全 文 : ACTA AGRONOMICA SINICA 2008, 34(6): 1034−1041 http://www.chinacrops.org/zwxb/
ISSN 0496-3490; CODEN TSHPA9 E-mail: xbzw@chinajournal.net.cn
:
(2003C101, 2005C112)
:
(1983–), , ,
!E-mail: zaoanbella@stu.snnu.edu.cn
*
#$%&(Corresponding author):
()!Tel: 029-85310265; E-mail: Shexiaoping@snnu.edu.cn
Received(*+,-): 2007-09-20; Accepted(./,-0: 2007-12-16.
DOI: 10.3724/SP.J.1006.2008.01034
ABA
*
(
, 710062)
: (Vicia faba L.),
!#$%&
()$*+,-(IAA)%.,-(NAA)%2,4-/012,-(2,4-D)%34$(ZT)%5$(KT) 6-6789:(6-BA)
;<=>?-(ABA)@ABCDEFGHIJKLMNO
P, <= ABA Q@ABCDE, R NO STUV7
-2-1-4,4,5,5-WX7YZ-1-2-3-2[\(c-PTIO)%]^_`a(Hb) NO b(NOS)cLU NG-N-L-de-Xf
(L-NAME)Ig2[h(H2O2)STUij^-(AsA)%g2[hb(CAT)g2[hkb NADPH2[bcLU/
17l(DPI)mn, op !#$%&()$Qqrs<= ABA@AFBCDE, =t#$%&
()$uvwgxy NO H2O2z{|}~M& NO H2O2NOt, !#$%&
()$
Qqxy= ABA@AF NO H2O2z{M IAA%ZT( !#$%&()$F
op#$%&()$Q !, uop#$%&()$rs= ABA@A
FBCDEIxy NO%H2O2z{F}~uv#$%&()$\#\QFGHM
: #$; &()$; m2[; g2[h; =; >?-; BCDE
The Inhibitory Effects of Auxin and Cytokinin on Dark- and ABA-induced
Stomatal Closure in Broad Bean
ZHANG Bei, SHE Xiao-Ping*, ZHANG Guang-Bin, MENG Zhao-Ni, and SONG Xi-Gui
(College of Life Sciences, Shaanxi Normal University, Xi’an 71006, Shaanxi, China)
Abstract: In the present studies, the effects and mechanisms of natural and synthetic auxin IAA, NAA, 2,4-D, cytokinin ZT, KT,
6-BA on dark- and ABA-induced stomatal closure were investigated by means of stomatal bioassay and using laser-scanning con-
focal microscopy. Isolated epidermal strips of Vicia faba were incubated with IAA (10 μmol L−1), NAA (10 μmol L−1), 2,4-D (10
μmol L−1), ZT (0.1 μmol L−1), KT (0.2 μmol L−1), 6-BA (0.2 μmol L−1), NO scavenger c-PTIO (200 μmol L−1), Hb (100 μmol
L−1), NOS inhibitor L-NAME (25 μmol L−1), H2O2 scavenger AsA (100 μmol L−1), CAT (100 U mL−1), inhibitor of
H2O2-generating enzyme NADPH oxidase DPI (10 μmol L−1) for 3 h, in darkness or in light in the presence of ABA (1 μmol L−1),
respectively. The results showed that auxin, cytokinin, as well as c-PTIO, Hb, L-NAME, AsA, CAT, and DPI, reversed dark- and
ABA-induced stomatal closure significantly. Epidermal strips treated with auxin and cytokinin were loaded with NO-fluorescent
dye DAF-2DA or H2O2-fluorescent dye H2DCF-DA. The results indicated that darkness and ABA could induce an intense
DAF-2DA or H2DCF-DA fluorescence in guard cells. However, dark- and ABA-induced DAF-2DA and H2DCF-DA fluorescence
were largely prevented by auxin and cytokinin tested. Similarly, the treatments of c-PTIO, Hb, L-NAME and AsA, CAT, DPI also
substantially suppressed dark- and ABA-induced DAF-2DA and H2DCF-DA fluorescence, respectively. These results provide the
evidence that auxin and cytokinin tested lessen assuredly NO and H2O2 levels induced by dark and ABA in guard cells. Consider-
ing synthetic auxin, cytokinin NAA, 2,4-D, KT, 6-BA and natural IAA, ZT were used in the present work and IAA, ZT are repre-
sentative of endogenous auxin and cytokinin respectively, the effects of auxin, cytokinin tested on dark- and ABA-induced
stomatal closure and NO, H2O2 level can be attributed to an universal effect of auxin or cytokinin.
Keywords: Auxin; Cytokinin; Nitric oxide; Hydrogen peroxide; Dark; ABA; Stomatal closure
6 :
ABA 1035
,
!#
$
%&(ABA)()*+,[1-2]-20./
800123456#$
!(7
89[3-4], :;<=>?@ABC
DEF
GH, 5I !7
89JKLM H+-ATP
NO,LPQ3R[5], STU(IAA)
VU
(NAA)WXYZ[
pHZ[\])*^_#`
a K+bc[6-8]
bdZ[efPgh[9],
ijk+,-#$7
89lm
b H+-nO,LMopqrs
tsqN
gqm cAMP uYvwxjgqy\z[10-11]-
Irving y[12]GH{|}, ,(KT)
IAA 7
89^_##L pH~R-
ABA 3EF
@A,
5 ABA R
^_# ABA
DGH,
ABA)*^_##L Ca2+ gh¡
¢£¤N
£¤¥qNghfPg
hy7
R[5,13]-
¡q¦(NO)
¡q§(H2O2)
P, ¨
ABA ^_# NO
H2O2©
, 7
R[14-17]-ª«6¬GH®¯
#$ KT6-°±r²³(6-BA)
®¯ !
NAA m´µ ! IAA R¶
·m? NOH2O2R¸, ¹º !
#
$|»¼ NOH2O2 ¢vwm
R, |}½¾ !
#$~ NO
H2O2 ¢¿CR[18-19], ÀÁÂÃ
!#$~^_# NOH2O2
¢7
89ÄÅ4-µi¹ºÆ@ÇÈ
ÉÊ˺ÌÍÎ(1) !#$3ϼ
ABA NOH2O2¢vwmR¶·Ð
(2) !#$~ NOH2O2¢
i¿
CR?ÑÒ{ÓÔ¶·ÐÕÖ
\×ØÙ\zÚ, ÛÜÇÈÝÞßà
á
âË@AÖ^_#`uY, :ã
H`ä^_#å@Aæç
è
\×-ª«:ÜÆ@[18-19]åéAê
ë IAA´µ, ÀÖìíî`
ïð/jk+,, /jk+,å
`ñò@Am? NOH2O2R¸
(óô-D3çÖ¹ºÌÍõö, ÷øWù
úûüËýþ, æçýþá6m
Ñ|ØÙ, >´µ#$
(ZT)
´µ ! IAA ꮯ#$ !W
m NO®N(NOS)¿CXNOXNADPH¡q
N¿CXH2O2XABA R
NOH2O2¢¶·
D
GH-
1
1.1
ùú(Vicia faba L. ¯ 10 , å)
P; 24 h, 25 3 d;,
µ;Ö¬å , áâ 25!
300 μmol m−2 s−1/#$ 14 h/10 h%
80%-& $ñ(´) 1 *, +, 4 #-
&./01283û@¾-
1.2
NO 4í5U6U7 -4,5-89±4:
(DAF-2DA);<=£¤(Hb)NG-N-L->9?@
(L-NAME)A±-2-B-4,4,5,5-C?±DE-1-¡-3-
¡q(c-PTIO)¡q§N(CAT)8B±F(DPI)
2-(N-GHI)UJK(MES)( Sigma LM,
H2O2 4 í 5 U 6 U 7 -2,7-8 N 4
(H2DCF-DA) Biotium LM, 8?±OP(DMSO)
AmrescoLM-?Q(R©ìS¾X-
1.3
, 4 #-&./ !TU01283
ûAVPW,Ëýþ ,AXYZ?¹[\û]
#;,^?_¯` 1.0 cm×0.5 cmýþá
ý 1
ý 2a}è
-a3¾X(bõä MES/KCl
cde(10 mmol L−1 MES/KOH, 50 mmol L−1 KCl,
100 μmol L−1 CaCl2, pH 6.15)å, Ö 25fËè
3 h,
ghßY8 -
i! McAinsh y[20]\×Aj3ßk<
|ßY8 -(lè
mB+, 5lno, (
lnomBßY 6l, ¾pqr 3*, sta
uvw¢(x
yÝz{
{||»hì-
1.4 NOH2O2 NOH2O2
Wu3óÒè
¾X MES/KCl cde(10
mmol L−1 MES/KOH, 50 mmol L−1 KCl, 100 μmol L−1
CaCl2, pH 6.15)Ö 25Ë( 300 μmol m−2 s−1)
}åè
3 h ;, ^ýþáÓu3 10 μmol
L−1 DAF-2DA
50 μmol L−1 H2DCF-DA Tris/KCl
cde(10 mmol L−1 Tris, 50 mmol L−1 KCl, pH 7.2),
1036 34
1
Table 1 Treatments for the effects of phytohormones on dark-induced stomatal closure
Treatment
Light intensity or
reagents concentration
Treatment
Reagents concentration
Treatment
Reagents concentration
Light 300 μmol m−2 s−1 ZT 0.1 μmol L−1 L-NAME 25 μmol L−1
Dark 0 μmol m−2 s−1 KT 0.2 μmol L−1 AsA 100 μmol L−1
IAA 10 μmol L−1 6-BA 0.2 μmol L−1 CAT 100 U L−1
NAA 10 μmol L−1 c-PTIO 200 μmol L−1 DPI 10 μmol L−1
2,4-D 10 μmol L−1 Hb 100 μmol L−1
Light
Dark
MES/KCl , !# $%&
Light and Dark means that the strips are incubated in MES/KCl buffer without any reagent in light or in darkness, all the other treat-
ments are in darkness.
2 ABA
Table 2 Treatments for the effects of phytohormones on ABA-induced stomatal closure
Treatment
Reagents concentration
(μmol L−1)
Treatment
Reagents concentration
(μmol L−1)
Treatment
Reagents concentration
(μmol L−1)
Control 0 L-NAME 25 ABA+KT 1 +0.2
IAA 10 AsA 100 ABA+6-BA 1 +0.2
NAA 10 CAT 100 ABA+ c-PTIO 1 +200
2,4-D 10 DPI 10 ABA+ Hb 1 +100
ZT 0.1 ABA 1 ABA+ L-NAME 1 +25
KT 0.2 ABA+IAA 1 +10 ABA+ AsA 1 +100
6-BA 0.2 ABA+NAA 1 +10 ABA+CAT 1 +100
c-PTIO 200 ABA+2,4-D 1 +10 ABA+DPI 1 +10
Hb 100 ABA+ZT 1 +0.1
(#(300 μmol m−2 s−1)$%&CAT)* U mL−1&
All the treatments are in the light (300 μmol m−2 s−1). The concentration unit of CAT is U mL−1.
(25) 60 min 10 min,
Tris/KCl ,
!#$%&(Leica, TCS SP2)()
!#$%&*+,-. Ex=488 nm,
Em=505~530 nm, Power=10%, Zoom=4, Frame=
512512, /0 12)34567 Leica Image
Software Photoshop software89).:;<
=>?2, 3@56ABCDEFG
4)HIJKL 3)
2
2.1
M5 1 NO, P$QRSTUVW(P <0.05),
XYZN[ NO\H2O2]^_`abc_ c-PTIOHb\L-NAMEd AsA\CAT\DPI$Qef(P <0.05),
gPhijklmno NOd H2O2pqrsT
UVW, tuvwxyz{|}[16])
1
Fig. 1 Effects of auxin and cytokinin on dark-induced stomatal closure
6 :
ABA 1037
5 1~$g, u c-PTIO\Hb\L-NAME\AsACAT DPI |, `a
\no8
$QefRSTUVW(P<0.05), g
\no8
Nhilmno NO d
H2O2pqefPTUVWRS)M
: IAA ZT, g
\n
o8
N,u EFTU)
2.2
ABA
5 2-C D , ABA $QRSTUVW(P
<0.05), NO\ H2O2 ]^_`abc_
c-PTIO\Hb\L-NAME d AsA\CAT\DPI
TU2u$Q(P>0.05), A$Qe
f ABATUVWRS(P<0.05), g ABAN
hijklmno NO\H2O2pqrsTUVW)
M5 2-A\BNO,
\no8
TU2u$Q(P>0.05),
Au NO\H2O2]^_`abc_ c-PTIO\HbL-NAMEd AsA\CAT\DPI|$Qef ABA
TUVWRS(P <0.05), g
\no8
Nhilmno NO d H2O2pqef ABA
TUVWRS)¡¢,
ABA\IAAZT YZNg EFTU£
d ABA\
no8
C¤+7)
2.3
ABA
NO
2.3.1 NO
M5
¥ INO, lmnoNOpqF¦k(5¥ I-1,
2, 31), ¡u5 1 §¨|})u c-PTIO\Hb
L-NAME|, `a
\no8
©ªARS NOpq(5¥ I-2~11, 31), ¡u
5 1 §¨|})«¢,
IAA\ZT
RS NOpqYZg
\no8
h
i¬ NOpq,u EFTU)
2.3.2 ABA NO
M
5¥ INO, ABA©ªjklmno NOpq(5¥
I-1, 12, 31), ¡u5 2-C §¨|})u c-PTIOHb L-NAME|, `a
\no
8
A ABA RS NO pq(5¥ I-12~30,
31), ¡u5 2-A\B §¨|})¡¢,
IAA\ZT ABARS NOpqYZg,
EFTU¦ ABA\
no8
C¤+7ulmno NOpq@V)
2
ABA
Fig. 2 The effects of auxin and cytokinin on ABA-induced
stomatal closure
A: IAANAA2,4-D ABA
; B:
ZTKT6-BA ABA
; C: c-PTIO
HbL-NAME ABA
; D: AsACAT DPI
ABA
A+IA+NA+DA+ZA+KA+BA+PA+HA+LA+AsA
A+CAT A+DPI ABA IAANAA2,4-D
ZTKT6-BAc-PTIOHbL-NAMEAsACAT DPI
MES/KCl
!#
A: effects of auxin IAA, NAA, 2, 4-D on ABA-induced stomatal closure;
B: effects of cytokinin ZT, KT, 6-BA on ABA-induced stomatal closure;
C: effects of c-PTIO, Hb, and L-NAME on ABA-induced stomatal closure;
D: effects of AsA, CAT, and DPI on ABA-induced stomatal closure.
A+I, A+N, A+D, A+Z, A+K, A+B, A+P, A+H, A+L, A+ AsA, A+ CAT,
and A+DPI means epidermal strips were treated in MES/KCl buffer
with IAA, NAA, 2,4-D, ZT, KT, 6-BA, c-PTIO, Hb, L-NAME, AsA,
CAT, or DPI in the presence of ABA , respectively.
2.4
ABA
H2O2
2.4.1 H2O2
M
5¥ II NO, lmno H2O2 pqF¦k
1038 34
(5¥ II-1, 2, 31), ¡u5 1§¨|})u AsACAT DPI |, `a
\no8
©ªARS H2O2pq(5¥ II-2~11, 31),
¡u5 1 §¨|})«¢,
IAA\ZT
RS H2O2pqYZg
\no
8
hi¬ H2O2 pq,u EFTU
)
2.4.2 ABA H2O2
M5¥ II NO, u;<, ABA Njklmno
H2O2pq(5¥ II-1, 12, 31), ¡u5 2-D §¨|
})u AsA\CAT DPI |, `a
\no8
A ABARS H2O2pq(5
¥ II-12~30, 31), ¡u5 2-A\B§¨|})«¢,
IAA\ZT ABARS H2O2pqYZ
g, EFTU¦ ABA\
no8
C¤+7ulmno H2O2 pq
@V)
3
y®¯°\ ABA\
\no8
TUYZd±²cs³i´µ¶·, Neill
¸[14] Garcia-Mata¸[15]¹º ABAhiRS NO»
rsTUVW, Zhang¸[17]¹º ABArsTUV
Wu±RS H2O2»@V, vw¯¼ª NO\H2O2
½¾S/TU[16])¿Àvw¶·:
IAA\NAA\KT 6-BARSTUVWYZ,
¹º IAA\NAA\KT 6-BAefRSTUVW
ulmno NO\H2O2 @V[18-19], IÁ
\no8
ef ABARSTUVWÂÃÄJ
[21])MÅÆ
`a ÇÈ, IAAZTÉÊ
no8
ËÌÍ, IAANAA\2,4-D8ÎÏÐÑÈ\ÒÈÓÔÕÖÈ
, ¡ÅÆ×ؼ
\no8
ef
ABARSTUVWulmno NO\H2O2
pq@V, ~$g
\no8
YZ
NÊ3@
Èno8
ÈÙÚÚÛ
AÜÝYZÞßÎÇÈYZ)
àÙÚ¹áiâãAMÇÙ
Ú
!D, TU½×ä¢)å@ÆæÂ
Ã,
\no8
rsTUç ABARS
TUVW[1,3-4])À趷,
\no8
bc ABA RSTUVWYZhiéêÕëª
º[2,21])ìíz{î, TU\WuÇÙÚ
C¤+7@V)¶·¹º
\no8
r
sTUçujk H+-ATP ïðñ@V[5,10-11], ABA
òhióô H+-ATPïrsTUVW[22])Irving¸[12]
ÂÃ KT IAA rsTUçulmnooÛÖô
CVõ, Blatt¸[23]¼ª ABAhiRSoÛöôðô
¢÷ K+ hÃsrsTUVW)ìíz{TU
¦ÙÚ
C¤+7ºB H+-ATP ï\oÛ
pH ø¸ù, úyÄûO ABA
\n
o8
C¤+7£dlmno NO\H2O2 pq
üý)ÅÆþ¼
\no8
hi
NO\H2O2pqef ABA YZ, gTU
¦ÙÚ
C¤+7|ßKù)
M\ABA Ajklmno NO H2O2p
q, ¡\ABA d±RSTUVWiâ¦
NO u H2O2V½Ê|ß4V
)@Æ
æ$g, ABA RS NO » H2O2`a, NO
û¾S ABARS H2O2»[24-25])vw¯¼UV-BRSTUVW¦ H2O2rs NO», NO½R
S H2O2`a[16,26])Mìíz{NO, ABA u
\UV-BAhijk NO\H2O2pqrsTUVW,
±
fS B)
/ʬTUK
, å¶
·. /hi¬lmno`+7ø
\{Ö\K+ Cl–2sTU,
½@/¬ H+-ATPï\oÛ pHsøTU
ÂÃ[27], IÁûOÙÚ
¾S/T
UÂÃ)Åƹº ABA ARSTUV
W\
\no8
ArsTUç,
grs ABAaRS
\no
8
», sTUW)M
úyÄ!#(+7lmnoÙÚ
pq, $/Ê%©ª¬lmno
p
qÄ&¼, vwz{IJg:/hi
øÙÚ
pqsTUNñ)
4
ABA ARSTUVW , u NO ]^_
c-PTIO\Hb, NOS bc_ L-NAME, H2O2 ]^_
AsA\CAT, NADPHÔôïbc_ DPI|, `
a
\no8
A$Qef ABA
RSTUVW)
6
:
ABA !# 1039
ABAARSlmno NO\H2O2pqéê,
u NO]^_ c-PTIO\Hb NOSbc_ L-NAME
d H2O2]^_ AsA\CAT NADPHÔôïbc_
DPI|, `a
\no8
$Q
bc ABARS NO\H2O2pqéê)
\no8
ef ABARST
UVW NO\H2O2 pq+7Ê3@
È\no8
ÈÙÚÚÛAÜÝYZ)
References
[1] Zeiger E. The biology of stomatal guard cells. Annu Rev Plant
Physiol, 1983, 34: 441–475
[2] Tanaka Y, Sano T, Tamaoki M, Nakajima N, Kondo N, Hasezawa
S. Ethylene inhibits abscisic acid-induced stomatal closure in
Arabidopsis. Plant Physiol, 2005, 138: 2337–2343
[3] Jewer P C, Incoll L D. Promotion of stomatal opening in the grass
anthephora pubescens nees by arrange of natural and synthetic
cytokinin. Planta, 1980, 150: 218–221
[4] Pemadasa M A. Differential abaxial and adaxial stomatal re-
sponses to indole-3-acetic acid in Commelina communis L. New
Phytol, 1982, 90: 209–219
[5] Schroeder J I, Allen G J, Hugouvieux V, Kwak J M, Waner D.
Guard cell signal transduction. Annu Rev Plant Physiol Plant Mol
Biol, 2001, 52: 627–658
[6] Blatt M R, Thiel G. K+ channels of stomatal guard cells: bimodal
control of the K+ inward-rectifier evoked by auxin. Plant J, 1994,
5: 55–68
[7] Grabov A, Blatt M R. Co-ordination of signaling elements in
guard cell ion channel control. J Exp Bot, 1998, 49: 351–360
[8] Bauly J M, Sealy I M, Macdonald H, Brearley J, Dröge S, Hill-
mer S, Robinson D G, Venis M A, Blatt M R, Lazarus C M,
Napier R M. Overexpression of auxin-binding protein enhances
the sensitivity of guard cells to auxin. Plant Physiol, 2000, 124:
1229–1238
[9] Lohse G, Hedrich R. Anions modify the response of guard-cell
anion channels to auxin. Planta, 1994, 197: 546–552
[10] Morsucci R, Curvetto N, Delmastro S. Involvement of cytokinins
and adenosine 3’,5’-cyclic monophosphate in stomatal movement
in Vicia faba. Plant Physiol Biochem, 1991, 29: 537–547
[11] Pharmawati M, Billington T, Gehring C A. Stomatal guard cell
responses to kinetin and natriuretic peptides are cGMP-dependent.
Cell Mol Life Sci, 1998, 54: 272–276
[12] Irving H R, Gehring C A, Parish R W. Change in cytosolic pH
and calcium of guard cells precede stomatal movements. Plant
Biol, 1992, 89: 1790–1794
[13] Schroeder J I, Kwak J M, Allen G J. Guard cell abscisic acid sig-
naling and engineering drought hardness in plants. Nature, 2001,
410: 327–330
[14] Neill S J, Desikan R, Clarke A, Hancock J T. Nitric oxide is a
novel component of abscisic acid signaling in stomatal guard
cells. Plant Physiol, 2002, 128: 13–16
[15] Garcia-Mata C, Lamattina L. Nitric oxide and abscisic acid cross
talk in guard cells. Plant Physiol, 2002, 128: 790–792
[16] She X P, Song X G, He J M. Role and relationship of nitric oxide
and hydrogen peroxide in light/dark-regulated stomatal move-
ment in Vicia faba. Acta Bot Sin, 2004, 46: 1292–1300
[17] Zhang X, Zhang L, Dong F C, Gao J F, Galbraith D W, Song C P.
Hydrogen peroxide is involved in abscisic acid-induced stomatal
closure in Vicia faba. Plant Physiol, 2001, 126: 1438–1448
[18] Song X G, She X P, He J M, Huang C, Song T S. Cytokinin- and
auxin-inducd stomatal opening involves a decrease in levels of
hydrogen peroxide in guard cells of Vicia faba. Funct Plant Biol,
2006, 33: 573–583
[19] She X P, Song X G. Cytokinin- and auxin-inducd stomatal open-
ing is related to the change of nitric oxide levels in guard cells in
broad bean. Physiol Plant, 2006, 128: 569–579
[20] McAinsh M R, Clayton H, Mansfield T A, Hetherington A M.
Changes in stomatal behavior and guard cell cytosolic free cal-
cium in response to oxidative stress. Plant Physiol, 1996, 111:
1031–1042
[21] Tanaka Y, Sano T, Tamaoki M, Nakajima N, Kondo N, Hasezawa
S. Cytokinin and auxin inhibit abscisic acid-induced stomatal
closure by enhancing ethylene production in Arabidopsis. J Exp
Bot, 2006, 57: 2259–2266
[22] Zhang X, Wang H B, Atsushi Takemiya, Song C P, Kinoshita T,
Shimazaki K I. Inhibition of blue light-dependent H+ pumping by
abscisic acid through hydrogen peroxide-induced dephosphoryla-
tion of the plasma membrane H+-ATPase in guard cell protoplasts.
Plant Physiol, 2004, 136: 4150–4158
[23] Blatt M R, Armstrong F. K+ channels of stomatal guard cells:
Abscisic acid-evoked control of the outward rectifier mediated by
cytoplasmic pH. Planta, 1993, 191: 330–341
[24] Bright J, Desikan R, Hancock J T, Weir I S, Neill S J.
ABA-induced NO generation and stomatal closure in Arabidopsis
are dependent on H2O2 synthesis. Plant J, 2006, 45: 113–122
[25] L D(), Zhang X(), Jiang J(), An G-Y(
),
Zhang L-R(
), Song C-P(). NO may function in the
downstream of H2O2 in ABA-induced stomatal closure in Vicia
faba L. J Plant Physiol Mol Biol (),
2005, 31(1): 62−70 (in Chinese with English abstract)
[26] He J M, Xu H, She X P, Song X G, Zhao W M. The role and the
interrelationship of hydrogen peroxide and nitric oxide in the
UV-B-induced stomatal closure in broad bean. Funct Plant Biol,
2005, 32: 237–247
[27] Blatt M R, Grabov A. Signal redundancy, gates and the integra-
tion in the control of ion channels for stomatal movement. J Exp
Bot, 1997, 48: 529–537
1040 34
I
ABA NO
Plate I The effects of auxin and cytokinin on dark- and ABA-induced NO level in guard cells
1~2
3 h; 3~11 10 μmol L−1 IAA10 μmol L−1 NAA10 μmol L−1 2,4-D0.1 μmol L−1 ZT0.2 μmol L−1
KT0.2 μmol L−1 6-BA200 μmol L−1 c-PTIO100 μmol L−1 Hb 25 μmol L−1 L-NAME
3 h; 12~30 1 μmol L−1 ABA
10 μmol L−1 IAA10 μmol L−1 NAA10 μmol L−1 2,4-D0.1 μmol L−1 ZT0.2 μmol L−1 KT0.2 μmol L−1 6-BA200 μmol L−1 c-PTIO100 μmol L−1 Hb
25 μmol L−1 L-NAME1 μmol L−1 ABA+10 μmol L−1 IAA1 μmol L−1 ABA+10 μmol L−1 NAA1 μmol L−1 ABA+10 μmol L−1 2,4-D1 μmol L−1 ABA+0.1
μmol L−1 ZT1 μmol L−1 ABA+0.2 μmol L−1 KT1 μmol L−1 ABA+0.2 μmol L−1 6-BA1 μmol L−1 ABA+200 μmol L−1 c-PTIO1 μmol L−1 ABA+100 μmol
L−1 Hb1 μmol L−1 ABA+25 μmol L−1 L-NAME
3 h; 311~30
, SE !1~30
#$ 1~30%&(!30)*$ 16 μm, +)*,- 1~30!30#)*$ 8 μm, +)*,- 1~30.#!
Guard cells shown in image (1) and (2) were treated for 3 h in light and in darkness, respectively. Guard cells in image (3) were treated with10 μmol L−1 IAA, (4)
10 μmol L−1 NAA, (5) 10 μmol L−1 2,4-D, (6) 0.1 μmol L−1 ZT, (7) 0.2 μmol L−1 KT, (8) 0.2 μmol L−1 6-BA, (9) 200 μmol L−1 c-PTIO, (10) 100 μmol L−1 Hb, (11)
25 μmol L−1 L-NAME respectively in the darkness for 3 h. Guard cells in image (12) were treated with 1 μmol L−1 ABA, (13) 10 μmol L−1 IAA, (14) 10 μmol L−1
NAA, (15) 10 μmol L−1 2,4-D, (16) 0.1 μmol L−1 ZT, (17) 0.2 μmol L−1 KT, (18) 0.2 μmol L−1 6-BA, (19) 200 μmol L−1 c-PTIO, (20) 100 μmol L−1 Hb, (21) 25
μmol L−1 L-NAME, (22) 1 μmol L−1 ABA+10 μmol L−1 IAA, (23) 1 μmol L−1 ABA+10 μmol L−1 NAA, (24) 1 μmol L−1 ABA+10 μmol L−1 2,4-D, (25) 1 μmol
L−1 ABA+0.1 μmol L−1 ZT, (26) 1 μmol L−1 ABA+0.2 μmol L−1 KT, (27) 1 μmol L−1 ABA+0.2 μmol L−1 6-BA, (28) 1 μmol L−1 ABA+200 μmol L−1 c-PTIO, (29)
1 μmol L−1 ABA+100 μmol L−1 Hb, (30) 1 μmol L−1 ABA+25 μmol L−1 L-NAME respectively in the light for 3 h. Fig.(31) shows the average fluorescent intensity
of guard cells in image (1–30) in three repeated experiments, data are means ± SE. The insets show the bright-field images corresponding to the fluorescence
image (1–30). Scale bar in image 30 represents 16 μm for image (1–30). The bar in inset of image (30) represents 8 μm for all insets.
6
:
ABA !# 1041
II
ABA H2O2
Plate II The effects of auxin and cytokinin on dark- and ABA-induced H2O2 level in guard cells
1~2
3 h; 3~11 10 μmol L−1 IAA10 μmol L−1 NAA10 μmol L−1 2,4-D0.1 μmol L−1 ZT0.2 μmol L−1
KT0.2 μmol L−1 6-BA100 μmol L−1 AsA100 U mL−1 CAT 10 μmol L−1 DPI
3 h; 12~30 1 μmol L−1 ABA10 μmol L−1
IAA10 μmol L−1 NAA10 μmol L−1 2,4-D0.1 μmol L−1 ZT0.2 μmol L-1 KT0.2 μmol L−1 6-BA100 μmol L−1 AsA100 U mL−1 CAT10 μmol L−1
DPI1 μmol L−1 ABA+10 μmol L−1 IAA1 μmol L−1 ABA+10 μmol L−1 NAA1 μmol L−1 ABA+10 μmol L−1 2,4-D1 μmol L−1 ABA+0.1 μmol L−1 ZT
1 μmol L−1 ABA+0.2 μmol L−1 KT1 μmol L−1 ABA+0.2 μmol L−1 6-BA1 μmol L−1 ABA+100 μmol L−1 AsA1 μmol L−1ABA+100 U mL−1 CAT1 μmol
L−1 ABA+10 μmol L−1 DPI
3 h311~30
, ±SE 1~30!# 1~30
$%&30()# 16 μm, *()+, 1~3030!()# 8 μm, *()+, 1~30-!
Guard cells shown in image (1) and (2) were treated for 3 h in light and in darkness, respectively. Guard cells in image (3) were treated with 10 μmol L−1 IAA,
(4) 10 μmol L−1 NAA, (5) 10 μmol L−1 2,4-D, (6) 0.1 μmol L−1 ZT, (7) 0.2 μmol L−1 KT, (8) 0.2 μmol L−1 6-BA, (9) 100 μmol L−1 AsA, (10) 100 U mL−1 CAT,
(11) 10 μmol L−1 DPI respectively in the darkness for 3 h. Guard cells in image (12) were treated with 1 μmol L−1 ABA, (13) 10 μmol L−1 IAA, (14) 10 μmol
L−1 NAA, (15) 10 μmol L−1 2,4-D, (16) 0.1 μmol L−1 ZT, (17) 0.2 μmol L−1 KT, (18) 0.2 μmol L−1 6-BA, (19) 100 μmol L−1 AsA, (20) 100 U mL−1 CAT, (21)
200 μmol L−1 DPI, (22) 1 μmol L−1 ABA+10 μmol L−1 IAA, (23) 1 μmol L−1 ABA+10 μmol L−1 NAA, (24) 1 μmol L−1 ABA+10 μmol L−1 2,4-D, (25) 1 μmol
L−1 ABA+0.1 μmol L−1 ZT, (26) 1 μmol L−1 ABA+0.2 μmol L−1 KT, (27) 1 μmol L−1 ABA+0.2 μmol L−1 6-BA, (28) 1 μmol L−1 ABA +100 μmol L−1 AsA, (29)
1 μmol L−1 ABA+100 U mL−1 CAT, (30) 1 μmol L−1 ABA+ 10 μmol L−1 DPI respectively in the light for 3 h. Fig.(31) shows the average fluorescent intensity
of guard cells in image (1–30) in three repeated experiments, data are means ± SE. The insets show the bright-field images corresponding to the fluorescence
image (1–30). Scale bar in image (30) represents 16 μm for image (1–30). The bar in inset of image (30) represents 8 μm for all insets.