免费文献传递   相关文献

仪花属植物化学成分及药理活性研究进展



全 文 :收稿日期:2016-01-19 接受日期:2016-03-23
基金项目:国家自然科学基金(81573560)
* 通讯作者 Tel:86-25-86185292;E-mail:hxf99s@ sohu. com
天然产物研究与开发 Nat Prod Res Dev 2016,28:791-799,780
文章编号:1001-6880(2016)5-0791-10
仪花属植物化学成分及药理活性研究进展
宋宁宁,王崟入,黄雪峰*
中国药科大学天然药物化学教研室,南京 210009
摘 要:豆科仪花属植物,主要分布于我国南部。该属植物主要含有间苯三酚类、黄酮类、二苯乙烯类、三萜类
等化学成分,具有抗氧化、扩张血管、抗心律失常和镇痛等多种药理活性,民间主要用于治疗跌打损伤、骨折和
外伤出血。本文较系统的综述了近十年国内外对仪花属植物的化学成分及药理活性的研究进展,以期为仪花
属植物的开发利用提供一定的科学依据。
关键词:仪花属;化学成分;药理作用
中图分类号:R931. 7 文献标识码:A DOI:10. 16333 / j. 1001-6880. 2016. 5. 028
Review on Chemical Components and
Pharmacological Activity of Genus Lysidice
SONG Ning-ning,WANG Yin-ru,HUANG Xue-feng*
Department of Natural Medicinal Chemistry,China Pharmaceutical University,Nanjing 210009,China
Abstract:Genus Lysidice(Fabaceae)which belongs to Leguminosae,consists of two species,Lysidice rhodostegia Hance
and Lysidice brevicalyx Wei. They are widely distributed in the south and southwestern parts of China,such as Guang-
dong,Guangxi,Yunnan and Guizhou Provinces,and in Chinese folk medicine,their roots have been used for the treat-
ment of pains,fracture and hemorrhage. During the previous studies on bioactive constituents from the Genus,phloroglu-
cinols,flavonoids,stilbenes,triterpenes and lignans had been detected. These components were proved to have a wide
range of pharmacological effects including anti-oxygenation,hemangiectasia,anti-arrhythmia,analgesia,etc. This paper
summarized the chemical components and pharmacological activities of Genus Lysidice plants by consulting the existing
literatures over the past decade. It was in order to provide a reference for further research and development of this Ge-
nus.
Key words:Lysidice;chemical component;pharmacological activity
仪花属(Lysidice)为豆科(Leguminosae)植物,因
其具有较高的观赏性和较好的药用前景而受到人们
的重视。仪花属植物为常绿高大乔木,生于海拔
1000 m以下的丘陵和山谷[1]。该属植物全球有两
种,仪花(Lysidice rhodostegia Hance)和短萼仪花
(Lysidice brevicalyx Wei)[2]。主要分布于台湾、广
东、广西、云南、贵州等地。仪花的根,中药材名为单
刀根、铁罗伞、广檀木,性温,味苦辛,有小毒。民间
主要用于治疗跌打损伤,骨折,外伤出血和风湿痹
痛[3]。短萼仪花的根,又名麻轧木,具有类似单刀
根的功效[2,4]。
仪花属植物为湿生性植物,喜光及温暖湿润性
气候,抗寒能力稍强,能耐轻微霜冻,对土壤酸碱度
要求不严[1]。仪花属植物花色粉红,花量大,花朵
艳丽,花期长,且移植易成活,恢复快因此具有较好
的园林绿化价值。此外,仪花属植物有一定抗 SO2
和 NO2 污染性
[5],已成为我国南方省市园林绿化常
用植物之一[6]。近年来研究发现仪花属中主要的
化合物为间苯三酚类、黄酮类、二苯乙烯类、三萜类
等。现代药理研究表明,仪花属中部分化合物具有
抗氧化和扩张血管、抗心律失常和镇痛的生物活性。
本文对仪花属化学成分和药理作用研究进展进行总
结,以期为仪花属植物的开发利用提供参考。
1 仪花属化学成分的研究
仪花属中化合物的种类繁多,其主要化学成分
有间苯三酚类、黄酮类、二苯乙烯类、三萜类,此外亦
含有木脂素类、甾醇类、有机酸类等成分。
1. 1 间苯三酚类
间苯三酚类成分作为仪花属中主要成分之一,
目前已经分离鉴定出 21 个化合物。Qu J 等[7]从短
萼仪花中得到 3-methylbutyryl-phloroglucinol(1) ;
Gao S等[8]从仪花中得到仪花苷 A、B(2、3) ;Gao S
等[9]从仪花中得到仪花苷 C、D(4、5)。杨华良
等[10]从短萼仪花中得到仪花苷 Y、Z(6、7)。Hu YC
等[11]从仪花中分得仪花素 A-C(9 ~ 11) ;Wu XF 等
从仪花中得到仪花素 D、E(12、13)[12],仪花素 F-H
(14 ~ 16)[13],仪花素 I、J(8、17)[14];吴先富[15]从仪
花中得到仪花素 K-N(18 ~ 21)。根据文献报道,从
仪花属中分离得到的间苯三酚类化合物如图 1。
图 1 仪花属中的间苯三酚类化合物
Fig. 1 Phloroglucinols isolated from Genus Lysidice
1. 2 黄酮类
黄酮类成分在仪花属植物中含量较多,其类别
主要为黄酮类、二氢黄酮类、黄烷醇及其衍生物类。
杨华良等[16]从短萼仪花中分得化合物 24。Hu YC
等[17]从短萼仪花中得到化合物 25、26;Hu YC 等[18]
从该植物中发现 3 个黄烷醇类化合物(33 ~ 35)。
Qu J等[7]从短萼仪花中得到 1 个硫磺菊素(32)。
吴先富等从仪花中得到 3 个黄烷醇苷类化合物
(38、39)[13]和 40[15]。Gao S 等[19]针对仪花的化学
成分进行系统性研究,分得 9 个黄酮类化合物(22、
23、27 ~ 31、36、37、41[20])。目前从仪花属中得到 20
个黄酮类化合物,具体结构如表 1 和图 2。
1. 3 二苯乙烯类
二苯乙烯类成分是仪花属中除间苯三酚类成分
含量较大的一类成分,主要分布在短萼仪花中。二
苯乙烯苷的苷元大多为白藜芦醇,糖的类别主要是
木糖、鼠李糖以及葡萄糖。郜嵩[21]从仪花中得到化
合物 42 ~ 45。Gao S等[9]从仪花的正丁醇部位分得
2 个化合物 53、60。胡有财[22]利用高效液相色谱-
电喷雾串联质谱法从短萼仪花中得到 7 个反式二苯
乙烯苷类成分(46 ~ 52)和 1 个顺式二苯乙烯苷类
成分(59)。Hu YC[17]等从短萼仪花中得到化合物
58。Hu YC等[23]从仪花中分到 7 个此类成分,为化
合物 54 ~ 57 和 61 ~ 63。Qu J等[7]得到一个仪花素
(64)。吴先富[15]从仪花中得到 2 个化合物 66、68。
Hu YC等[18]从短萼仪花中得到 4 个化合物 65、67、
69、70。屈晶等[24]从短萼仪花中得到 2 个的化合物
71、72。从仪花属中得到 31 个二苯乙烯类化合物,
297 天然产物研究与开发 Vol. 28
具体结构如表 2 和图 3。
表 1 仪花属中的黄酮类化合物
Table 1 Flavonoids isolated from Genus Lysidice
编号
No.
化合物名称
Compounds
植物来源
Plant sources
结构
Structure
参考文献
Ref.
22 naringenin L. rhodostegia R1 = H R2 = H R3 = H R4 = H [20]
23 luteolin L. rhodostegia R1 = H R2 = H R3 = OH R4 = H [20]
24 quercetin-3-O-α-L-rhamnopyranoside L. brevicalyx R1 = OH R2 = OH R3 = H R4 = -α-L-Rha[16]
25 isorhamnetin-3-neohesperidoside L. brevicalyx R1 = O-β-D-Glu 2 1α-L-Rha R2 = H R3 = OCH3 R4 = H [17]
26 kaemferol 3-O-neohesperidoside L. brevicalyx R1 = O-β-D-Glu 2 1α-L-Rha R2 = H R3 = H R4 = H [17]
273,4,7-trihydroxylflav-one-3-O-β-D-glucopyranoside L. rhodostegia R1 = -β-D-Glu [20]
28 3,4,7-trihydroxyflavone L. rhodostegia R1 = H [20]
29 eriodictyol L. rhodostegia [20]
30 robinetinidol L. rhodostegia R1 = H R2 = OH [20]
31 epcatichin L. rhodostegia R1 = OH R2 = H [20]
32 sulfuretin L. brevicalyx [7]
33 mopanol L. brevicalyx R1 = H R2 = H R3 = OH [18]
34 mopanolside L. brevicalyx R1 = -β-D-Glu R2 = H R3 = OH [18]
35 peltogynolside L. brevicalyx R1 = -β-D-Glu R2 = OH R3 = H [18]
36 epcatichin-3-O-gallte L. rhodostegia R1 = OH [20]
37 (2R,3R)epcatichin-3-(3,5-dimethoxy)-gallte L. rhodostegia R1 = OCH3 [20]
38 lysidiside V L. rhodostegia R1 = -β-D-Glu R2 = H [13]
39 lysidiside W L. rhodostegia R1 = -β-D-Glu R2 = OH [13]
40 lysidiside X L. rhodostegia R1 = -β-D-Glu [15]
41 mopanolchin L. rhodostegia [20]
图 2 仪花属中的黄酮类化合物
Fig. 2 Flavonoids isolated from Genus Lysidice
图 3 仪花属中的二苯乙烯类化合物
Fig. 3 Stilbenes isolated from Genus Lysidice
397Vol. 28 宋宁宁等:仪花属植物化学成分及药理活性研究进展
表 2 仪花属中的二苯乙烯类化合物
Table 2 Stilbenes isolated from Genus Lysidice
编号
No.
化合物名称
Compounds
植物来源
Plant sources
结构
Structure
参考文献
Ref.
42 (E)-5,4-dyhydroxyl-stilbene-3-O-α-L-rhamnopyranosy-(1→2)-β-D-xylopyranoside
L. rhodostegia R1 = -β-L-Xy2 1α-L-Rha [21]
43 polydatin L. rhodostegia R1 = -β-D-Glu [23]
44 resveratrol-3-O-α-L-xylopyranoside L. rhodostegia R1 = -α-L-Xyl [21]
45 resveratrol L. rhodostegia R1 = H [21]
46 (E)-5,4-dyhydroxyl-stilbene-3-O-β-D-glucopyranosy-
(1→6)-β-D-glucopyranoside
L. brevicalyx R1 = -β-D-Glu6 1β-D-Glu [22]
47 (E)-5,4-dyhydroxyl-stilbene-3-O-β-D-glucopyranosy-
(1→2)-β-D-glucopyranoside
L. brevicalyx R1 = -β-D-Glu2 1β-D-Glu [22]
48 (E)-5,4-dyhydroxyl-stilbene-3-O-α-L-xylopyranosy-
(1→2)-α-L-rhamnopyranoside
L. brevicalyx R1 = -α-L-Rha2 1α-L-Xyl [22]
49 (E)-5,4-dyhydroxyl-stilbene-3-O-α-L-xylopyranosy-
(1→2)-α-L-rhamnopyranosy(1→6)-β-D-glucopyranoside
L. brevicalyx R1 = -β-D-Glu(6 1α-L-Rha)2 1α-L-Xyl [22]
50 (E)-5,4-dyhydroxyl-stilbene-3-O-α-L-xylopyranosy-
(1→2)-α-L-xylopyranoside
L. brevicalyx R1 = -α-L-Xyl2 1α-L-Xyl [22]
51 (E)-5,4-dyhydroxyl-stilbene-3-O-α-L-rhamnopyranosy-
(1→2)-α-L-rhamnopyranoside
L. brevicalyx R1 = -α-L-Rha2 1α-L-Rha [22]
52 (E)-5,4-dyhydroxyl-stilbene-3-O-α-L-rhamnopyranosy-
(1→6)-β-D-glucopyranoside
L. brevicalyx R1 = -β-D-Glu6 1α-L-Rha [22]
53 lysidiside E L. rhodostegia R1 = -α-L-Xyl2 1α-L-Rha [9]
54 lysidiside L L. rhodostegia R1 = -β-D-Glu6 1α-L-Xyl [23]
55 lysidiside M L. rhodostegia R1 = -α-L-Xyl2 1β-D-Glu [23]
56 lysidiside N L. rhodostegia R1 = -β-D-Glu2 1α-L-Rha [23]
57 lysidiside Q L. rhodostegia R1 = -β-D-Glu(6 1α-L-Rha)2 1α-L-Rha [23]
58 (E)-5,4-dyhydroxyl-3-acetyl-stilbene-3-O-α-L-rhamnopyranosy-(1→2)-α-L-xylopyranoside
L. brevicalyx R1 = -α-L-Xyl2 1α-L-Rha [17]
59 (Z)-5,4-dyhydroxyl-stilbene-3-O-β-D-glucopyranosy-
(1→2)-α-L-xylopyranoside
L. brevicalyx R1 = -α-L-Xyl2 1β-D-Glu [22]
60 lysidiside F L. rhodostegia R1 = -α-L-Xyl2 1α-L-Rha [9]
61 lysidiside O L. rhodostegia R1 = -β-D-Glu2 1α-L-Rha [23]
62 lysidiside P L. rhodostegia R1 = -β-D-Glu6 1α-L-Rha [23]
63 lysidiside R L. rhodostegia R1 = -β-D-Glu(6 1α-L-Rha)2 1α-L-Rha [23]
64 lysidicin S L. brevicalyx [7]
65 lysidiside T L. brevicalyx [18]
66 resveratrol-3-O-(6-O-parahydroxybenzoyl)-
β-D-glucopyranoside
L. rhodostegia R1 = H R2 = H [15]
67 resveratrol-3-O-[6-O-(3-methoxyl-4-hydroxy)-benzoyl]-β-D-glucopyranoside
L. brevicalyx R1 = OCH3 R2 = H [18]
68 (E)-5,4-dyhydroxyl-stilbene-3-O-(6-O-galloyl)-β-D-glucopyranoside
L. rhodostegia R1 = OH R2 = OH [15]
69 (E)-5,4-dihydroxy-stilbene-3-O-[(6-O-
(4-hydroxy)-benzoyl]-β-D-glucopyranoside
L. brevicalyx R1 = H R2 = H [18]
70 (E)-5,4-dihydroxy-stilbene-3-O-[(6-O-(3,5-dimethoxy-4-hydroxy)-benzoyl]-β-D-glucopyranoside
L. brevicalyx R1 = OCH3 R2 = OCH3 [18]
71 resveratrol-3-O-(6-O-parahydroxycinnamyl)-
β-D-glucopyranoside
L. brevicalyx R1 = H [24]
72 resveratrol-3-O-[6-O-(3-methoxyl-4-hydroxy)-cinnamyl]-β-D-glucopyranoside
L. brevicalyx R1 = OCH3 [24]
497 天然产物研究与开发 Vol. 28
1. 4 三萜类
目前得到仪花属中的三萜类成分主要以羽扇豆
烷型为主。有羽扇豆醇(73)、2-羟基羽扇豆醇(74)
和白桦酸(75)[25]。具体结构如图 4。
图 4 仪花属中的三萜类化合物
Fig. 4 Triterpenes isolated from Genus Lysidice
1. 5 木脂素类
郜嵩[26]从仪花中得到 3 个木脂素类成分(76 ~
78)。Hu YC 等[18]从短萼仪花中得化合物 79、80。
仪花属中木脂素的结构如表 3 和图 5。
表 3 仪花属中的木脂素和二氢菲类化合物
Table 3 Lignans isolated from Genus Lysidice
编号
No.
化合物名称
Compounds
植物来源
Plant sources
结构
Structure
参考文献
Ref.
76 (-)-5-methoxyisolariciresinol-3α-O-β-D-glucopyranoside L. rhodostegia R1 = -β-D-Glu R2 = H [26]
77 (-)-5,5-dimethoxyisolariciresinol-3α-O-β-D-glucopyranoside L. rhodostegia R1 = -β-D-Glu R2 = OCH3 [26]
78 (+)-5-methoxyisolariciresinol-3α-O-β-D-glucopyranoside L. rhodostegia R1 = -β-D-Glu [26]
79 fernandoside L. brevicalyx R1 = H [18]
80 (+)-lyoniresinol-3α-O-(6-3,5-dimethoxy-4-hydroxybenzoyl)-β-D-glucopyranoside
L. brevicalyx R1 = OCH3 [18]
图 5 仪花属中的木脂素和二氢菲类化合物
Fig. 5 Lignans isolated from Genus Lysidice
1. 6 其他类
此外还从仪花中得到苯甲醇-O-(6-β-O-α-L-呋
喃阿拉伯糖基)-β-D-吡喃葡萄糖苷、甲基-α-D-吡喃
葡萄糖苷[15]、二十一酸、3-谷甾醇酯、没食子酸、棕
榈酸、胡萝卜苷、β-谷甾醇[21]等。
2 间苯三酚类化合物的合成
仪花属中间苯三酚类化合物的结构新颖,药理
活性显著,近年来备受关注。以仪花素 A 为例简单
介绍仪花素类化合物的合成。仪花素 A(9)具有螺
环苯骈二氢呋喃的骨架,且有良好的扩张血管的生
物活性。Ogura Y[27]等以 2,4-二羟基-1-烯-丁二醇
和经过苄基保护的间苯三酚为原料,经过 9 步反应
最终得到仪花素 A。其中的关键步骤是 3 次 Claisen
重排[28],同时得到 2 个环外亚甲基。通过反应 j,k
得到仪花素 A 的两种位置异构体(81、82)的混合
物,该混合物再经 TsOH 催化得到目标产物。具体
合成途径如图 6。
3 仪花属内生真菌的代谢产物
仪花属中的内生真菌次级代谢产物中化学成分
的种类繁多,包括萜类、酚类以及二酮哌嗪类化合
物。Liu YB 等[29]从仪花的 Penicillium dangeardii
Pitt菌株分离纯化得到 3 个化合物 83 ~ 85。Wang
JM等[30]从仪花的 Epicoccum nigrum 菌株中得到 10
个二酮哌嗪类化合物(86 ~ 95)。Ding GZ等[31]从
597Vol. 28 宋宁宁等:仪花属植物化学成分及药理活性研究进展
图 6 仪花素 A的全合成
Fig. 6 Total synthesis of lysidicin A
仪花的 Epicoccum nigrum 菌株得到 1 个化合物 96。
吕海宁等[32]从仪花的 Penicillium dangeardii Pitt 菌
株中得到 6 个化合物 97 ~ 102。刘静等[33]从仪花的
Penicillium dangeardii菌株分离纯化得到 5 个化合
物 103 ~ 107。迄今为止,从仪花属植物的内生真菌
得到的化合物共 25 个,具体的结构如表 4 和图 7。
4 药理作用的研究
仪花属植物具有消肿、散瘀、止痛、止血的功效,
传统用于治疗跌打损伤、骨折、风湿骨痛和创伤出
血。药理表明仪花属植物还具有抗氧化清除自由
基、扩张血管、抗心律失常和镇痛的生物活性。此外
仪花对小鼠化学性肝损伤具有保护作用,对正常及
自发性高血压大鼠的血压和心率均有明显的降低作
用,对小儿智力发育不全和老年痴呆有一定的疗
效[34]。以下是仪花属药理活性研究进展总结。
4. 1 抗氧化作用的研究
郜嵩采用 Fe2 +半胱氨酸诱发的肝微粒体脂质
过氧化(MDA)模型对从仪花不同部位中分到的化
合物进行抗氧化活性筛选。仪花苷 A-C(2 ~ 4) ,
mopanoliside(34) ,(2R,3R)-epicatichin -3-(3,5-di-
methoxy)-gallate(37) ,resveratrol-3-O-α-L-xylcopyxy-
lopyranoside(44) ,(E)-5,4-dyhydroxyl-3-acetyl-stil-
bene-3-O-α-L-rhamnopyranosy-(1 → 2)-α-L-xylopyr-
anoside(58) ,lysidiside F(60)和(-)-5-methoxyiso-
lariciresinol-3α-O-β-D-glucopyranoside(76)在较高浓
度(10-4M)表现出一定的抗氧化活性。3-methylbu-
tyryl-phloroglucinol (1)、epicatichin(31)、mopanol
(33)、epicatichin-3-O-gallate(36)、resveratrol(45)在
10-4M、10-5M、10-6M 三个不同浓度时活性较阳性对
照维生素 E强[21]。lysidicin D-H(12 ~ 16)的抗氧化
活性比相同浓度的维生素 E强[28]。Wu XF [14]等通
过 MDA模型发现仪花素 I(8)和 J(17)在浓度为 0.
1 μmol /mL时,抗氧化活性的抑制率为 100%,而在
低浓度(0. 01 和 0. 001 μmol /mL)其抗氧化活性消
失;仪花苷 V(38)和 W(39)的抗氧化活性测试中,
IC50分别为 3. 29 和 3. 39 μM,其阳性对照维生素 E
的 IC50为 33. 4 μM。
697 天然产物研究与开发 Vol. 28
表 4 仪花属内生真菌代谢产物
Table 4 Endogenous metabolites isolated from Genus Lysidice
编号
No.
化合物名称
Compounds
植物来源
Plant sources
结构
Structure
参考文献
Ref.
83 penicillactone A L. rhodostegia [29]
84 penicillactone B L. rhodostegia [29]
85 penicillactone C L. rhodostegia [29]
86 epicoccin K L. rhodostegia [30]
87 ent-epicoccin L L. rhodostegia [30]
88 epicoccin N L. rhodostegia [30]
89 epicoccin M L. rhodostegia [30]
90 epicoccin O L. rhodostegia R1 = = O R2 =(β)H [30]
91 epicoccin P L. rhodostegia R1 =(α)OH R2 =(α)H [30]
92 epicoccin Q L. rhodostegia R1 =(α)OH [30]
93 epicoccin R L. rhodostegia R1 = H [30]
94 epicoccin S L. rhodostegia R1 =(β)OCH2CH3 [30]
95 epicoccin T L. rhodostegia R1 =(β)OH [30]
96 (E)-(4β-hydroxy-2β-2H-pyranyl)-pentenyl-2-one L. rhodostegia [31]
97 3-hydroxy-benzoic acid-4-O-α-D-ribofuranosylaenine-
(1→6)-β-D-glucopyranoside
L. rhodostegia R1 = -β-D-Glu6 1α-D-Rib [32]
98 3-hydroxy-benzoic acid-4-O-β-D-glucopyranoside L. rhodostegia R1 = -β-D-Glu [32]
99 3-caffeoylquinic acid L. rhodostegia R1 = H R2 = H R3 = Caffeic acyl [32]
100 4-caffeoylquinic acid L. rhodostegia R1 = H R2 = Caffeic acyl R3 = H [32]
101 5-caffeoylquinic acid L. rhodostegia R1 = Caffeic acyl R2 = H R3 = H [32]
102 iso-8-malonic acid-7-N-α-D-ribofuranosylaenine L. rhodostegia R1 = -α-D-Rib [32]
103 (5,7-dihydroxy-9-heptyl)-isobenzo pyran-3-one L. rhodostegia [33]
104 3-hydroxymethyl-4-(1E)-1-propenyl-(1R,2S,5R,6S)-7-oxabicyclo[4. 1. 0]-hept-3-ene-2,5-diol L. rhodostegia [33]
105 (E)-2-methoxy-3-(1-propenyl)-phenol L. rhodostegia [33]
106 (3,5-dihydroxy-2-octanoyl)-ethyl phenylacetate L. rhodostegia R1 = H [33]
107 [3,5-hydroxy-2-(7-hydroxy)-octanoyl]-ethyl phenylacetate L. rhodostegia
R1 = OH [33]
胡有财采用 Fe2 +半胱氨酸诱发的肝微粒体脂
质过氧化(MDA)模型对不同浓度短萼仪花 95%乙
醇提取物和从不同部位分到的化合物进行抗氧化活
性筛选。mopanoliside(34)、lysidiside T(65)、res-
veratrol-3-O-(6-O-parahydroxybenzoyl)-β-D-glucopyr-
anoside(66)、resveratrol-3-O-[6-O-(3-methoxyl-4-hy-
droxy)-benzoyl]-β-D-glucopyranoside(67)、(E)-5,
4-dihydroxy-stilbene-3-O-[(6-O-(3,5-dimethoxy-4-
hydroxy)-benzoyl]-β-D-glucopyranoside(70)、fernan-
doside(79)具有一定的抗氧化活性,化合物 67 在
10-4M、10-5M、10-6M 三个不同浓度都具有良好的抗
氧化作用,其活性强于阳性对照维生素 E[21]。Hu
YC [23]等通过 Fe2 +半胱氨酸诱发的 MDA 模型,考
察了 polydatin(43)在浓度为 10-4M 和 10-5M 时抑制
率分别为 100%和 29%,而阳性对照维生素 E 在相
同浓度下的抑制率分别为 81%和 33%,从而进一步
说明 polydatin有较强的抗氧化活性。
4. 2 扩张血管活性
郜嵩[21]等利用大鼠离体动脉血管模型进行活
性跟踪,考察了仪花的各部位粗提物对血管的舒张
作用。结果显示仪花的乙酸乙酯部位粗提物能使血
管扩张为苯肾上腺素预收缩的 70%,具有一定的扩
张血管活性。Gao S[20]等采用大鼠离体动脉血管模
型发现仪花苷 A-C(2-4) ,mopanol(33)和 polydatin
797Vol. 28 宋宁宁等:仪花属植物化学成分及药理活性研究进展
图 7 仪花属中的内生真菌代谢物
Fig. 7 Endogenous metabolites isolated from Genus Lysidice
(43)在乙酰胆碱浓度为 10-5M时能使血管扩张率分
别为 96%、78%、66%、65%和 85%,且这些化合物
在不同的乙酰胆碱浓度下有良好的量效关系。其作
用机制可能与 PGI2 和内源性 NO的合成有关。
4. 3 抗心律失常
张慧勤[34]等采用氯仿、氯化钡以及喹巴因三种
实验性心律失常模型对仪花醇提液水溶部位进行抗
心律失常的研究。结果表明,仪花醇提取液水溶部
位能明显降低氯仿诱发小鼠室颤的发生率,对氯化
钡引起的大鼠心律失常能明显延长心律失常出现时
间和缩短心律失常持续时间,对喹巴因诱发的豚鼠
心律失常能明显增加出现室性早搏、室性心动过速、
室性颤动和心搏停止所需哇巴因的用量。仪花抗心
律失常的作用机制较为复杂,可能与影响植物神经
功能、递质释放或阻断 β 受体有关,也可能与阻滞
Na +或 Ca2 +内流有关,其作用机制值得进一步研究。
4. 4 镇痛作用
仪花的根(单刀根)有一定的镇痛作用,传统上
与其他药物相辅主要治疗跌打损伤。使用单刀根、
金钱草根、九龙藤、丝棉木、野绿麻根、丢了棒、狗骨
节、过山龙、竹节香附、大毛红花分别切成短碎片,按
照一定的比例混合,并加入 70%乙醇混合后密封于
容器中,成为药酒。该复方具有舒筋活络、活血散瘀
和消肿止痛的功效[35]。
仪花醇提取物(2 g /mL)和仪花水提取物(2 g /
mL)可以作用于各种疼痛模型,使疼痛减轻。王曙
光[36]等采用热刺激甩尾法、扭体法、药物诱导痛经、
热板法等导致小鼠疼痛模型考察仪花的镇痛作用。
结果证实,仪花对小鼠痛经模型有显著疗效。
5 小结与展望
仪花属植物属于常绿乔木,具有良好的空气净
化能力和观赏价值,在园林绿化中被广泛应用。并
且该属植物在民间用药历史悠久,具有较高的药用
价值。在已有的文献报道中,仪花属植物化学成分
主要以间苯三酚、黄酮和二苯乙烯类为主,显示出多
种药理活性。然而,目前国内对其化学成分与药理
作用的研究较为有限,为更好的开发利用该属资源,
应该运用现代科学手段从中筛选具有抗氧化和扩张
血管作用的单体活性成分,并将其与药效学和机理
研究紧密结合起来,系统阐明该属植物的药效物质
基础,为研发高效低毒的药物提供理论依据;同时,
仪花属植物的根报道有小毒,但其产生的毒性机制
研究不够明确,有必要将毒性成分进行分离,确保药物
的安全有效,使仪花属植物更好地发挥其药用价值。
参考文献
1 He RM(何日明) ,et al. Urban landscaping fine species-Ly-
sidice rhodostegia Hance. J Chin Urban Fore (中国城市林
897 天然产物研究与开发 Vol. 28
业) ,2007,5(5) :63-64.
2 Editorial Board of Flora Republicae Popularis Sinicae,Chi-
nese Academy of Sciences(中国科学院中国植物志编辑委
员会). Flora Republicae Popularis Sinicae(中国植物志).
Beijing:Science Press,1998. 42:204.
3 Editorial of Nanjing University of Chinese Medicine. A Dic-
tionary of Traditional Chinese Medicine(中药大辞典).
Shanghai:Shanghai Science and Technology Press,2014.
3899-3900.
4 Wei SJ(韦松基) ,et al. Microscopic differentiate of two poi-
sonous medical plants. Guangxi Sci (广西科学) ,2007,14:
400-404.
5 Pan W(潘文) ,et al. Resistance of Rhodoleia championii and
other plants to sulfur dioxide and nitrogen dioxide. Ecol Envi-
ron Sci(生态环境学报) ,2012,21:1851-1858.
6 Shi DY(石东扬) ,et al. Studies on the selection of pavement
tree species in Liuzhou city. J Guangxi Acade Sci (广西科
学院学报) ,2006,22(2) :90-93.
7 Qu J,et al. Structural characterization of constituents with
molecular diversity in fractions from Lysidice brevicalyx by
liquid chromatography /diode-array detection electrospray i-
onization tandem mass spectrometry and liquid chromatogra-
phy /nu-clear magnetic resonance. Rapid Commun Mass Spec-
trom,2008,22:755-765.
8 Gao S,et al. Two New Phloroglucinol Glycosides from Ly-
sidice rhodostega Hance. Chin Chem Lett,2004,15:313-315.
9 Gao S,et al. Resveratrol /phloroglucinol glycosides from the
roots of Lysidice rhodostegia. Planta Med,2007,73:163-166.
10 Yang HL(杨华良). Studies on chemical constituents from
leaves of Lysidice brevicalyx. Shenyang:Shenyang Pharmaceu-
tical University(沈阳药科大学) ,MSc. 2008.
11 Hu YC,et al. Novel Phloroglucinol Derivatives from the Roots
of Lysidice rhodostegia. Org Lett,2006,8:2269-2272.
12 Wu XF,et al. Two new compounds from the roots of Lysidice
rhodostegia. J Asian Nat Prod Res,2007,9:471-477.
13 Wu XF,et al. Lysidicins F-H,Three New Phloroglucinols
from Lysidice rhodostegia. Org Lett,2010,12:2390-2393.
14 Wu XF,et al. Antioxidative acylphloroglucinols from the roots
of Lysidice rhodostegia. Tetrahedron Lett,2011,67:8155-
8159.
15 Wu XF(吴先富). Study on chemical constituents from roots
and leaves of Lysidice rhodostegia,and fruits of Iliicium si-
monsii Maxim. Beijing:Chinese Academy of Medical Sci-
ences & Peking Union Medical College(中国医学科学院 &
北京协和医学院) ,PhD. 2009.
16 Yang HL(杨华良) ,et al. Studies on chemical constituents
from leaves of Lysidice brevicalyx. Chin J Chin Mater Med
(中国中药杂志) ,2008,33:2633-2635.
17 Hu YC,et al. Structural characterization of trace stilbene gly-
cosides in Lysidice brevicalyx Wei using liquid chromatogra-
phy / diode-array detection /electrospray ionization tandem
mass spectrometry. J Chromatog B,2010,878:1-7.
18 Hu YC,et al. Phenolic glycosides isolated from the bark of Ly-
sidice brevicalyx Wei. J Asian Nat Prod Res,2010,12:516-521.
19 Gao S,et al. Flavonoids from Lysidice rhodostegia Hance. J
Integ Plant Biol,2005,47:759-763.
20 Gao S,et al. Vasodilator constituents from the roots of Ly-
sidice rhodostega. Planta Med,2004,70:1128-1134.
21 Gao S(郜嵩). Study on the active constituents from the roots
of Lysidice rhodostegia and primary chiral total synthesis of
phena-throindolizidine alkaloids. Beijing:Chinese Academy
of Medical Sciences & Peking Union Medical College(中国
医学科学院 &北京协和医学院) ,PhD. 2004.
22 Hu YC(胡友财). Study on the bioactive ingredients from
barks of Lysidice brevicalyx based on bioactivity and chemical
screening. Beijing:Chinese Academy of Medical Sciences &
Peking Union Medical College(中国医学科学院 & 北京协
和医学院) ,PhD. 2008.
23 Hu YC,et al. Targeted isolation and structure elucidation of
stilbene glycosides from the bark of Lysidice brevicalyx Wei
guided by biological and chemical screening. J Nat Prod,
2008,71:1800-1805.
24 Qu J(屈晶). Chemical study on the cytotoxic components of
Erthrophleum fordii Oliver. Online analytical methods study
of the chemical components of Lysidice brevicalyx and trace
cassaine-type amides from Erthrophleum fordii Oliver. Bei-
jing:Chinese Academy of Medical Sciences & Peking Union
Medical College(中国医学科学院 & 北京协和医学院) ,
PhD. 2007.
25 Zhou LZ(周林宗) ,et al. Studies on landscape plants of Ly-
sidice genus. J Anhui Agric Sci (安徽农业科技) ,2010,38:
16215-16217.
26 Gao S(郜嵩) ,et al. Study on the chemical constituents from
roots of Lysidice rhodostegia Hance. Chin J Nat Med(中国天
然药物) ,2005,3:144-147.
27 Ogura Y,et al. Total synthesis of(±)-lysidicin A. Tetrahedr
Lett,2012,68:1723-1728.
28 Ogura Y,et al. Efficient construction of the core framework of
lysidicin A via three Claisen rearrangements including a cas-
cade reaction. Tetrahedr Lett,2010,51:3294-3296.
29 Liu YB,et al. Structures and absolute configurations of peni-
cillactones A-C from an endophytic microorganism,Penicilli-
um dangeardii Pitt. Org Lett,2013,15:5206-5209.
(下转第 780 页)
997Vol. 28 宋宁宁等:仪花属植物化学成分及药理活性研究进展
effects. J Food Prot,2000,63:976-981.
7 Song LB(宋鲁彬). Evaluation of physiological function and
study on ingredient of Dark Tea. Changsha:Hunan Agricul-
tural University (湖南农业大学) ,PhD,2008.
8 Zhang JL(张俊伶) ,Lu L (路璐) ,Li DG(李德冠) ,et al.
Expression changes of genes in c-kit positive cells after 4 Gy
γ-ray irradiation:a gene chip analysis. Int J Radiat Med Nu-
cl Med (国际放射医学核医学杂志) ,2015,39:116-120.
9 Lu L(路璐) ,Li DG(李德冠) ,Zhang JL(张俊伶) ,et al.
Effects of 6 Gy 137Cs γ-irradiation on the hematopoietic sys-
tem of mice. Int J Radiat Med Nucl Med (国际放射医学核
医学杂志) ,2015,39:393-396.
10 Zhang JL(张俊伶) ,Xue XL(薛晓蕾) ,Fan SJ(樊赛军) ,et
al. Effects of hydrogen-rich water on radiation-induced thy-
mus injury. Int J Radiat Med Nucl Med (国际放射医学核
医学杂志) ,2015,39:358-362.
11 Liu R(刘茹) ,Ma S(马森). The scavenging effects of Tea
Polyphenols and Tea Polysaccharide on ·OH. J Anhui Agric
Sci (安徽农业科学) ,2012,40:1463-1464.
12 Zhou XJ(周向军) ,Gao YX(高义霞) ,Yuan YJ(袁毅君) ,
et al. Study on extraction technology and antioxidant activity
of Theabrownine from Oolong Tea. Chin J Expl Tradi Med
Form(中国实验方剂学杂志) ,2011,17:36-40.
13 Dong WM(董文明) ,Tan C(谭超) ,Li LF(李凌飞) ,et al.
The main molecular structure of theabrownin and changes
during the fermentation of pu-erh tea. Food Sci Technol(食品
科技) ,2013,38:53-57.
14 Van Landeghem L,Blue RE,Dehmer JJ,et al. Localized in-
testinal radiation and liquid diet enhance survival and permit
evaluation of long-term intestinal responses to high dose radi-
ation in mice. PLoS ONE,2012,7:e51310.
15 Guo SL(郭绍来) ,Hu Y(胡园) ,Liu P(刘屏) ,et al. Pro-
tective activity of different concentration of tea polyphenols
and its major compound EGCG against whole body irradia-
tion-induced injury in mice. China J Chin Mater Med(中国
中药杂志) ,2010,35:
櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵
1328-1331.
(上接第 770 页)
8 Abdurahman A(阿依努尔·阿不都热合曼) ,Yu PP(于苹
苹) ,Hasan B(布热比亚·艾山) ,et al. Isolation and iden-
tification of red pigment producing bacterium XJU-PA-6 from
Paeonia anomala. Biotechnology (生物技术) ,2008,18
(5) :33-36.
9 Abdurahman A(阿依努尔·阿不都热合曼) ,Yu PP(于苹
苹) ,Mamat G(古力山·买买提) ,et al. Study on extraction
of Paeonia anomala endophyte XJU-PA-6 pigment and phys-
icochemical properties. Chin Food Ind (中国食品工业) ,
2008,6:52-53.
10 Khadir B(布佐日古丽.喀迪尔) ,Ablet M(毛丽丹.阿不来
提) ,Mijit G(吾甫尔·米吉提). The inhibition effects of
2M3P prodigiosin on human cervical cancer cell line Si Ha.
Oncol Lett,2016,Accepted.
11 Ablimit A(阿布都热合曼. 阿布力米提) ,Khadir B(布佐
日古丽.喀迪尔) ,Mijit G(吾甫尔·米吉提). The research
progress of separation,purification and application of prodigi-
osin. J Anhui Agric(安徽农业科学) ,2015,43:102-105.
12 Liu J(刘杰) ,Tao J(陶健). Current situation and develop-
ment trend of anti tumor drugs. Guide Sci-tech Mag (科技致
富向导) ,2011,23:29.
13 Li JT(李建涛) ,Zhang Q(张倩). The research progress of
tumor suppressor gene p53 and the occurrence of tumor and
gene therapy. J Heze Univ(菏泽学院学报) ,2013,35(2) :
櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵
56-58.
(上接第 799 页)
30 Wang JM,et al. Thiodiketopiperazines produced by the endo-
phytic fungus Epicoccum nigrum. J Nat Prod,2010,73:
1240-1249.
31 Ding GZ,et al. Secondary metabolites from the endophytic
fungi Penicillium polonicum and Aspergillus fumigatus. J Asi-
an Nat Prod Res,2013,15:446-452.
32 Lv HN(吕海宁) ,et al. Study on secondary metabolites of
endophytic fungi Penicillium dangeardii. Chin J Chin Mater
Med (中国中药杂志) ,2015,40:1759-1761.
33 Liu J(刘静) ,et al. Study on secondary metabolites of endo-
phytic fungi Penicillium dangeardii. Chin J Chin Mater Med
(中国中药杂志) ,2014,39:3974-3977.
34 Zhang HQ(张惠勤) ,et al. Study on anti-arrhythmia effect of
Lysidice rhodostegia Hance. Chin J Trad Med Sci Tech(中国
中医药科技) ,2005,12:229-230.
35 Lan ZH(蓝子花). A Chinese medicinal composition contai-
ning Herba Antenoronis Neofiliformis root and having effects
in activating collaterals and relieving pain(一种含金钱草根
的活络镇痛药). CN1814069A,2006-8-9.
36 Wang SG(王曙光) ,et al. Experiment of Lysidice rhodostegia
Hance on mouse pain models. Yunnan J Trad Med Mater Med
(云南中医中药杂志) ,2012,33(12) :55-57.
087 天然产物研究与开发 Vol. 28