response to osmotic stress. PLoS One, 2014, 5: e97025


附表 1 种子休眠解除过程中与 ABA、GA、ETH、auxin相关的显著性差异表达 unigenes
Supplementary table 1 Significant differential expression unigenes associated with GA, ABA, ETH, and auxin during the process
from dormancy to germination
No Unigene Name NR_des A B C D
ABA
1 comp86571_c0_seq1 NCED nine-cis-epoxycarotenoid dioxygenase 3 0 –1.799 –2.773 –7.474
2 comp89332_c0_seq1 NCED nine-cis-epoxycarotenoid dioxygenase 3 0 –1.462 –2.713 –7.489
3 comp98263_c0_seq1 E1.14.13.93 abscisic acid 8’-hydroxylase 0 1.586 0.158 –4.836
4 comp112425_c0_seq1 E1.14.13.93 abscisic acid 8’-hydroxylase 0 1.589 0.162 –4.832
5 comp91003_c0_seq7 E1.14.13.93 abscisic acid 8’-hydroxylase 0 4.437 3.959 4.240
6 comp90266_c0_seq1 E1.14.13.93 abscisic acid 8’-hydroxylase 0 4.652 4.222 4.300
7 comp63821_c0_seq1 PYL P: abscisic acid receptor PYL2-like 0 –0.315 5.916 4.332
8 comp71245_c0_seq3 PYL abscisic acid receptor PYL4 0 0.492 2.296 1.772
9 comp73383_c0_seq2 PYL abscisic acid receptor PYL4 0 0.502 2.325 1.802
10 comp76493_c0_seq1 PYL P: abscisic acid receptor PYL2-like 0 0.685 6.355 4.844
11 comp81701_c0_seq1 PYL P: abscisic acid receptor PYL6-like 0 1.153 –0.267 –1.368
12 comp81014_c0_seq1 PYL P: abscisic acid receptor PYL6-like 0 1.154 –0.265 –1.370
13 comp68960_c0_seq1 PYL P: abscisic acid receptor PYL5-like 0 1.536 1.842 2.885
14 comp69117_c0_seq1 PYL P: abscisic acid receptor PYL5-like 0 1.537 1.843 2.885
15 comp84474_c0_seq3 ABF P: protein ABSCISIC ACID-INSENSITIVE 5-like 0 –1.076 –3.079 –6.626
16 comp84524_c0_seq2 ABF P: protein ABSCISIC ACID-INSENSITIVE 5-like 0 –1.073 –3.111 –6.646
17 comp70443_c0_seq3 ABF P: protein ABSCISIC ACID-INSENSITIVE 5-like 0 –0.782 –2.939 –6.492
18 comp72782_c0_seq2 ABF P: protein ABSCISIC ACID-INSENSITIVE 5-like 0 –0.729 –2.941 –6.521
19 comp90177_c0_seq7 ABF ABA response element binding protein 1 0 –1.613 –3.917 –2.342
20 comp88674_c0_seq3 ABF ABA response element binding protein 1 0 –1.572 –3.900 –2.236
21 comp85943_c0_seq3 — P: probable protein phosphatase 2C 39-like 0 –0.448 –2.883 –3.406
22 comp77539_c0_seq1 — P: probable protein phosphatase 2C 39-like 0 –0.264 –2.744 –3.291
23 comp63842_c0_seq4 — P: probable protein phosphatase 2C 55-like 0 0.023 –1.179 –1.247
24 comp63624_c0_seq2 — P: probable protein phosphatase 2C 55-like 0 0.073 –1.161 –1.147
25 comp81754_c0_seq5 — P: probable protein phosphatase 2C 5-like 0 1.138 3.258 1.289
26 comp82172_c0_seq2 — P: probable protein phosphatase 2C 5-like 0 1.145 3.263 1.276
27 comp86521_c0_seq1 — P: probable protein phosphatase 2C 40-like 0 1.720 0.374 0.391
28 comp78466_c1_seq2 — P: probable protein phosphatase 2C 59 0 –0.925 –3.098 –5.418
29 comp75146_c0_seq2 — P: probable protein phosphatase 2C 59 0 –0.923 –3.105 –5.422
30 comp62332_c0_seq2 — P: probable protein phosphatase 2C 59-like 0 0.534 0.722 2.086
31 comp62828_c0_seq1 — P: probable protein phosphatase 2C 59 0 0.653 0.426 1.336
32 comp65188_c0_seq1 — P: probable protein phosphatase 2C 42-like 0 2.278 0.781 –0.386
33 comp65231_c0_seq1 — P: probable protein phosphatase 2C 42-like 0 2.361 0.868 –0.322
34 comp91616_c1_seq1 PP2C P: probable protein phosphatase 2C 8-like 0 0.235 –1.873 –5.696
35 comp82481_c0_seq1 PP2C P: probable protein phosphatase 2C 8-like 0 0.240 –1.874 –5.685
36 comp95594_c0_seq5 PP2C P: probable protein phosphatase 2C 6-like 0 –0.018 1.031 0.791
37 comp93613_c0_seq4 PTC2_3 P: probable protein phosphatase 2C 28-like 0 –1.163 2.875 –2.584
38 comp149919_c0_seq1 PTC2_3 P: probable protein phosphatase 2C 47-like 0 –1.931 3.820 0.338
39 comp90415_c1_seq7 PTC2_3 P: probable protein phosphatase 2C 13-like 0 0.839 1.168 1.287
40 comp98350_c1_seq2 PTC2_3 P: probable protein phosphatase 2C 13-like 0 1.092 –0.244 0.851

第 6期 陈 静等: 花生种子休眠解除过程中相关基因的表达分析 857


(续附表 1)
No Unigene Name NR_des A B C D
GA
1 comp77107_c0_seq2 E1.14.11.12 Gibberellin 20 oxidase 0 4.004 3.587 2.433
2 comp81303_c0_seq1 — P: gibberellin 20 oxidase 1-like 0 –1.740 –3.197 –5.350
3 comp79636_c0_seq1 — P: gibberellin 20 oxidase 1-like 0 –1.738 –3.192 –5.349
4 comp82493_c0_seq1 GID1 gibberellic acid receptor-b 0 1.162 –0.372 0.982
5 comp82885_c0_seq1 GID1 gibberellic acid receptor-b 0 1.163 –0.372 0.983
6 comp94620_c0_seq2 DELLA P: DELLA protein GAI1-like 0 –1.489 –4.403 –6.653
7 comp93670_c0_seq1 DELLA P: DELLA protein GAI1-like 0 –1.452 –4.432 –6.697
8 comp32466_c0_seq2 — gibberellin-regulated protein 0 –0.470 –2.477 –1.389
9 comp32508_c0_seq1 — gibberellin-regulated protein 0 –0.469 –2.477 –1.389
10 comp77261_c0_seq1 — gibberellin-regulated protein 0 0.000 13.696 7.284
11 comp80243_c0_seq4 — gibberellin-regulated protein 0 0.000 13.481 7.234
12 comp67674_c0_seq1 — gibberellin-regulated protein 0 1.493 12.199 7.860
13 comp67705_c0_seq1 — gibberellin-regulated protein 0 1.493 12.199 7.860
14 comp73984_c0_seq2 — gibberellin-regulated protein 0 3.118 8.867 5.101
15 comp62926_c0_seq1 — gibberellin-regulated protein 0 3.091 8.401 5.035
ETH
1 comp92812_c0_seq3 ACS P: 1-aminocyclopropane-1-carboxylate synthase 7-like 0 12.585 12.636 7.633
2 comp93168_c0_seq2 ACS P: 1-aminocyclopropane-1-carboxylate synthase 7-like 0 12.506 12.550 7.566
3 comp67930_c0_seq1 E1.14.17.4 uncharacterized protein LOC100790622 0 –0.993 5.605 1.531
4 comp71362_c0_seq1 E1.14.17.4 uncharacterized protein LOC100790622 0 –0.993 5.605 1.531
5 comp65216_c0_seq1 E1.14.17.4 unknown 0 6.111 14.661 10.684
6 comp69952_c0_seq1 E1.14.17.4 unknown 0 –0.467 5.099 1.437
7 comp69999_c0_seq1 E1.14.17.4 unknown 0 –0.467 5.099 1.437
8 comp79375_c0_seq1 E1.14.17.4 P: 1-aminocyclopropane-1-carboxylate oxidase-like 0 0.589 10.294 4.199
9 comp78934_c0_seq1 E1.14.17.4 P: 1-aminocyclopropane-1-carboxylate oxidase-like 0 0.710 10.390 4.301
10 comp83969_c0_seq1 E1.14.17.4 unknown 0 5.843 10.595 6.663
11 comp81943_c0_seq2 E1.14.17.4 unknown 0 5.848 10.609 6.674
12 comp62692_c0_seq2 E1.14.17.4 unknown 0 6.339 14.537 10.754
13 comp78102_c0_seq1 E1.14.17.4 ACC oxidase 5 0 –0.315 10.126 6.166
14 comp80063_c0_seq1 E1.14.17.4 ACC oxidase 5 0 –4.060 11.115 7.274
15 comp95647_c0_seq1 ETR. ERS P: ethylene receptor-like 0 0.254 0.864 1.537
16 comp100229_c1_seq2 ETR. ERS ERS-like ethylene receptor 0 0.384 1.076 1.294
17 comp94421_c0_seq2 ETR. ERS P: ethylene receptor-like 0 0.388 1.010 1.670
18 comp96804_c1_seq13 ETR. ERS P: ethylene receptor 2-like 0 3.001 2.946 3.241
19 comp93450_c0_seq1 ETR. ERS P: ethylene receptor 2-like 0 3.175 3.127 3.413
20 comp74982_c0_seq2 ETR. ERS ethylene receptor 0 1.034 3.022 2.443
21 comp100208_c0_seq1 EIN2 P: ethylene-insensitive protein 2-like 0 –1.109 –0.530 0.144
22 comp100278_c0_seq3 EIN2 P: ethylene-insensitive protein 2-like 0 –1.087 –0.539 0.160
23 comp57649_c0_seq1 EBF1_2 P: EIN3-binding F-box protein 1-like isoform 1 0 2.098 1.423 1.182
24 comp57646_c0_seq1 EBF1_2 P: EIN3-binding F-box protein 1-like isoform 1 0 2.107 1.429 1.186
25 comp97290_c0_seq2 EBF1_2 P: EIN3-binding F-box protein 1-like isoform 1 0 2.134 1.283 0.421
26 comp97368_c0_seq2 EBF1_2 P: EIN3-binding F-box protein 1-like isoform 1 0 2.147 1.297 0.428
27 comp86387_c0_seq2 EBF1_2 P: EIN3-binding F-box protein 1-like 0 2.620 1.886 1.794
28 comp89593_c0_seq1 EBF1_2 P: EIN3-binding F-box protein 1-like 0 2.642 1.909 1.825
858 作 物 学 报 第 41卷


(续附表 1)
No Unigene Name NR_des A B C D
29 comp33493_c0_seq1 EREBP ethylene-responsive transcription factor 1A 0 6.121 4.750 5.014
30 comp33686_c0_seq1 EREBP ethylene-responsive transcription factor 1A 0 6.121 4.750 5.013
31 comp87896_c0_seq3 — ethylene-responsive transcription factor ERF110 0 3.606 2.682 1.719
32 comp87316_c0_seq4 — ethylene-responsive transcription factor ERF110 0 3.546 2.662 1.784
33 comp69645_c0_seq1 — ethylene-responsive transcription factor 0 3.391 1.912 2.331
34 comp68818_c0_seq1 — ethylene-responsive transcription factor 0 3.390 1.912 2.328
35 comp80656_c0_seq1 EREBP P: ethylene-responsive transcription factor 4-like 0 1.422 0.702 0.287
36 comp78938_c0_seq1 EREBP P: ethylene-responsive transcription factor 4-like 0 1.409 0.685 0.270
37 comp87194_c0_seq1 — P: ethylene-responsive transcription factor CRF2-like 0 0.313 4.968 4.197
38 comp97104_c0_seq4 — P: ethylene-overproduction protein 1-like 0 0.321 4.158 4.517
39 comp98221_c1_seq4 — P: ethylene-overproduction protein 1-like 0 0.331 4.143 4.501
40 comp91438_c0_seq2 — P: ethylene-responsive transcription factor CRF2-like 0 0.043 2.839 5.073
41 comp91362_c0_seq2 — P: ethylene-responsive transcription factor CRF2-like 0 0.043 2.837 5.072
42 comp87527_c0_seq1 — P: ethylene-responsive transcription factor CRF4-like 0 –0.321 2.193 1.203
43 comp87719_c1_seq1 — P: ethylene-responsive transcription factor CRF4-like 0 –0.309 2.193 1.203
44 comp82150_c0_seq2 EREBP P: ethylene-responsive transcription factor RAP2-4-like 0 0.282 2.058 1.377
45 comp100212_c0_seq1 EREBP P: ethylene-responsive transcription factor 7-like 0 0.836 1.376 2.952
46 comp76420_c0_seq1 EREBP P: ethylene-responsive transcription factor 7-like 0 0.822 1.365 2.948
47 comp84571_c0_seq5 — P: ethylene-responsive transcription factor 5-like 0 0.190 0.606 3.563
48 comp80326_c0_seq3 — P: ethylene-responsive transcription factor 5-like 0 0.190 0.606 3.556
49 comp83173_c0_seq1 — P: ethylene-responsive transcription factor ERF061-like 0 0.116 1.183 2.514
50 comp80351_c0_seq1 — P: ethylene-responsive transcription factor ERF061-like 0 0.098 1.148 2.512
51 comp96308_c0_seq1 EREBP ethylene-responsive factor 2 0 0.302 0.279 2.274
52 comp82396_c0_seq1 EREBP ethylene-responsive factor 2 0 0.296 0.267 2.267
53 comp84593_c0_seq1 — P: ethylene-overproduction protein 1-like 0 0.936 –0.195 2.232
54 comp93240_c1_seq1 — P: ethylene-responsive transcription factor ERF118-like 0 –0.682 –0.190 1.626
55 comp80101_c0_seq1 — P: ethylene-responsive transcription factor ERF118-like 0 –0.687 –0.192 1.625
56 comp86014_c0_seq1 EREBP P: ethylene-responsive transcription factor ERF060-like 0 2.181 1.592 3.722
57 comp79743_c0_seq1 EREBP P: ethylene-responsive transcription factor ERF060-like 0 2.117 1.586 3.695
58 comp97993_c1_seq1 EREBP P: ethylene-responsive transcription factor ERF011-like 0 –0.965 –1.298 –1.783
59 comp68334_c0_seq3 EREBP ethylene-responsive transcription factor 0 0.984 –2.222 –4.469
60 comp65907_c0_seq2 EREBP ethylene-responsive transcription factor 0 0.967 –2.312 –5.162
auxin
1 comp101153_c0_seq1 — P: auxin-induced protein PCNT115-like isoform 1 0 0.098 –0.618 –3.743
2 comp101151_c0_seq1 — P: auxin-induced protein PCNT115-like isoform 1 0 0.099 –0.618 –3.744
3 comp76992_c0_seq3 — P: auxin-induced protein 5NG4-like 0 –0.231 1.320 2.075
4 comp74400_c0_seq4 — P: auxin-induced protein 5NG4-like 0 –0.133 1.420 2.148
5 comp85881_c0_seq2 — P: auxin-induced protein 5NG4-like 0 0.780 1.676 4.692
6 comp84289_c0_seq2 — auxin-induced protein 5NG4 0 0.232 –1.250 –3.474
7 comp85908_c0_seq2 — auxin-induced protein 5NG4 0 0.258 –1.223 –3.401
8 comp77691_c0_seq1 — P: auxin-induced protein 5NG4-like 0 0.870 1.732 4.772
9 comp91819_c1_seq2 — P: auxin-induced protein 5NG4-like 0 1.007 5.584 9.516
10 comp91006_c0_seq11 — P: auxin-induced protein 5NG4-like 0 1.007 5.584 9.519
11 comp78498_c0_seq2 — auxin-induced in root cultures protein 0 0.206 4.831 1.767
12 comp80850_c0_seq1 — auxin-induced in root cultures protein 0 0.224 4.746 1.721
第 6期 陈 静等: 花生种子休眠解除过程中相关基因的表达分析 859


(续附表 1)
No Unigene Name NR_des A B C D
13 comp72346_c0_seq1 IAA auxin-induced protein AUX22 0 –0.467 5.993 3.656
14 comp77533_c0_seq1 IAA auxin-induced protein AUX22 0 –0.393 6.068 3.726
15 comp85577_c0_seq8 IAA auxin-induced protein 0 –0.190 2.530 0.421
16 comp81538_c0_seq1 IAA auxin-induced protein 0 –0.161 2.562 0.451
17 comp76776_c0_seq2 IAA P: auxin-induced protein 22E-like 0 –0.025 4.527 1.339
18 comp75431_c0_seq4 IAA P: auxin-induced protein 22E-like 0 –0.025 4.532 1.339
19 comp74146_c0_seq1 IAA auxin-induced protein ali 50 0 1.080 6.894 4.350
20 comp74479_c0_seq1 IAA auxin-induced protein ali 50 0 1.112 6.918 4.369
21 comp78482_c0_seq1 — P: auxin-responsive protein IAA9-like 0 0.151 2.073 2.177
22 comp91642_c0_seq1 — P: auxin-responsive protein IAA9-like 0 0.193 1.876 1.953
23 comp74390_c0_seq2 IAA P: auxin-responsive protein IAA26-like 0 0.647 2.682 0.397
24 comp72217_c0_seq2 IAA P: auxin-responsive protein IAA26-like 0 0.660 2.679 0.410
25 comp89986_c0_seq1 IAA unknown 0 2.560 8.985 5.081
26 comp34853_c0_seq1 IAA unknown 0 6.792 14.583 8.033
27 comp34528_c0_seq1 IAA unknown 0 6.790 14.581 8.032
28 comp72678_c0_seq1 SAUR P: auxin-induced protein 10A5-like 0 0.048 4.189 3.707
29 comp84412_c0_seq1 SAUR P: auxin-induced protein 6B-like 0 3.426 6.716 4.882
30 comp85622_c0_seq2 SAUR P: auxin-induced protein 6B-like 0 4.007 7.355 5.697
31 comp59845_c0_seq1 SAUR Auxin-induced protein 6B 0 0.000 12.675 0.000
32 comp81593_c0_seq1 SAUR Auxin-induced protein 6B 0 0.000 12.537 0.000
33 comp60311_c0_seq1 SAUR Auxin-induced SAUR-like protein 0 0.000 14.853 6.715
34 comp66086_c0_seq1 SAUR Auxin-induced SAUR-like protein 0 0.000 14.801 6.661
35 comp71336_c0_seq1 — Auxin-repressed protein 0 –0.804 –2.063 –6.711
36 comp83048_c0_seq1 — Auxin-repressed protein 0 –0.804 –2.063 –6.706
37 comp89785_c0_seq1 — P: auxin response factor 9-like 0 0.435 1.677 1.745
38 comp89471_c0_seq1 — P: auxin response factor 9-like 0 0.436 1.676 1.743
39 comp85812_c0_seq2 — P: auxin response factor 18-like 0 2.855 8.910 2.187
40 comp64296_c0_seq1 — P: auxin response factor 18-like 0 –0.865 3.323 –1.479
41 comp60864_c0_seq1 — P: auxin response factor 18-like 0 –0.865 3.336 –1.479
42 comp76268_c0_seq4 — P: auxin response factor 3-like 0 –0.461 –0.480 1.879
43 comp74837_c0_seq2 — P: auxin response factor 3-like 0 –0.407 –0.459 1.862
44 comp91109_c0_seq7 PIN auxin efflux carrier component 0 –0.026 2.349 1.813
45 comp92286_c0_seq1 PIN auxin efflux carrier protein 4 0 0.000 15.200 3.294
46 comp95386_c0_seq1 PIN auxin efflux carrier protein 4 0 0.000 15.195 3.286
47 comp78166_c0_seq1 AUX1. LAX P: auxin transporter-like protein 5-like 0 –0.780 3.494 –1.202
48 comp76872_c0_seq1 AUX1. LAX P: auxin transporter-like protein 5-like 0 –0.730 3.712 –0.706
49 comp76815_c0_seq1 AUX1. LAX P: auxin transporter-like protein 5-like 0 –0.354 4.420 –0.968
50 comp74462_c0_seq1 AUX1. LAX P: auxin transporter-like protein 5-like 0 –0.276 4.422 –0.916
51 comp75798_c0_seq3 AUX1. LAX P: auxin transporter-like protein 1-like 0 1.578 7.388 7.772
52 comp80458_c0_seq5 AUX1. LAX P: auxin transporter-like protein 1-like 0 1.578 7.390 7.774
53 comp90440_c0_seq1 GH3 P: indole-3-acetic acid-amido synthetase GH3.6-like 0 –1.348 –2.345 –6.521
54 comp90652_c0_seq1 GH3 P: probable indole-3-acetic acid-amido synthetase GH3.6-like 0 3.075 2.078 –3.219
55 comp75549_c0_seq3 GH3 P: probable indole-3-acetic acid-amido synthetase GH3.6-like 0 5.468 3.875 1.343
56 comp75477_c0_seq1 GH3
P: probable indole-3-acetic acid-amido synthetase
GH3.6-like
0 5.475 3.799 1.266
A: log2 (CK_RPKM/CK_RPKM); B: log2 (AE1_RPKM/CK_RPKM); C: log2 (AE2_RPKM/CK_RPKM); D: log2 (AE3_RPKM/CK_
RPKM); P: PREDICTED.
860 作 物 学 报 第 41卷


附表 2 花生 AhNCED2基因片段和 AhCYP707A1基因片段的核苷酸序列和推测氨基酸序列
Supplementary table 2 Nucleotide and pupative AA sequences of the AhNCED2 and AhCYP707A1 gene fragment
Ah NCED2 AhCYP707A1