全 文 : ACTA AGRONOMICA SINICA 2008, 34(6): 1104−1108 http://www.chinacrops.org/zwxb/
ISSN 0496-3490; CODEN TSHPA9 E-mail: xbzw@chinajournal.net.cn
:
(30370279, 30670334);
(2005);
(2004);
!#$
:
%&(1979–), (, )*+,-, ./0, 123456789E-mail: yypeng1979@yahoo.com.cn:
*
;<=>(Corresponding author):
?@A9E-mail: zzhong@swnu.edu.cn
Received(BCDE): 2007-09-19; Accepted(FGDEH: 2007-12-16.
DOI: 10.3724/SP.J.1006.2008.01104
1 1
2,*
(1
,
273165; 2
/ , 400715)
: -
, !#$%
&()*+,-./012345, 67389:;<#=>?@AB&C,
3Ee%5Ee) 7EeDE
FGH?/0IJ, KL:GH?MN; 1Ee%2Ee) 4EeDE
F$
/0)$&(/0IJ, OP)$&(QR; STU*+,-VW
XYDE
Z@=>?FGH?%$[%&(%*+,-\]^J, V_=>?`ab
cdefghij9:efkl, m:nop1cq45@
: ;
; rsDE
; ; /0
Effects of Exogenous Chromosomes on Root Characteristics in Triticum
aestivum-Lophopyrum elongatum with Chinese Spring Background
PENG Yuan-Ying1, SONG Hui-Xing1, and ZHONG Zhang-Cheng2,*
(1 School of Life Science, Qufu Normal University, Qufu 273165, Shandong; 2 School of Life Science, Southwest University / Key Laboratory of
Eco-environments in Three Gorges Reservoir Region, Chongqing 400715, China)
Abstract: The effects of exogenous chromosomes on root morphology were studied with the disomic substitution series of Triti-
cum aestivum L. cv. Chinese Spring-Lophopyrum elongatum (Host) A. Löve. Scanner-based image analysis was used to investi-
gate total root length, surface area, mean diameter, and number of root per plant. The fractal dimensions of young root systems
were also calculated. Compared with Chinese Spring, there were fewer roots per plant in 3Ee, 5Ee, and 7Ee substitutions and larger
total root length and surface area in 1Ee, 2Ee, and 4Ee substitutions, indicating that genes associate with the above characteristics
on the corresponding chromosomes respectively. But the genes controlling average diameter were found on every chromosome of
L. elongatum. The fractal dimension of seedling root systems was significantly correlated with the above 4 root parameters in-
cluded in root growth models (0.757**r0.845**). It is suggested that the fractal dimension can be used as an integrated index
for summarizing root morphological characteristics of Chinese Spring and its substitutions after further studies.
Keywords: Wheat; Lophopyrum elongatum; Exogenous chromosome; Substitution; Root characteristics
,
[1-4] !
#$%&()*+,-./0 , 123
!456789:;<=>? , @
2ABCAD;AEAFGCAHIJK:;
LM>?, @NAOEPAQRSA
TRSAUPEUPVWXYZ67[[5]].^_`abcd), e 1A2 f^>
?gJhijklB[6]
Lmnopqrstuv, wxQ;
yz
T{|cd}P[7]CostaV[8]~,
L
DwxjkLM , b
]
_`
LDab=
LqrF,
=LM
LDj=b`A
6 :
!# 1105
%&}P ,
L
D[9-11]qrB=L
M,
L, J¡
¢?£¤¥
p¦§¨©
1
1.1
§ª«¬®¯-E°±²³B(®¯
AAB ´ D Bµ 1
B¶[Lophopyrum
elongatum (Host) A.] EeBµ( 1B·)
K¸®¯³B¹º DS1Ee (1AA1B 1D)A
DS2Ee (2AA2B 2D)ADS3Ee (3AA3B 3D)ADS4Ee (4AA
4B 4D)ADS5Ee (5B 5D)ADS6Ee (6AA6B 6D)A
DS7Ee (7AA7B 7D)» 20f, ¼ DS5Ee(5A)
½¾¿Àp¢, b 10% H2O2Á 10 min, ÃÄÅ
Æ¢ÇÈÉÊËÌÍ 5 h, ÎÏÐoÑÒÓÔÕ
bÖÓÔ×ØÙÚ , Ûp¢ÜÝÞpßàYÊË
áâãäØ, å$æ 10ä2c, » 630äãäçN
30 cm, çN 27 cm, ä 30 cm2006è 4é 17êÞ
p, åäÞ 2ë; 4é 21êìí, Qíåäî 1ïb
ðíEìñòó4ôÇ, _åõö÷ 2 Hoagland Ó
Ôø
1.2
ùßÞp 5A10 15 d¾úûðí=üý
ãäؾì, ÄþÇûþÉÊË, Å
, û
àY 3 mm4ôÇ 30 cm × 20 cm<=
Ø, 300 dpiy, yWinRHIZO$æ
EA
FGCAN
ïD
ÄD (box-counting dimension)P;
L[12], Fractal Analysis System for Windows
$æ(ê NARO¦§)D = −lim logN(ε)/logε,
D
LD(D); ε
P; N(ε)ß ε
{D
Ä Microsoft Excel SPSS11.0$æD©
Ä ANOVA
LSD2IZ
2
2.1 -
2.1.1 F 1 , DS3Ee (3AA3B
3D)
ïD߸®¯, !ðí
E
#$%<, b
E 2õ&ÇDS5Ee (5B 5D)
DS7Ee (7AA7B 7D)(. DS3Ee (3AA3B 3D) *<
+(
,-, ]./0E°±² 3EeA5Ee 7Ee
B.
ïDY)b DS2Ee(2AA2B 2D), DS2Ee(2A
2D)
ïD.¸&, \ DS2Ee(2B)b10
Q2
ïD&߸, /0b DS2Ee(2B), ¶
®¯ 2BB.
ïDY)3, bDS4Ee
(4AA4B 4D), DS4Ee(4A)b1¡
ïD
.¸45&Ç, \10Q2S߸
, 6DS4Ee(4B4D)7
߸, b
0Q¡
&߸, 8w DS4Ee(4A)¶®¯ 4A
B(.
ïDY)
2.1.2 F 1&9, Þp 5 d, : 5B
,
E.¸®¯;&; Þp 10 d ,
1AA2A 2D
E&ß®¯, 6b 15 d
, DS1Ee(1AA1B 1D)ADS2Ee(2AA2B 2D)A
DS4Ee(4AA4B 4D).¸&, <E°±
² 1EeA2Ee 4EeB.EPY)6b DS3Ee
(3AA3B 3D), DS3Ee(3A)!
EE&
ß®¯, 6 DS3Ee(3B 3D).®¯&, /
0 DS3Ee(3A)¶®¯ 3A B.=9EY
)
2.1.3
DS1Ee(1AA1B 1D)ADS2Ee
(2AA2B 2D)ADS4Ee(4AA4B 4D)ADS6Ee(6AA6B
6D) DS7Ee(7AA7B 7D)FGC!
E¡
>E6#$߸®¯(F 1)bÞp 15 d, DS1Ee
(1AA1B 1D)ADS2Ee(2AA2B 2D) DS4Ee (4AA
4B 4D).®¯&Ç, /0E°±²
1EeA 2Ee 4Ee B.FGCY)b
DS3Ee(3AA3B 3D), DS3Ee(3A)!
E,
FGC&ß®¯, 6 DS3Ee(3B 3D).®¯
&, /0 DS3Ee (3A)¶®¯ 3AB
.ZFGCY)8.bEPuG
F*(?
2.1.4
=®¯K
N7!¾ú`/@6A(F 1)1
NbÞp 5 d: 2B. 7A, .®¯
BY&; bÞp 10 d, DS1Ee(1AA1B 1D)A
DS2Ee(2AA2B 2D)ADS3Ee(3D)ADS4Ee(4D)ADS5Ee(5D)
K DS6Ee(6A 6B)N&ß®¯; bÞ
p 15 d, : DS6Ee(6AA6B 6D)ADS7Ee(7A),
CN&ß®¯., E
°±²lBXYD , EQN
]w
FßåoGB
2.2 -
=®¯
LD!¾ú`H6&
H, Þp 5A10 15 d,
LD
ù 1.0040A
1.1175 1.1500, F=!
Ecd}PI1
(F*ì.®¯(
H,-( 1)8.
EPAFGCJKp¢DJH
B,-o+
1106 $ % & 34
1 -
Table 1 Root morphological characteristics of Chinese Spring-Lophopyrum elongatum disomic substitution lines
Root number per plant
Total root length (mm)
Substitutive chromosome 5 d 10 d 15 d 5 d 10 d 15 d
1A 5.75±0.38 6.17±0.28 9.00±0.50 22.46±3.34 232.29±69.78* 760.48±57.21*
1B 4.33±0.89* 6.00±0.00 7.43±1.22 28.14±2.84 109.49±34.22 586.62±93.65*
1D 5.60±0.48 6.80±1.36 8.25±1.19 25.85±7.86 109.59±40.38 668.31±107.63*
2A 6.00±0.00 7.17±1.50 7.75±0.75 20.52±5.96 189.73±72.57* 581.12±205.60*
2B 4.67±0.44* 6.50±0.50 7.86±0.24 37.19±10.90 169.89±65.97 596.01±98.87*
2D 5.86±0.24 6.50±0.83 9.25±0.75 28.55±9.82 185.46±31.77* 607.60±137.88*
3A 4.67±0.78* 7.00±0.80 7.75±1.25 24.77±7.16 177.06±94.23 589.99±160.38*
3B 4.83±0.89 6.00±0.50 6.86±1.27* 23.89±7.86 112.86±53.11 439.89±76.85
3D 5.57±0.49 6.40±1.12 6.70±0.96* 19.76±3.21 92.79±14.61 390.66±93.40
4A 5.67±0.44 7.40±0.88 8.75±0.81 29.00±7.31 115.43±34.76 576.63±63.02*
4B 4.50±0.83* 5.40±0.72* 8.25±1.38 15.77±4.43* 71.99±12.27 440.00±90.77
4D 4.50±0.50* 5.60±0.72* 7.50±0.50 19.65±1.79 86.59±16.98 571.34±81.61*
5B 3.60±0.72* 4.25±0.75* 5.80±1.04* 13.63±4.95* 140.46±76.41 249.07±105.46
5D 5.00±0.40 6.00±1.00 8.25±0.88 30.09±13.47 77.34±18.72 432.19±105.61
6A 5.50±0.50 7.00±1.00 8.25±0.75 33.23±7.28 142.39±28.22 416.73±128.98
6B 5.00±0.00 5.67±0.44* 8.63±0.88 27.89±4.96 140.53±24.47 434.64±72.61
6D 5.00±0.00 6.43±1.10 8.29±0.41 27.11±2.75 103.98±23.15 400.89±87.50
7A 4.50±0.50* 5.71±0.69* 8.25±0.75 31.91±7.64 73.92±24.26 492.85±160.44
7B 4.71±0.41* 6.50±1.00 6.00±1.00* 23.19±3.54 124.41±45.15 526.36±132.53*
7D 5.43±0.49 6.29±0.61 7.88±0.44 39.14±8.29 93.37±31.43 431.07±56.63
CS 5.60±0.48 7.00±1.00 8.38±1.78 29.23±3.45 114.65±6.73 333.56±151.07
Surface area (cm2)
Diameter (mm)
Substitutive chromosome 5 d 10 d 15 d 5 d 10 d 15 d
1A 4.20±0.69 29.90±8.23* 86.91±6.36* 0.60±0.04 0.42±0.02* 0.36±0.00*
1B 3.57±0.44* 14.40±3.62 70.22±11.57* 0.63±0.04 0.43±0.03* 0.38±0.01*
1D 4.62±1.32 15.22±5.92 77.64±13.63* 0.57±0.02 0.44±0.02* 0.37±0.01*
2A 4.21±0.83 26.20±8.69* 71.73±24.65* 0.67±0.06 0.45±0.03* 0.40±0.02*
2B 6.37±1.52 21.17±7.40 68.65±11.07* 0.56±0.03* 0.41±0.02* 0.37±0.01*
2D 5.38±1.96 25.01±2.86 68.94±17.03* 0.60±0.03 0.44±0.03* 0.36±0.01*
3A 4.44±1.07 23.73±9.92 69.01±17.47* 0.59±0.06 0.46±0.05 0.37±0.02*
3B 4.31±1.38 15.72±6.45 52.63±8.58 0.59±0.05 0.46±0.04 0.38±0.01*
3D 3.74±0.56* 12.73±2.04 47.64±11.37 0.61±0.03 0.44±0.02* 0.39±0.02*
4A 5.68±1.17 16.82±4.85 73.78±10.53* 0.64±0.03 0.46±0.02 0.41±0.02*
4B 3.16±0.77* 11.16±1.96 57.81±10.44 0.65±0.03 0.50±0.03 0.42±0.02*
4D 3.63±0.34* 12.09±2.37 67.79±10.04* 0.59±0.01 0.45±0.01* 0.38±0.01*
5B 2.69±0.70* 20.01±9.74 31.44±12.42 0.67±0.10 0.47±0.02 0.42±0.04*
5D 5.71±2.49 10.63±2.67 58.25±14.43 0.61±0.02 0.44±0.02* 0.43±0.01*
6A 6.28±1.12 19.57±3.74 60.85±13.05 0.61±0.03 0.44±0.03* 0.46±0.08
6B 5.58±0.98 18.13±2.96 59.93±8.78 0.64±0.02 0.41±0.03* 0.44±0.01
6D 5.12±0.32 15.77±3.98 57.17±12.34 0.60±0.03 0.48±0.02 0.46±0.01
7A 5.55±1.37 10.87±3.69 69.54±21.92* 0.55±0.01* 0.47±0.01 0.46±0.02
7B 4.41±0.44 17.53±4.73 63.62±14.70 0.62±0.05 0.47±0.06 0.39±0.02*
7D 7.18±1.26 13.55±4.48 58.08±7.16 0.59±0.04 0.47±0.03 0.43±0.01*
CS 5.75±0.30 17.82±1.00 48.02±19.50 0.64±0.08 0.50±0.02 0.47±0.04
±*: (CS) !#(LSD$)
Data in the table are mean ± SD. *: Significant at P<0.05 between the substitution lines and Chinese Spring (CS) according to LSD test.
6 :
!# 1107
1 -
Fig. 1 Fractal dimension of roots in Chinese Spring-Elytrigia elonga disomic substitution lines
%&(
)#!CS*
Bars superscripted by different letters are significantly different at 0.05 probability level according to LSD test. CS: Chinese Spring.
!#$%&
(), %*+,-./0123 10 d, 4 5B 5
67(), %13 5 d 15 d,
8()9:;, <=>13 5 d0
B ?@ABCDEFG?@AH,
=
*+,()I
0JK123 10 d
15 d, HLF
B?@AB
*+,
I
, M=N78O()P0
Q SPSS RS Pearson TUVWX, LF
-DEFGYA
*+,Z[2
]
^_()`TU
U(TU*ab 0.845**0.757** 0.784**), %
^()cTUU(r = −0.771**)0
3
de>fghijklde[13]0mnop
qrd , pLF
+sdetuvwxg7yz
{[6,14-16]0|}W~[14]LF 2B ?@AOj
k
;d
QTL0VW( DS2Ee(2B)
,
2B ?@ApjkZ[
70
5,
4A?@AZ[
7U;
3A ?@A-k
L
7U0
~[17]P
+slde* b,
TU+sdef /tuhi¡jk0
LF
-DEFG
¢£I
, DS3Ee(3A3B 3D)DS5Ee(5B 5D)¤
DS7Ee(7A7B 7D)
¦, DS1Ee(1A1B 1D)DS2Ee(2A2B
2D)DS4Ee(4A4B 4D) ();
¥§
¨©ª&« , DS1Ee(1A1B 1D)
DS2Ee(2A2B 2D)DS4Ee(4A4B 4D)1
23 15 d 8()P;
->I
0¬®DEFGp¯B, 67DEFG
+sTU°±, i²hVW, DE
FG³´L
, µ¶
·¸¦
¹º» , ¼%¥§p½¾¿ÀÁ
d; %DEFG
©ª>³´®=
ÂbÃ0
wÄ ,
!%():;,
-X(ÅI0Costa~[8]
pÆÇÈÉ Ê§T/VW , ËbÌ
l:;>
%ÅIÍi0
!#$%&()0ÎÏÐ~ [6]
pÑLFÒÓÈÉÔ¥ , ./hiÕ
de
Ö×Ø%X(, ÙVWT¨0
*+,HÚ!©ª%©ª()[9]0ÈÉ
, *+,
, =ÛÜÄ:;, Ý
C¤Z[
©ª&«¨013
15 d,
*+,ÞßIàáâ~[10-11]pL
FÒÓ
ÈÉãä , ÙLFÒÓ !Ö.
¨7U0
LF
-DEFGYA
*+,
Z[
_()`TU,
%
()cTU0Ù Eghball ~[7]p
*+,ÈÉVW¨0i²,
*+,å
æÄçèLF
¤=
©léê
0M>¬ëæ
+sdehi./?@
A, ËÝ
> ì,íî, %ÈÉ
RS>
Y,*+,0ïðY,*+,Cç
è./ÆÇhiÕñ2
© , MòQ=óÃ5ô
?@AõpLF
+sde
ö÷×øÈÉ0
References
[1] Liu T-J(), Qi C-H (), Tang J-J(
). Studies on re-
lationship between the character parameters of root and yield forma-
tion in rice. Sci Agric Sin (
), 2002, 35(11): 1416−1419
(in Chinese with English abstract)
[2] Jin J(), Liu X-B(), Wang G-H(), Li Y-H(),
Pan X-W(), Herber S J. Study on relationship between root
morphology during reproductive stage and yield in soybean. Soybean
Sci (), 2004, 23(4): 253−257 (in Chinese with English ab-
stract)
[3] Partha D A S, Ali M N, Sarkar H K. Genetical studies on roots in
bread wheat. J Interacademicia, 2004, 8: 166−168
[4] Moudal S K, Kour K. Genetic variability and correlation coefficients
of some root characteristics and yield components in bread wheat
(Triticum aestivum L.) under rainfed condition. Environ Ecol, 2004,
22: 646−648
[5] Caradus J R. Genetic control of phosphorus uptake and phosphorus
status in plant. In: Genetic Manipulation of Crop Plants to Enhance
Integrated Nutrient Management in Cropping System. Patancheru, In-
dia: ICRISAT Asia Centre, 1995. pp 55−74
[6] Jing R-L( !), Hu R-H(#$), Zhu Z-H(%&). A study on
heritabilities of seedling morphological traits and drought resistance
in winter wheat cultivars of different genotype. Acta Bot Bo-
real-Occident Sin (()*+), 1997, 17(2): 152−157 (in Chinese
with English abstract)
[7] Eghball B, Settimi J R, Maranville J W, Parkhurst A M. Fractal
analysis for morphological description of corn roots under nitrogen
stress. Agron J, 1993, 85: 287−289
[8] Costa C, Dwyer L M, Dutilleul P, Foroutan-pour K, Liu A, Hamel C,
Smith D L. Morphology and fractal dimension of root systems of
maize hybrids bearing the leafy trait. Can J Bot, 2003, 81: 706−713
[9] Wang Y-Q(,-), Zhang H-J(./0), Yang D-A(123), Bai
K-Z(456), Kuang T-Y(789). Fractal analysis of seedling root
under elevated atmospheric concentration of CO2. Chin Sci Bull (
:+), 1998, 43(16): 1736−1738 (in Chinese)
[10] Yang P-L(1;<), Luo Y-P(=>;). Fractal characteristic of root
morphology in winter wheat. Chin Sci Bull (:+), 1994, 39(20):
1911−1913 (in Chinese)
[11] Yang P-L(1;<), Ren S-M (?@A), Luo L-P(=>;). Measure-
ment of fractal curve and express of root morphology. Sci Agric Sin
(
), 1999, 32(1): 89−92 (in Chinese with English ab-
stract)
[12] Foroutan-pour K, Dutilleul P, Smith D L. Advances in the implemen-
tation of the box-counting method of fractal dimension estimation.
Appl Math Comput, 1999, 105: 195−210
[13] Chang T T, Armenta-Soto J K. Genetic studies on the components of
drought resistance in rice. In: Rice Genetics: Proceedings of Interna-
tional Rice Conference. Manila: Island Publishing House, Inc, 1987.
pp 387−398
[14] Zhou X-G(BC), Jing R-L( !), Hao Z-F(DEF), Chang
X-P(GH), Zhang Z-B(.IJ). Mapping QTL for seedling root
traits in common wheat. Sci Agric Sin (
), 2005, 38(10):
1951−1957 (in Chinese with English abstract)
[15] Zhang Z-B(.IJ). Fundamentals of Physiology and Genetics and
Breeding in Crop Drought Resistance and Water Saving (K*LMN
OPQRSTUVWX). Beijing: Science Press, 2003. p 75 (in
Chinese)
[16] Ekanayake I J, O’Toole J C, Garrity D P. Inheritance of root charac-
teristics and their relations to drought resistance in riceYCrop Sci,
1985, 25: 927−933
[17] Fang P(Z[), Wu P(\H), Tao Q-N(]^_). QTLs for rice root
morphological character. Acta Agron Sin (K*+), 1999, 25(2):
181−185 (in Chinese with English abstract)