全 文 : 433 Journal of Chinese Pharmaceutical Sciences http://www.jcps.ac.cn
Chemical constituents from the Rhodiola genus plants
Jiangtao Zhou1,2, Lei Xu1,2, Yanyan Chen1,2, Xiaonan Li1,2, Miaomiao Jiang1*
1. Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin
300193, China
2. Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin
300457, China
Abstract: The Rhodiola genus (Crassulaceae) is composed of about 90 species, mainly growing in high and cold regions. Some
species are used as medicinal herbs to treat many diseases, such as cerebral hypoxia, cardiovascular disease, plateau response and
so on. Up to now, about 180 constituents which are mainly glycosides, flavonoids, terpenoids, tannins, sterol and other compounds
have been identified in the genus. The present review summarizes the chemical constituents isolated from the Rhodiola genus
over the past few decades, with particular emphasis on Rhodiola crenulata (HK. f. et Thoms.) H. Ohba which is being studied
by our research group.
Keywords: Rhodiola genus, Chemical constituents, Rhodiola crenulata
CLC number: R284 Document code: A Article ID: 1003–1057(2014)7–433–13
Received: 2014-01-16, Revised: 2014-03-04, Accepted: 2014-03-13.
Foundation item: Tianjin City High School Science & Technology
Fund Planning Project (Grant No. 20130202).
*Corresponding author. Tel.: 86-22-59596163,
E-mail: miaomiaojiang@126.com
http://dx.doi.org/10.5246/jcps.2014.07.058
1. Introduction
The genus Rhodiola belongs to Crassulaceae and it
comprises about 90 species all around the world. The
Rhodiola species are distributed in alpine zone of the
northern hemisphere, mainly in the Himalayan region
from western to northern Asia. China is considered
the main producing areas of Rhodiola. There are about
73 species, distributed in the region of Northwest,
Southwest, Northeast and North of China[1]. Studies of
isolated organs, tissues, cells and enzymes have revealed
that Rhodiola preparations exhibit adaptogenic effect
including neuroprotective, cardioprotective, anti-fatigue,
antidepressive, anxiolytic, nootropic, life-span increasing
effects and CNS stimulating activity[2]. Due to the
diverse biological activities, increasing attentions have
been paid to Rhodiola species. Nowadays, the demand
for Rhodiola far exceeds the supply. Although Rhodiola
are a large family, only about 20 species were chemically
Review
Contents
1. Introduction ....................................................................................................................................................................... 433
2. Chemical constituents ....................................................................................................................................................... 434
2.1. Flavonoids and flavonoid glycosides ......................................................................................................................... 434
2.2. Glycosides .................................................................................................................................................................. 434
2.2.1. Phenethyl glycosides ........................................................................................................................................ 434
2.2.2. Phenylpropanoids and their glycosides ............................................................................................................ 434
2.2.3. Phenols and phenolic glycosides ...................................................................................................................... 434
2.2.4. Cyanogenic glycosides ..................................................................................................................................... 434
2.2.5. Other glycosides ............................................................................................................................................... 434
2.3. Terpenoids ................................................................................................................................................................. 441
2.4. Sterols ........................................................................................................................................................................ 441
2.5. Tannins ...................................................................................................................................................................... 441
2.6. Other chemical constituents ....................................................................................................................................... 444
3. Conclusion ........................................................................................................................................................................ 444
Acknowledgements ........................................................................................................................................................... 444
References......................................................................................................................................................................... 444
434 Zhou, J.T. et al. / J. Chin. Pharm. Sci. 2014, 23 (7), 433–445
investigated in the past few decades. In the numerous
species of Rhodiola genus, the mainly studied are
Rhodiola rosea L., Rhodiola crenulata (HK. f. et Thoms.)
H. Ohba, Rhodiola dumulosa (Franch.) S. H. Fu, Rhodiola
sachalinensis A. Bor., Rhodiola kirilowii (Regel) Maxim.,
Rhodiola sacra (Prain ex Hamet) S. H. Fu and so on.
Here we provide an overview of the progress in
the phytochemical research on Rhodiola during the
past few decades. The isolated chemical constituents
are summarized to achieve a comprehensive and
systematic understanding of this genus.
2. Chemical constituents
It is well-known that the genus Rhodiola contains
glycosides, flavonoids and many others. These compounds
constitute the majority of chemical substances of the
plant, and are always the principal targets investigated
by researchers in pharmaceutical sciences. In addition,
other groups of compounds such as terpenoids, sterols,
cyanogenic glycosides are also reported. Among these
compounds, the main active ingredients are salidroside
(51), p-tyrosol (52), rosavin (61), pyridrde (180),
rhodionin (15) and rhodiosin (16). There are about
187 constituents summarized in this review.
2.1. Flavonoids and flavonoid glycosides
It is undoubtedly that flavonoids and flavonoid
glycosides are the largest number of chemical compo-
sitions in this genus of Rhodiola. More than 50 have
been isolated. Moreover, many types of flavonoids
exist in the plants, including flavones, flavonols,
flavonones, flavanonols and so on. The numbers of
flavonoid glycosides are more diverse, and a majority of
them formed their glycosides at 3, 7, 8 and 4 position, but
only a small part at 5 position. The saccharides mainly
contain arabinose, lyxose, xylose, rhamnose, glucose
and glucuronic acid. Among them, rhodionin (15) is
a bioactive compound against lipid peroxidation and
hepatotoxicity[3,4]. Their names and structures are listed
in Table 1 and Figure 1.
2.2. Glycosides
The glycosides are widely distributed in the genus of
Rhodiola, existing in all parts of the plant and with
various biological activities. It mainly consists of
benzene alkyl glycosides, including phenethyl glycosides,
phenylpropanoid glycosides and phenolic glycosides.
In addition, cyanogenic glycosides, alcohol glycosides
and other glycosides are also reported.
2.2.1. Phenethyl glycosides
Phenethyl glycosides are common compounds in the
genus. Salidroside (51) and its p-tyrosol (52) are found
as the main active ingredients. In recent years, studies
have shown that salidroside has protective effects against
oxidative stress-induced cell apoptosis[26]. Currently,
researchers have studied more than 40 plants of Rhodiola
genus and found that above 35 species contain salidroside.
Their names and structures are listed in Table 2-1 and
Figure 2-1.
2.2.2. Phenylpropanoids and their glycosides
The phenylpropanoid compounds are also rich in
Rhodiola genus with different types including simple
phenylpropanoids (61–77), lignins (78–101), and
coumarins (102–107). Among these compounds,
compounds 78–81 and 82–84 were determined to be
optical isomers of two 8-O-4′ neolignan glycosides.
Compounds 86–89 were aryl tetralin type lignans,
and compounds 96 and 97 were dihydrobenzofuran
neolignans. As an important active compound, rosavin (61)
exists in many Rhodiola species. Its precise pharma-
cological effect is not clear, which is consistent with
the function of salidroside. Rosavin improves the body’s
resistance to adapt to special environment, regulate
physiological functions to restore. Their names and
structures are shown in Table 2-2 and Figure 2-2.
2.2.3. Phenols and phenolic glycosides
Rhodiola genus also contains some phenols, phenolic
acids and their glycosides. Their names and structures
are shown in Table 2-3 and Figure 2-3.
2.2.4. Cyanogenic glycosides
There are only a small number of cyanogenic
glycosides. In recent years, two toxic components
named heterodendrin (122) and lotaustralin (123) were
isolated from Rhodiola sachalinensis and Rhodiola
kirilowii. In the same time, it was found that their
contents were closely related to the origin and habitats
of the species. And the presence or absence of lotaustralin
is dependent on the environment they grow. For example,
the Rhodiola that grows in the barren land or the
higher elevation contains less or no lotaustralin[42].
Other cyanogenic glycosides are listed in Table 2-4
and Figure 2-4.
2.2.5. Other glycosides
In addition to those described above, there are some
alcohol glycosides, olefinic alcohol glycosides and other
glycosides found in Rhodiola genus. Other glycosides
are listed in Table 2-5 and Figure 2-5.
435 Zhou, J.T. et al. / J. Chin. Pharm. Sci. 2014, 23 (7), 433–445
No. Name Source Ref.
1 Herbacetin The epigeal part of R. litvinovii [3]
2 4-Methoxy-herbacetin Root and rhizoma of R. fastigiata [4]
3 Gelidolin Root and rhizoma of R. gelida [5]
4 Rhodiolatuntoside Root and rhizoma of R. atuntsuensis [7]
5 Alginin Root of R. algida [8]
6 Herbacetin-8-O-α-D-lyxoside Root and rhizoma of R. fastigiata [4]
7 8-O-Methyl-herbacetin Root and rhizoma of R. atuntsuensis [7]
8 Rodalgin Root of R. algida [8]
9 Rhodalin Root of R. algida [9]
10 Litvinolin The epigeal part of R. litvinovii [3]
11 Acetylrhodalin Root of R. algida [9]
12 Herbacetin-8,4-di(O-β-D-xylpyranoside) Root of R. krylovii [10]
13 Rhodalide Root of R. algida [11]
14 Herbacetin-3-O-[α-L-rhamnopyranosyl(1-2)-β-D-glucopyranosyl]-7-O-α-L-rhamnopyranoside Root and rhizoma of R. sachalinensis [12]
15 Rhodionin Root of R. crenulata [13]
16 Rhodiosin Root of R. crenulata [13]
17 Gelolin Root and rhizoma of R. gelida [5]
18 Rodalgidin Root of R. algida [8]
19 Rhodionidin The epigeal part of R. rosea [14]
20 Rhodalidin The epigeal part of R. rosea [14]
21 Acetylrhodalgin Root of R. algida [8]
22 Diacetylrhodalgin Root of R. algida [8]
23 Triacetylrhodalgin Root of R. algida [8]
24 Rhodalgisin Root of R. algida [11]
25 Rhodalgiside Root of R. algida [11]
26 Crenulatin Root of R. crenulata [13]
27 Rhodiolinin Root of R. sachalinensis [6]
28 Kaempferol Root and rhizoma of R. sachalinensis [12]
29 Crenuloside Root of R. crenulata [13]
30 Kaempferol-3-O-α-L-rhamnoside The epigeal part of R. litvinovii [3]
31 Kaempferol-7-O-α-L-rhamnoside Root and rhizoma of R. sachalinensis [12]
32 Sachalosides III Root of R. sachalinensis [15]
33 Sachalosides IV Root of R. sachalinensis [15]
34 Leucoside Root of R. sachalinensis [15]
35 Trifolin Root and rhizoma of R. sachalinensis [12]
36 Tricin The epigeal part of R. rosea [14]
37 Tricin-5-O-β-D-glucoside The epigeal part of R. rosea [14]
38 Tricin-7-O-β-D-glucoside The epigeal part of R. rosea [14]
39 Quercetin Root and rhizoma of R. atuntsuensis [7]
40 Isoquercetin Root and rhizoma of R. atuntsuensis [7]
41 Rutin Root and rhizoma of R. atuntsuensis [7]
42 Rhodiolgin The underground part of R. quadrifida [16]
43 Rhodiogidin The underground part of R. quadrifida [16]
44 Gossypetin-8-O-β-D-glucopyranoside The underground part of R. quadrifida [16]
45 Rhodioflavonoside The underground part of R. quadrifida [16]
46 Eriodictyol Root of R. sachalinensis [15]
47 5,7,3,5,-Tetrahydroxy dihydroflavone Rhizoma of R. rosea [17]
48 1-Epicatechin Rhizoma of R. yunnanesis [18]
49 1-Epigallocatechin-3-gallate Rhizoma of R. yunnanesis [18]
50 Dihydrokaempferol Root and rhizoma of R. fastigita [4]
Table 1. Flavonoids from Rhodiola plants
OHO
OR
OH O
OH
OH
O
OAc
OH
OAc
O
OH
O
OH
OH
OO
O
O
436 Zhou, J.T. et al. / J. Chin. Pharm. Sci. 2014, 23 (7), 433–445
Figure 1. Structures of compounds 1–50.
1 R = H
2 R = Me
3 R = Glc (p)
4 R = Rha
5 R = Glc acid
6 R = Lyx
7 R = Me
8 R = Ara (p)
9 R = Xyl (p)
10 R = Rha
11 R = 3-O-Acet-Xyl (p)
12 R1 = Xyl (p), R2 = Xyl (p)
13 R1 = Ara (p), R2 = Xyl (p)
14 R1 = Glc (p)2-rha, R2 = Rha (p)
15 R1 = H, R2 = Rha
16 R1 = H, R2 = Rha3-Glc
17 R1 = H, R2 = Ara (p)
O
OR3
R2O
OH
OR4
O
OR1
O
O
HO
OH
OH
O
OH
O
OR3
R2OR1O
O
O
O
OH
HO
OH
OCH3
OH
O
OH
O
O
O
OH
OH
O
OH
OH
HO OCH3 OR2O
OH O
OR1
OR3
OR2O
OR1 O
OH
O
O
OHO
OH O
OH
OH
OR
OR1O
OH O
OH
OH
OH
OR2
OHO
OH O
OH
OH
OHO
OH
OH
OH
O
OHO
OH
OH
OH
OR
OHO
OH
OH
O
OH
O
OH
HO
OH
OR
O
OH
O
OR
HO
OH
OH
O
OH
O
OR1
HO
OH
OR2
O
OH
O
OH
R2O
OH
OH
O
OR1
18 R1 = H, R2 = Glc (p), R3 = H, R4 = Glc (p)
19 R1 = H, R2 = Rha, R3 = Glc, R4 = H
20 R1 = Glc (p), R2 = H, R3 = Xyl (p), R4 = H
21 R1 = H, R2 = Ac, R3 = H
22 R1 = Ac, R2 = Ac, R3 = H
23 R1 = Ac, R2 = Ac, R3 = Ac
24 R =
25 R =
26 27
28 R1 = H, R2 = H, R3 = H
29 R1 = H, R2 = Rha3-Glc, R3 = H
30 R1 = Rha, R2 = H, R3 = H
31 R1 = H, R2 = Rha, R3 = H
32 R1 = Glc2-Xyl, R2 = Rha, R3 = H
33 R1 = Glc, R2 = Rha3-Glc, R3 = H
34 R1 = Glc2-Xyl, R2 = H, R3 = H
35 R1 = Gla, R2 = H, R3 = H
36 R1 = H, R2 = H
37 R1 = Glc, R2 = H
38 R1 = H, R2 = Glc
39 R = H
40 R = Glc
41 R = Glc6-Rha
42 R1 = Rha, R2 = H
43 R1 = Rha, R2 = Glc
44 R1 = H, R2 = Glc
45 R1 = β-D(Glc1→3)α-Rha, R2 = H
46 47 50 48 R = H
49 R = OH
OH
OH
C
O
O
O
O OR2OO
R1O
HO
HO
OH
O R2O
R1O
HO
HO OH
437 Zhou, J.T. et al. / J. Chin. Pharm. Sci. 2014, 23 (7), 433–445
Table 2-1. The phenethyl glycosides from Rhodiola plants
Figure 2-1. Structures of compounds 51–60.
No. Name Source Ref.
51 Salidroside Root of R. crenulata [32]
52 p-Tyrosol Root of R. crenulata [32]
53 4-Hydroxyphenylethyl-(4-methoxyphenylethyl)ether Whole herb of R. kirilowii [28]
54 p-Hydroxyacetophenone Whole herb of R. kirilowii [28]
55 4-Ethoxy-phenylethanol acetate Whole herb of R. kirilowii [28]
56 Pharienside Rhizome of R. phariensis [22]
57 6-O-Galloyl-salidroside Rhizome of R. crenulata [34]
58 Heterodontoside Rhizome of R. heterodonta [36]
59 2-Phenylethyl-β-D-glucopyranoside Root of R. rosea [19]
60 2-(4-Methoxyphenyl)ethyl-β-D-glucopyranoside Root of R. rosea [19]
Table 2-2. Phenylpropanoids and their glycosides from Rhodiola plants
No. Name Source Ref.
61 Rosavin Root of R.rosea [19]
62 Rosarin Root of R. rosea [19]
63 Rosin Root of R. rosea [19]
64 Cinnamyl-(6′-O- β-xylopyranosyl)-O-β-glucopyranoside Root of R. rosea [19]
65 Sachaliside I Root of R. sachalinensis [15]
66 4-Methoxy-cinnamy(6′-O-α-arabinopyranosyl)-O-β-glucopyranoside Root of R. rosea [19]
67 4-Methoxy-cinnamy-O-β-D-glucopyranoside Root of R. rosea [19]
68 p-Coumaric acid Root of R. sachalinensis [15]
69 Ferulic acid Root and rhizome of R. crenulata [20]
70 1-Octacosanly ferulate Root and rhizome of R. crenulata [20]
71 Caffeic acid Root of R. sachalinensis [15]
72 Gein Root of R. sachalinensis [15]
73 Geranyl1-O-α-L-arabinopyranoside(1→6)-β-D-glucopyranoside Root of R. sachalinensis [15]
74 p-Hydroxy-benzoic acid ethylester Whole herb of R. kirilowii [28]
75 Rosmarinic acid Rhizome of R. rosea [24]
76 Coniferoside Root of R. crenulata [47]
77 Dihydroconiferin Root of R. crenulata [47]
78 (7S,8R)-4,7,9,3′,9′-Pentahydroxy-3-methoxyl-8-4′-oxyneolignan-3′-O-β-D-glucopyranoside Root of R. crenulata [32]
79 (7S,8S)-4,7,9,3′,9′-Pentahydroxy-3-methoxyl-8-4′-oxyneolignan-3′-O-β-D-glucopyranoside Root of R. crenulata [32]
80 (7R,8S)-4,7,9,3′,9′-Pentahydroxy-3-methoxyl-8-4′-oxyneolignan-3′-O-β-D-glucopyranoside Root of R. crenulata [32]
81 (7R,8R)-4,7,9,3′,9′-Pentahydroxy-3-methoxyl-8-4′-oxyneolignan-3′-O-β-D-glucopyranoside Root of R. crenulata [32]
82 (7S,8R)-4,7,9,3′,9′-Pentahydroxy-3-methoxyl-8-4′-oxyneolignan-4-O-β-D-glucopyranoside Root of R. crenulata [32]
83 (7R,8R)-4,7,9,3′,9′-Pentahydroxy-3-methoxyl-8-4′-oxyneolignan-4-O-β-D-glucopyranoside Root of R. crenulata [32]
84 (7S,8S)-4,7,9,3′,9′-Pentahydroxy-3-methoxyl-8-4′ -oxyneolignan-4-O-β-D-glucopyranoside Root of R. crenulata [32]
85 (7R,8R)-threo-4,7,9,9′-tetrahydroxy-3,3′-dimethoxy-8-O-4′-neolignan-4-O-β-D-glucopyranoside Root of R. crenulata [32]
51 R = Glc
52 R = H
53 54
55 56 R1 = H, R2 = Galloyl
57 R1 = Galloyl, R2 = H
58 R1 = 1-Ara (p), R2 = OMe
59 R1 = H, R2 = H
60 R1 = 1-Glc (p), R2 = OMe
RO
OH
O
OHH3CO
COCH3
OH
438 Zhou, J.T. et al. / J. Chin. Pharm. Sci. 2014, 23 (7), 433–445
Table 2-2. Continued
No. Name Source Ref.
89 8′-Hydroxy-(+)-isolariciresinol-9-O-β-D-xylopyranoside Root of R. crenulata [32]
90 Cycloolivil-4′-O-β-D-glucopyranoside Root of R. crenulata [32]
91 Isolarisiresinol Root of R. crenulata [32]
92 Isolarisiresinol-4′-O-β-D-glucopyranoside Root of R. crenulata [32]
93 Isolarisiresinol-4-O-β-D-glucopyranoside Root of R. crenulata [32]
94 Isolarisiresinol-9-O-β-D-xylopyranoside (Schizandriside) Root of R. crenulata [32]
95 Cedrusin Rhizome of R. fastigiata [21]
96 (7R,8S)-Dihydrodehydrodiconiferyl Root of R. crenulata [32]
97 (7R,8S)-Dihydrodehydrodiconiferyl Root of R. crenulata [32]
98 (7S,8R)-Dihydrodehydrodiconiferyl Root of R. crenulata [32]
99 (7R,8S)-Dihydrodehydrodiconiferyl Root of R. crenulata [32]
100 (7S,8R)-Dihydrodehydrodiconiferyl Root of R. crenulata [32]
101 Olivil-4-O-β-D-glucopyranoside Root of R. crenulata [32]
102 Umbelliferone Rhizome of R. phariensis [22]
103 Scopoletin The epigeal part of R. quadrifida [23]
104 Skimmin The epigeal part of R. quadrifida [23]
105 7-Methoxycoumarin Rhizome of R. rosea [25]
106 Nodakenin Root of R. sachalinensis [15]
107 R(–)-mellein Whole herb of R. kirilowii [28]
88 5-Methoxy-(+)-isolariciresinol-4′-O-β-D-glucopyranoside Root of R. crenulata [32]
87 5′-Methoxy-8′-hydroxyl-(+)-isolariciresinol-4′-O-β-D-glucopyranoside Root of R. crenulata [32]
86 5′-Methoxy-(+)-isolariciresinol-4′-O-β-D-glucopyranoside Root of R. crenulata [32]
Table 2-3. Phenols and phenolic glycosides from Rhodiola plants
No. Name Source Ref.
108 Phloroglucinol Rhizome of R. linearifolia [31]
109 Pyrogallol Rhizome of R. linearifolia [31]
110 Protocatechuic acid Root of R. sacra [33]
111 3-Methoxy-4-O-β-D-glucopyranosyl-protocatechuic acid Root of R. crenulata [32]
112 4-Hydroxybenzoic acid Root of R. crenulata [32]
113 4-Hydroxybenzoic acid 4-O-β-D-glucopyranoside Root of R. crenulata [32]
114 4-Hydroxybenzaldehyde Whole herb of R. kirilowii [28]
115 Syringic acid Root of R. bupleuroides [48]
116 3,5-Dimethoxy-4-hydroxy benzenecarbonic-7-O-β-D-glupyrancose Root of R. bupleuroides [48]
117 Icariside D2 Root of R. crenulata [47]
Table 2-4. Cyanogenic glycosides from Rhodiola plants
No. Name Source Ref.
118 Rodiocyanosides A Root of R. quadrifida [16]
119 Rodiocyanosides B Root of R. quadrifida [16]
120 Rodiocyanoside D Root of R. crenulata [32]
121 Crenulatanoside A Root of R. crenulata [32]
122 Heterodendrin Root of R. sachalinensis [15]
123 Lotaustralin Rhizome of R. kirilowii [43]
124 Sarmentosin Root of R. crenulata [32]
125 Sachaloside V Root of R. sachalinensis [15]
439 Zhou, J.T. et al. / J. Chin. Pharm. Sci. 2014, 23 (7), 433–445
Figure 2-3. Structures of compounds 108–117.
OR2
OH
OCH3
OH
H3CO
OH
R1O
OR3
OH
OCH3
OR2
H3CO
R1O
O
OR3OCH3
R1O
OH
OR2
O
OCH3
OH
OH
OH
O
H3CO
O
HO
HO
HO OH
O O
R1
R2
O OO
O
O
HO
OH
HO
HO
OR
Me
OOH
89 R1 = H, R2 = Xyl
90 R1 = Glc, R2 = H
91 R1 = R2 = R3 = H
92 R1 = Glc, R2 = R3 = H
93 R2 = Glc, R1 = R3 = H
94 R3 = Xyl, R1 = R2 = H
95 R1 = R2 = R3 = H
96 R1 = R2 = H, R3 = Glc 7R,8S
97 R1 = Rha, R2 = H, R3 = Glc
98 R1 = R2 = H, R3 = Glc 7S,8R
99 R1 = Glc, R2 = R3 = H
100 R1 = R3 = H, R2 = Rha
101 106 107
102 R1 = H, R2 = OH
103 R1 = OMe, R2 = OH
104 R1 = H, R2 = O-Glc (p)
105 R1 = H, R2 = OMe
108 109 110 R1 = H, R2 = H
111 R1 = Me, R2 = Glc
112 R = H
113 R = Glc
114
115 R = H
116 R = Glc
117
OH
OHHO
OH
HO OH
R1O
R2O COOH
COOH
OR
CHO
OH
COOH
OR
H3CO OCH3
OH
O
O
HO
HO
HO OH
OH
R1
R2
O
Figure 2-2. Structures of compounds 61–107.
R1
OO
R2
OH
HO
HO
OR
OCH3
OH
O
O
OH
OH
O
COOH
HO
HO
OH
OCH3
O
O
HO
HO
HO OH
OH
OCH3
O
O
HO
HO
HO OH
HO
O
OH
OR1OH
R2O
OCH3
OH
OH
OCH3
OH
R
H3CO
OO
HO
HO
HO OH
OCH3
OH
OH
OCH3
OH
H3CO
OO
HO
HO
HO OH
H3CO
61 R1 = H, R2 = O-Ara (p)
62 R1 = H, R2 = O-Ara (f)
63 R1 = H, R2 = OH
64 R1 = H, R2 = O-Xyl (p)
65 R1 = OH, R2 = OH
66 R1 = OMe, R2 = O-Ara (p)
67 R1 = OMe, R2 = OH
68 R1 = H, R2 = OH
69 R1 = OMe, R2 = OH
70 R1 = OMe, R2 = O-Octacosanol
71 R1 = OH, R2 = OH
72 R = Glc-Api (p)
73 R = Glc-Api (f)
74
75
76 77
78 R1 = Glc, R2 = H 7S,8R
79 R1 = Glc, R2 = H 7S,8S
80 R1 = Glc, R2 = H 7R,8S
81 R1 = Glc, R2 = H 7R,8R
82 R1 = H, R2 = Glc 7S,8R
83 R1 = H, R2 = Glc 7R,8R
84 R1 = H, R2 = Glc 7S,8S
85 R1 = CH3, R2 = Glc 7R,8S
86 R = H
87 R = OH
88
440 Zhou, J.T. et al. / J. Chin. Pharm. Sci. 2014, 23 (7), 433–445
No. Name Source Ref.
126 Rodiooctanoside Root of R. kirilowii [27]
127 1-Octyl-β-D-glucopyranoside Root of R. sachalinensis [15]
128 1-Octenyl-3-O-β-D-glucopyranoside Rhizome of R. fastigita [21]
129 Hexyl-β-glucopyranoside Root of R. kirilowii [27]
130 1-(2-hydroxy-2-methylbutanaoate)-β-D-glucopyranose Whole herb of R. kirilowii [28]
131 4-Methoxy-phenylethanol Whole herb of R. kirilowii
132 Isopentenyl-3-O-β-D-glucopyranoside Root of R. crenulata [49]
133 Creoside I Root of R. crenulata [47]
134 Creoside II Root of R. crenulata [47]
135 Creoside V Root of R. crenulata [47]
136 4-Hydroxybenzyl-β-D-glucopyranoside Root of R. crenulata [47]
Table 2-5. Other glycosides from Rhodiola plants
Figure 2-4. Structures of compounds 118–125.
118 R = H
119 R = O-Galloyl
120 121
122 123 124 124
OO
HO
OHHO
HO
R
N OO
HO
OHHO
HO
N
OO
HO
OHHO
HO C
H2
N OH
CH3
OO
HO
OHHO
HO
O
CN
H
OO
HO
OHHO
HO
N
OO
HO
OHHO
HO
OH
N OO
HO
OHHO
HO
OH
N
Figure 2-5. Structures of compounds 126–136.
O
O
RO
HO
HO OH
OO
HO
HO
HO OH
OO
HO
HO
HO OH
OO
HO
HO
HO OH
OH
O
OH
H H
H
H3C
O CH3
O
HO
HO
HO OH
O
OO
HO
HO
HO OH
O
OH
O
HO
HO
HO OH O
O
OHHO
HO
O
O
HOHO
HO
OH
O
O
HO
HO
HO
OH
126 R = Ara (p)
127 R = H
128 129
130 131 132 133
134 135 136
441 Zhou, J.T. et al. / J. Chin. Pharm. Sci. 2014, 23 (7), 433–445
2.3. Terpenoids
About 30 compounds classified as terpenoids are found
in this species. These compounds also contain many types,
such as hemiterpenes (134–140), acyclic monoterpenoids
(141–159), monocyclic monoterpenoids (160–164),
and triterpenes (165–169). Their names and structures
are listed in Table 3 and Figure 3.
2.4. Sterols
Some sterols such as daucosterol (170), β-sitosterol (171)
are found in a number of Rhodiola plants. Besides
β-sitosterol-3-β-D-galactoside (172), stigmasterol (173)
also existed in Rhodiola kirilowii. Their names and
structures are listed in Table 4 and Figure 4.
2.5. Tannins
The tannin compounds are widely distributed in
Rhodiola genus. Gallic acyl is the main group. Gallic
acid can be obtained from a number of species of
Rhodiola plants. Their names and structures are listed
in Table 5 and Figure 5.
No. Name Source Ref.
137 Sachalinols B Root of R. sachalinensis [35]
138 Sachalinols C Root of R. sachalinensis [35]
139 Creoside III Root of R. crenulata [47]
140 Isopentenyl-3-O-β-D-glucopyranoside Root of R. crenulata [47]
141 Rosiridol Rhizome of R. rosea [39]
142 Rosiridine Rhizome of R. rosea [39]
143 Sachalinoside A Root of R. sachalinensis [35]
144 Rosiridin Root of R. sachalinensis [35]
145 Sachalinols A Root of R. sachalinensis [35]
146 Sacranosides B Root of R. sacra [40]
147 Rhodiolosides A Root of R. rosea [41]
148 Rhodiolosides B Root of R. rosea [41]
149 Rhodiolosides C Root of R. rosea [41]
150 Rhodiolosides D Root of R. rosea [41]
151 Rhodiolosides E Root of R. rosea [41]
152 Geranyl-β-glucopyranoside Root of R. kirilowii [27]
153 Neryl-β-glucopyranoside Root of R. kirilowii [27]
154 Creoside V Root of R. crenulata [47]
155 KenposideA Root of R. crenulata [47]
156 Sachalol Root of R. sachalinensis [50]
157 Sachalosides VI Root of R. sachalinensis [50]
158 Sachalosides VII Root of R. sachalinensis [50]
159 Sachalosides VIII Root of R. sachalinensis [50]
160 Sacranosides A Root of R.sacra [40]
161 Myrtenyl-10-O-β-D-glucopyranoside Root of R. sachalinensis [15]
162 Sachalosides I Root of R. sachalinensis [15]
163 Sachalosides II Root of R. sachalinensis [15]
164 Crenulatanoside B Root of R. crenulata [32]
165 Taraxerol-3-β-acetate Stem and leave of R. sachlinesis [37]
166 Isomotiol Stem and leave of R. sachlinesis [37]
167 Isomotiol-3-β-acetate Rhizome of R. henryi [38]
168 Isomultiflorenyl acetate Rhizome of R. henryi [38]
169 Glutin-5-en-one Root of R. pamiro-alaica [30]
Table 3. Terpenoids from Rhodiola plants
442 Zhou, J.T. et al. / J. Chin. Pharm. Sci. 2014, 23 (7), 433–445
Figure 3. Structures of compounds 137–169.
O
HO
HO
O
HO
HO
OH
O
O
O
O
HO
OHHO
HO
O
O
HO
OHHO
HO
R2O
R1O
O
HO
HO
HO OH
O
OH OH
HO
HO
O
O
O
HO
HO
HO
HO OH
OH
OH
HO
OO
HO
OHHO
HO
HO
OO
R1O
OHR2O
HO
OO
R2O
OHHO
HO
OH
R1
OO
HO
HO
HO OH
OO
HO
HO
HO OH
OOHO
HO OH
O
O
HO
HO HO OOHO
HO OH
O
O
HO
HO HO
RO
O HO
OH
O
HO
HO
HO OH
O
OH
O
O
HO
HO OH
O
HO
HO OH RO
O
O
HO
HO
HO
HO OH
OH
O
O
O
HO
HO
HO
HO OH
OH
O OH
C
O
OO
O
HO
HO OH
O
HO
HO HO
AcO RO AcO O
141 R1 = H, R2 = H
142 R1 = H, R2 = Glc
143 R1 = Galloyl, R2 = Glc
137 138 139 140
144 145
146 147 148 R1 = H, R2 = α-D-Glc (p)
149 R1 = β-D-Glc (p), R2 = H
150 R1 = OH, R2 = H
151 R1 = H, R2 = α-L-Ara (p)
152 153
154 155
156 R = H
157 R = Glc
158 159
160 R = Glc6-Ara (p)
161 R = Glc
162 163 164
165 168 169 166 R = H
167 R = Ac
443 Zhou, J.T. et al. / J. Chin. Pharm. Sci. 2014, 23 (7), 433–445
Table 4. Sterols from Rhodiola plants
Figure 4. Structures of compounds 170–173.
Table 5. Tannins from Rhodiola plants
Figure 5. Structures of compounds 174–187.
No. Name Source Ref.
170 Daucosterol Stem and leave of R. sachlinesis [37]
171 β-Sitosterol Rhizome of R. phariensis [22]
172 β-Sitosterol-3-β-D-galactoside Rhizome of R. phariensis [22]
173 Stigmasterol Whole herb of R. kirilowii [28]
No. Name Source Ref.
174 Ellagic acid Root of R. crenulata [13]
175 Methyl gallate Whole herb of R. kirilowii [28]
176 Gallic acid Root of R. crenulata [32]
177 3-Methoxygallic acid Root of R. crenulata [32]
178 3,5-Dimethoxy-4-O-β-D-glucopyranosyl-gallic acid Root of R. crenulata [32]
179 3-β-D-Glucopyranosyl-gallic acid Root of R. sacra [33]
180 4-β-D-Glucopyranosyl-gallic acid Root of R. sacra [33]
181 1,2,3,6-tetra-O-Galloyl-β-D-glucopyranoside Root of R. sachalinensis [35]
182 1,2,3,4,6-penta-O-Galloyl-β-D-glucopyranoside Rhizome of R. crenulata [34]
183 EGCG Root of R. crenulata [32]
OO
HO
OHHO
HO
RO HO
O
O
HO
HO
OH
OH
O
O
HO
OH
HO O
O
R1O
R2O
OR3
OH
O
OR1
O
R1O
R2O
R1O
OR1
O
O
O
HO
OH
OH
OH
OH
OH
OH
OH
N
S
H
N
S
O
HO
HO
OH
OH
O O O
O
OH
CH3
O
HO
HO
HO OH
170 173 171 R = H
172 R = Glc (p)
183 184 187 185 186
174 175 176 R1 = H, R2 = H, R3 = H
177 R1 = Me, R2 = H, R3 = H
178 R1 = Me, R2 = Glc (p), R3 = Me
179 R1 = Glc (p), R2 = H, R3 = H
180 R1 = H, R2 = Glc (p), R3 = H
181 R1 = Galloyl, R2 = Galloyl
182 R1 = Galloyl, R2 = H
444 Zhou, J.T. et al. / J. Chin. Pharm. Sci. 2014, 23 (7), 433–445
2.6. Other chemical constituents
Several other types of chemical substances are isolated
from Rhodiola plants. Pyridrde (184) is one of the
important active ingredients, acting as anti-bacterial toxin,
anti-fatigue agent, and muscle DNA and RNA stimulant[44].
They exist in a variety of Rhodiola species. Moreover,
a compound named 2(3H)-benzothiazolethione (185)
was isolated from the root and rhizoma of Rhodiola
sachalinensis[12]. And 2,7-anhydro-β-D-heptulopyranose
(186)[45] was found in Rhodiola from Lijiang. An
anthraquinone named chrysophanol-8-O-β-glucopyranosyl
(187) was isolated from the rhizoma of Rhodiola
dumulosa[46]. The structures of compounds 184–187
are shown in Figure 5. There are also some alkanes,
alkanols, alkanoic acids found in Rhodiola plants, such
as docosane[30], nonadecane[20], 1-docosanol, cerotic acid,
1-nonadecanol and 1-heptacosanol[22].
Rhodiola genus also contains a wealth of organic
acids, including succinic acid, oxalic acid, suberic acid,
oleic acid, palmilic acid, azelaic acid, arachidic acid,
myristic acid, behenic acid, cerotic acid, 1-hexacosanyl
cerotate, 1-hexacosanyl acetate and others.
3. Conclusion
The Rhodiola genus with its unique medicinal effect
for the treatment of mountain sickness has attracted
increasing attention in the pharmaceutical field.
Through many years of study on Rhodiola, new chemical
constituents have been reported continuously, which
enriched the compound libraries of the genus. However,
the pharmacological components in Rhodiola are
still unclear. The continued study of the chemical
constituents can contribute to the deep understanding
and development of the genus.
Acknowledgements
This work was supported by a grant from Tianjin City
High School Science & Technology Fund Planning
project (Grant No. 20130202).
References
[1] Editorial board of the flora of China. The Flora of China.
Beijing: Science Press. 1984, 159.
[2] Panossian, A.; Wikman, G.; Sarris, J. Phytomedicine. 2010,
17, 481–493.
[3] Krasnov, E.A. Chem. Nat. Compd. 1979, 15, 756–756.
[4] Peng, J.N.; Ge, Y.C.; Li, X.H. Acta Pharm. Sin. 1996, 44,
798–800.
[5] Krasnov, E.A.; Alekseyuk, N.V. Chem. Nat. Compd. 1979,
15, 766–767.
[6] Lee, M.W.; Lee, Y.A.; Park, H.M.; Toh, S.H.; Lee, E.J.;
Jang, H.D.; Kim, Y.H. Arch. Pharm. Res. 2000, 23, 455–
458.
[7] Chen, J.J.; Chen, J.S.; Chen, S.Y.; Zhou, J. Acta Bot.
Yunnan. 1999, 21, 525–530.
[8] Pangarova, T.T.; Zapesochnaya, G.G.; Nukhimovskii, E.L.
Chem. Nat. Compd. 1974, 10, 685–686.
[9] Zapesochnaya, G.G. Chem. Nat. Compd. 1978, 14, 443–
444.
[10] Krasnov, E.A.; Demidenko, L.A. Chem. Nat. Compd.
1984, 20, 106–107.
[11] Krasnov, E.A.; Demidenko, L.A. Chem. Nat. Compd.
1979, 15, 353–354.
[12] Hang, Y.; Jin, Y.S.; Yu, J.T.; Li, J.; Li, Y.S. J. Shengyang
Pharm. Univ. 2011, 28, 116–119.
[13] Du, M.; Xie, J.M. Acta Chim. Sin. 1994, 52, 927–931.
[14] Kurkin, V.A.; Zapesochnaya, G.G.; Shchavlinskii, A.N.
Chem. Nat. Compd. 1984, 20, 623–624.
[15] Nakamura, S.; Li, X.; Matsuda, H.; Ninomiya, K.;
Morikawa, T.; Yamaguti, K.; Yoshikawa, M. Chem.
Pharm. Bull. 2007, 55, 1505–1511.
[16] Yoshikawa, M.; Shimada, H.; Shimoda, H.; Matsuda, H.;
Yamahara, J.; Murakami, N. Chem. Pharm. Bull. 1995,
43, 1245–1247.
[17] Wang, X.M.; He, C.H.; Wang, X.L.; Hu, J.P.; Wang, X.Q.
J. Chin. Med. Pharmacol. 2010, 33, 1252–1253.
[18] Guo, Y.T.; Wang, F.P.; Xiao, Z.Y. Nat. Prod. Res. Dev.
1993, 5, 1–7.
[19] Tolonen, A.; Pakonen, M.; Hohtola, A.; Jalonen, J. Chem.
Pharm. Bull. 2003, 51, 467–470.
[20] Li, T.; Ge, Z.L.; Zhang, H. J. West Chin. Pharm. Sci.
2012, 27, 367–370.
[21] Yang, H.; Mei, S.X.; Peng, L.Y.; Lin, Z.W.; Sun, H.D.
Acta Bot. Sin. 2002, 44, 224–226.
[22] Ma, Z.W.; He, G.F.; Wu, L.L. Qiu, L.G.; Chen, J.R.;
Ni, Z.C. Acta Bot. Sin. 1995, 37, 574–580.
[23] Krasnov, E.A.; Khoruzhaya, T.G. Chem. Nat. Compd.
1974, 10, 402–402.
[24] Wang, F.Y.; Li, D.; Han, Z.C.; Gao, H.Y.; Wu, L.J.
J. Shengyang Pharm. Univ. 2007, 24, 280–287.
[25] Ma, C.Y.; Lou, Z.X.; Lv, W.P.; Wang, H.X. Nat. Prod.
Res. Dev. 2012, 24, 1549–1553.
[26] Zhang, L.; Yu, H.X.; Sun, Y.; Lin, X.F.; Chen, B.;
Tan, C.; Cao, G.X.; Wang, Z.W. Eur. J. Pharmacol.
2007, 564, 18–25.
[27] Huang, Y.J.; Zhao, M.; Zong, Y.Y.; Chen, C.Y.; Chen,
Z.T. J. Chin. Mater. Med. 2008, 33, 1561–1565.
[28] Yang, L.M.; Hu, R.; Qi, W.; Xing, P.; Fu, H.Z. J. Chin.
Pharm. Sci. 2011, 59, 154–158.
[29] Krasnov, E.A.; Khoruzhaya, T.G.; Dranik, L.I.; Gordienko,
V.G.; Kovalev, I.P. Chem. Nat. Compd. 1975, 11, 492–494.
[30] Liu, J.L.; Re, N.; Du, N.S.; Wei, F. Nat. Prod. Res.
Dev. 2000, 12, 30–33.
[31] Kurlin, V.A.; Zapesochnaya, G.G. Chem. Nat. Compd.
1986, 22, 607–607.
[32] Yang, Y.N.; Liu, Z.Z.; Feng, Z.M.; Jiang, J.S.; Zhang, P.C.
J. Agri. Food Chem. 2012, 60, 964–972.
[33] Fan, W.; Fan, W.; Tezuka, Y.; Komatsu, K.; Namba, T.;
Kadota, S. Biol. Pharm. Bull. 1999, 22, 157–161.
[34] Yu, W.S.; Chen, X.M.; Yang, L.; Li, H.; Li, Y.F. Nat.
Prod. Res. Dev. 1992, 4, 23–28.
[35] Fan, W.Z.; Tezuka, Y.; Ni, K.M.; Kadota, S. Biol. Pharm.
Bull. 2001, 49, 396–401.
[36] Yousef, G.G.; Grace, M.H.; Cheng, D.M.; Belolipov, I.V.;
Raskin, I.; Lila, M. Phytochemistry. 2006, 67, 2380–2391.
[37] Li, J.X.; Liu, J.T.; Jin, Y.R.; Zhang, H.G.; Wu, G.X.
Chin. Herb. Med. 1998, 29, 659–661, 676.
[38] Lou, H.X.; Zuo, C.X. J. Shengyang Pharm. Univ. 1990,
7, 145–146.
[39] Kurkin, V.; Zapesochnaya, G.; Shchavlinskii, A. Chem.
Nat. Compd. 1985, 5, 632–636.
[40] Yoshikawa, M.; Shimada, H.; Horikawa, S.; Murakam, T.;
Shimoda, H.; Yamahara, J.; Matsuda, H. Chem. Pharm.
Bull. 1997, 45, 1498–1503.
[41] Ma, G.; Li, W.; Dou, D.; Chang, X.; Bai, H.; Satou, T.;
Li, J.; Sun, D.; Kang, T.; Nikaido, T.; Koike, K. Chem.
Pharm. Bull. 2006, 54, 1229–1233.
[42] Kang, S.L.; Liu, F.Y.; Wang, J.; Xu, Z.J.; Zhang, J.
J. Northwest. Pharm. 1997, 12, 14–15.
[43] Kang, S.L.; Zhang, J.; Liu, F.Y.; Wang, J. Chin. Herb.
Med. 1996, 27, 206, 252.
[44] Zhang, W.D.; Liu, S.Q. J. Chin. Ethnomed. Ethnopharm.
1995, 4, 7–11.
[45] Zhou, L.Y.; Zhang, X.H.; Chen, C.X. Nat. Prod. Res.
Dev. 2004, 16, 410–414.
[46] Wang, J.X.; Luo, D.Q.; Zhao, X.Y. J. Chin. Med. Mater.
2006, 29, 335–336.
[47] Nakamura, S.; Li, X.Z.; Matsuda, H.; Yoshikawa, M.
Chem. Pharm. Bull. 2008, 56, 536–540.
[48] Dong, L.; Li, L.; Liao, Z.H.; Chen, M.; Sun, M. Europe
Pubmed Central. 2007, 2564–2567.
[49] Wang, S.; Wang, F.P. Acta Pharm. Sin. 1992, 2, 117–120.
[50] Li, X.Z.; Nakamura, S.; Matsuda, H.; Yoshikawa, M.
Chem. Pharm. Bull. 2008, 56, 612–615.
445 Zhou, J.T. et al. / J. Chin. Pharm. Sci. 2014, 23 (7), 433–445
红景天属植物的化学成分
周江韬1,2, 许磊1,2, 陈燕燕1,2, 李晓男1,2, 姜苗苗1*
1. 天津中医药大学 天津市现代中药重点实验室, 天津 300193
2. 天津国际生物医药联合研究院 中药新药研发中心, 天津 300457
摘要: 景天科红景天属植物大概包括90个种, 分布在高原地带。一些品种做成制剂可治疗多种疾病, 如脑缺氧, 心血
管病, 高原反应等。到现在为止, 约180种化合物被分离鉴定, 其中含有丰富的苷类, 以及黄酮类、萜类、鞣质、甾醇等
化合物。本综述主要总结了在过去的几十年中, 从红景天属植物中分离出来的化学成分。特别强调的是, 我们的课题
小组正在对植物大花红景天进行化学成分及药理活性研究。
关键词: 红景天属; 化学成分; 大花红景天