免费文献传递   相关文献

Binding Characteristics of Granule-Bound Starch Synthase (GBSS) with Starch in Wheat Cultivar Chinese Spring

中国春小麦GBSS与淀粉颗粒结合特性的研究


以小麦品种中国春(Triticum aestivum)为材料,分析了颗粒结合淀粉合成酶(GBSS)与淀粉颗粒结合的影响因素及作用力。通过SDS-PAGE及测定GBSS溶液浓度,证实小麦GBSS与淀粉粒结合的紧密程度受温度影响,在50~80℃范围内,GBSS从淀粉颗粒上的解离量随温度的升高逐渐升高;而在85~95℃之间,解离量随温度的升高而降低;沸水浴处理15 min的GBSS解离量较大,但超过35 min时GBSS的量反而有所减少。Mg2+浓度也影响GBSS的解离,低于1.75 mmol L-1时,随Mg2+浓度降低解离量逐渐升高;高于2.5 mmol L-1时,随Mg2+浓度的升高解离量逐渐降低。表明GBSS与淀粉粒的结合力是非共价键。

The factors affecting the binding characteristics of GBSS with starch granule were studied using a wheat (Triticum aestivum) cultivar Chinese Spring with different temperature treatments. After sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis, we got GBSS concentration by coomassie brilliant blue G-250(CBB G-250) method. The results showed that the temperature affected the binding of GBSS and starch granule. In 50–80℃, the concentration of GBSS unbound from starch increased with the temperature rising, which the maximal concentration was 11.361 μg mL-1 at 80℃, while that was reduced when the temperature was 85–95℃. Furthermore, Mg2+ could also affect the quantity of GBSS unbound from starch. When Mg2+ concentration was lower than 1.75 mmol L-1, the concentration of GBSS unbound increased. The lower Mg2+ concentration, the higher the concentration of GBSS unbound. However, when Mg2+ concentration was higher than 2.5 mmol L-1, it could restrain GBSS unbinding. These results showed that GBSS bound starch granule by non-covalent bonds. The best GBSS extracting conditions were 55 mmol L-1 Tris-HCl (pH 6.8), 0.75 mmol L-1 MgCl2, 2.3% SDS, 5% 2-ME and 10% glycerol, 15 min in boiling water, or 55 mmol L-1 Tris-HCl (pH 6.8), 0.75 mmol L-1 MgCl2, 2.3% SDS, 5% 2-ME and 10% glycerol, 80℃ 30 min. The results are helpful to investigate 3-D structure of biological activated GBSS and mechanism of GBSS binding with starch granule.


全 文 :