免费文献传递   相关文献

新型蜀羊泉碱衍生物的合成及体外抗肿瘤活性(英文)



全 文 :学 报
Journal of China Pharmaceutical University 2010,41(6) :493 - 498
Synthesis and in vitro antitumor activities of novel soladulcidine derivatives
ZHA Xiao-ming1,2,ZHANG Fei-ran3,SHAN Jia-qi1,CHEN Yan-ke1,ZHANG Yi-hua1,LIU Jun3* ,
SUN Hong-bin1**
1Center for Drug Discovery; 2 Jiangsu Provincial Center for Drug Screening,China Pharmaceutical University,Nanjing 210009,China;
3Department of Pharmacology and Oncology,Johns Hopkins University School of Medicine,Baltimore,MD 21205,USA
Abstract Soladulcidine is a steroidal alkaloid abundant in Solanum dulcamara L. with antitumor and other bio-
logical activities. In this study,ten soladulcidine derivatives were synthesized through esterification at C-3-hydroxy
group,modification at NH group of F ring or esterification of E ring-opening products. The in vitro antiproliferative
activity of these synthesized derivatives against prostate cancer ( PC-3) cell line was assessed. Within this series
of compounds,compound 19 exhibited the most potent inhibitory effect against the proliferation of PC-3 cell line
( IC50 = 4. 8 ± 0. 9 μmol /L) .
Key words soladulcidine derivatives; synthesis; antitumor activity
CLC Number TQ460. 31; R916 Document code A Article ID 1000 - 5048( 2010) 06 - 0493 - 06
新型蜀羊泉碱衍生物的合成及体外抗肿瘤活性
查晓明
1,2,张斐然
3,单佳祺
1,陈艳客
1,张奕华
1,刘 钧
3* ,孙宏斌
1**
(中国药科大学 1新药研究中心;2新药筛选中心,南京 210009,中国;
3约翰·霍普金斯大学医学院,巴尔的摩,MD 21205,美国)
摘 要 蜀羊泉碱是一类来源于白英的甾体生物碱,具有多种生物活性。本文通过对其 C-3 位羟基、E 环和 F 环进行
结构修饰,合成了 10 个蜀羊泉碱衍生物,并对人前列腺癌细胞 PC-3 进行了体外癌细胞增殖抑制实验。体外实验显示部分
化合物对人前列腺癌细胞 PC-3 有较好增殖抑制作用,其中化合物 19 活性最好,其 IC50为(4. 8 ± 0. 9)μmol /L。
关键词 蜀羊泉碱衍生物;合成;抗肿瘤活性
1 Introduction
It is known that steroidal alkaloids and their gly-
cosides possess a variety of pharmacological activities
including anti-cancer[1- 3] , antifungal[4] , anti-inflam-
matory[5] , teratogenic[6] , antiviral[7] and antiestro-
gen[8] activities. Liu et al[9] reported that solasodine,a
steroidal alkaloid extracted from Solanum nigrum L.
and S. dulcamara L. its hydrochloride exhibited potent
anticancer activities. Coramsine /SBP002 is in a phase
IIb trial for treating certain skin cancers whose prima-
ry ingredients are two solasodine glycoalkaloids,solas-
onine and solamargine, derived from S. linnaeanum
( Devils Apple) . Soladulcidine ( 10) ,which is abun-
dant in S. dulcamara L. ,and has been used as an an-
ti-tumor herb in China,was reported to exhibit anti-
fungal activity[10] and induce of congenital craniofacial
malformation[11] . Tigogenin ( 1) ,a steroidal sapogenin
with the NH group in ring F of soladulcidine ( 10 )
replaced with an O-atom,possesses lots of biological
activities including anticancer[12] , anti-inflammatory,
analgesic and hypoglycemic et al[13] .
In previous study,we developed an efficient syn-
thesizing route to 10 starting from easily available
tigogenin[14] . Herein,we reported synthesis and anti-
proliferative activity of a series of novel soladulcidine
derivatives against prostate cancer ( PC-3) cell line.
2 Chemistry
The synthesis of soladulcidine derivatives is sum-
394
* Received date 2010-09-15 Corresponding author * Tel: 86 - 25 - 83271454 E-mail: joliu@ jhu. edu
**Tel: 86 - 25 - 83271198 E-mail: hbsun2000@ yahoo. com
学 报 Journal of China Pharmaceutical University Vol. 41
marized in Scheme 1. As described previously,com-
pound 10 was synthesized from tigogenin ( 1) in 24%
overall yield. Thus,we decided to carry out a limited
SAR study to explore the influence of C-3 substituents
and modification of ring E or F on the activities of
soladulcidine analogs. We firstly started with structural
modification at C-3 hydroxy position. According to our
synthetic method, azide 2 was afforded starting from
tigogenin 1 in four steps ( 37% overall yield) . Treat-
ment of 2 with acyl chlorides gave the corresponding
products 3-9. Azide 2 was esterified with benzoyl chlo-
ride in anhydrous pyridine at room temperature for 3 h
to afford 3 in 81% yield. Compounds 4-9 were
prepared in a similar way in moderate to high yields.
Reduction of 2 with TMSCl /NaI in MeCN at room
temperature followed by an automatic cyclization of
the resulting primary amine under acidic condition
afforded 10 ( 70% ) ,with compounds 11-17 being thus
obtained.
Secondly,we investigated the effect of opening
ring E of soladulcidine on the anticancer activity.
According to the method described in our previous
paper[15] ,19 ( 75% yield) and 20 ( 77% yield) were
obtained through reduction of 15 and 16 with NaBH4
in MeOH /CH2Cl2,respectively.
Moreover,structural modification at NH group of
ring F was carried out[16] . In this regard,treatment of
10 with NCS in CH2 Cl2 at room temperature for 1 h
afforded compound 18 in 86% yield.
2. 1 Materials and instruments
Tigogenin was purchased from Hubei Danjingkou
Kaitai Hormone Co. , Ltd. All reagents and solvents
were of analytical grade or were purified by standard
methods before use. Melting points were determined in
open capillary tubes using RY-1 melting point appara-
tus and uncorrected. Chromatographic purification was
performed on silica gel 200-300 mesh. 1H NMR spec-
tra were recorded on Bruker AV-300 spectrometer,
using CDCl3 as the solvent and TMS as the internal
standard. Chemical shift values were expressed in δ
and coupling constant ( J ) in Hz. MS using electros-
pray ionization ( ESI) were obtained on Agilent 1100
LC-MS spectrometer. Infrared spectroscopy ( IR )
experiments were preformed on a Nicolet Impact 410
Fourier-transform infrared spectrometer at room tem-
perature using KBr as the sample holder.
2. 2 Experimental section
( 3β, 5α, 25R ) -26-Azidofurost-20 ( 22 ) -ene-3-yl benzoate
( 3) To a solution of compound 2 ( 0. 44 g,1 mmol) in 5 mL
of anhydrous pyridine,PhCOCl ( 0. 23 mL,2 mmol) was added
dropwise. The reaction mixture was stirred for 5 h at room tem-
perature. The reaction was quenched by addition of iced water
and washed with diluted hydrochloric acid. The organic layer
was evaporated in vacuum to afford a crude product,which was
purified by flash column chromatography ( SiO2 ; petroleum
ether-AcOEt,20∶ 1) to afford 0. 44 g ( 81% ) of compound 3 as
off-white solid. Data for compound 3: mp 84-86 °C. IR ( KBr,
νmax ) : 2 933. 5,1 701. 1,1 276. 8,713. 6 cm
-1. 1H NMR ( 300
MHz,CDCl3 ) δ: 8. 14-8. 02 ( m,2H,H-Ar-2,6) ; 7. 64-7. 60
( m,1H, H-Ar-4) ; 7. 51-7. 26 ( m, 2H, H-Ar-3, 5) ; 4. 99-
4. 89 ( m,1H,H-3α) ; 4. 77-4. 69 ( m,1H,H-16α) ; 3. 24 ( dd,
1H,J1 = 5. 6 Hz,J2 = 12. 0 Hz,H-26) ; 3. 10 ( dd,1H,J1 = 7. 1
Hz,J2 = 12. 0 Hz,H-26) ; 2. 47 ( d,1H,J = 10. 2 Hz,H-17α) ;
1. 58 ( s,3H,Me-21) ; 0. 98-0. 96 ( d,3H,J = 6. 6 Hz,Me-27) ;
0. 89 ( s, 3H, Me-19 ) ; 0. 68 ( s, 3H, Me-18 ) . ESI-MS: m/z
568. 3[M + Na] + .
( 3β,5α,25R) -26-Azidofurost-20( 22) -ene-3-yl acetate ( 4)
According to the preparation procedure of 3,2 ( 0. 44 g,
1 mmol) was converted to 4 ( 0. 39 g,81% ) as off-white solid.
Data for 4: mp 69-71 ° C. IR( KBr,νmax ) : 3 444. 6,2 916. 2,
2 096. 5,1 732. 0,1 261. 4,1 033. 8 cm -1 . 1 H NMR ( 300
MHz,CDCl3 ) δ: 4. 76-4. 71 ( m,1H,H-16α) ; 4. 70-4. 67 ( m,
1H,H-3α) ; 3. 24 ( dd,1H,J1 = 5. 7 Hz,J2 = 12. 0 Hz,H-26) ;
3. 10 ( dd,1H,J1 = 7. 0 Hz,J2 = 12. 0 Hz,H-26) ; 2. 46 ( d,
1H,J = 10. 1 Hz,H-17α) ; 2. 02 ( s,3H,CH3 COO-) ; 1. 58 ( s,
3H,Me-21) ; 0. 97 ( d,3H,J = 6. 7 Hz,Me-27) ; 0. 84 ( s,3H,
Me-19) ; 0. 66 ( s,3H,Me-18) . 13 C NMR ( 75 MHz,CDCl3 ) δ:
170. 6,151. 3, 104. 0, 84. 4, 73. 7, 64. 4, 57. 7, 54. 8, 54. 3,
44. 7,43. 6,39. 8,36. 8,35. 6,35. 0,34. 1,34. 1,33. 1,32. 4,
31. 6, 28. 5, 27. 5, 23. 2, 21. 4, 21. 2, 17. 6, 14. 2, 12. 3,
11. 6. ESI-MS: m/z484. 4[M + H] + .
( 3β,5α,25R) -26-Azidofurost-20 ( 22 ) -ene-3-yl propionate
( 5) According to the preparation procedure of 3,2 ( 0. 44 g,
1 mmol) was converted to 5 ( 0. 38 g,76% ) as off-white sol-
id. Data for 5: mp 183-185 °C. 1H NMR ( 300 MHz,CDCl3 ) δ:
4. 75-4. 71 ( m,1H,H-3α) ; 4. 71-4. 66 ( m,1H,H-16α) ; 3. 23
( dd,1H,J1 = 5. 6Hz, J2 = 12. 0 Hz,H-26 ) ; 3. 09 ( dd,1H,
J1 = 7. 0 Hz,J2 = 11. 9 Hz,H-26) ; 2. 46 ( d,1H,J = 10. 1 Hz,
H-17α) ; 2. 28 ( q,2H,J = 7. 6 Hz,CH3 CH2 COO-) ; 1. 58 ( s,
3H,Me-21) ; 1. 13 ( t,3H,J = 7. 5 Hz,CH3 CH2 COO-) ; 0. 97
( d,3H,J = 6. 6 Hz,Me-27) ; 0. 84 ( s,3H,Me-19) ; 0. 66 ( s,
3H,Me-18 ) . 13 C NMR ( 75 MHz, CDCl3 ) δ: 174. 0, 151. 4,
104. 0,84. 5,73. 5,64. 5,57. 8,54. 9,54. 4,44. 8,43. 7,39. 9,
36. 9,35. 7,35. 1,34. 2,34. 1,33. 2,32. 4,31. 6,28. 6,28. 0,
27. 6,23. 2,21. 3,17. 6,14. 2,12. 3,11. 6,9. 2. ESI-MS: m/z
498. 3[M + H] + .
494
No. 6 ZHA Xiao-ming et al: Synthesis of novel soladulcidine derivatives and their in vitro antitumor activities
Scheme 1 Reagents and conditions: ( a) RCOCl /pyridine for 3-9 ( 57% -87% ) ; ( b) 1. TMSCl /NaI,MeCN,r. t. ; 2. 10% Na2 S2O3 ,5% NaOH,11-17
( 62% -81% ) ; ( c) NaBH4,MeOH /DCM,0 °C to r. t. ,1 h,for 19 ( 75% ) and for 20 ( 77% ) ; ( d) NCS,CH2Cl2 ,r. t. 1 h,86%
( 3β,5α,25R ) -26-Azidofurost-20 ( 22 ) -ene-3-yl mesylate
( 6) According to the preparation procedure of 3,2 ( 0. 44 g,
1 mmol) was converted to 6 ( 0. 45 g,87% ) as off-white solid.
Data for 6: mp 168-170 °C. IR( KBr,νmax ) : 2 928. 4,1 359. 5,
1 179. 1,1 073. 6,936. 3 cm -1 . 1 H NMR ( 300 MHz,CDCl3 )
δ: 4. 66-4. 57 ( m,1H,H-3α ) ; 4. 45-4. 39 ( m,1H,H-16α ) ;
3. 52-3. 45 ( m,2H, H-26 ) ; 2. 99 ( s,3H, CH3 SO3-) ; 2. 51-
2. 40 ( m,1H,H-17α) ; 1. 58 ( s,3H,Me-21) ; 0. 93 ( s,3H,Me-
19) ; 0. 83 ( s,3H,Me-18 ) ; 0. 78 ( d, J = 6. 3 Hz,Me-27 ) .
13C NMR ( 75 MHz,CDCl3 ) δ: 108. 3,82. 0,81. 0,68. 1,60. 7,
57. 3,54. 1,46. 5,44. 9,42. 1,40. 0,38. 9,36. 9,35. 3,35. 2,
34. 9,32. 1,31. 9,30. 6,29. 7,28. 7,28. 6,28. 4,20. 7,17. 1,
16. 3,12. 2,11. 3. ESI-MS: m/z520. 1[M + H] + .
( 3β, 5α, 25R ) -26-Azidofurost-20 ( 22 ) -ene-3-yl p-nitro-
benzoate ( 7) According to the preparation procedure of 3,2
( 0. 44 g,1 mmol) was converted to 7 ( 0. 48 g,82% ) as off-
white solid. Data for 7: mp 179-181 ° C. IR ( KBr, νmax ) :
3 424. 5,2 927. 5,2 095. 5,1 717. 4,1 526. 3,1 282. 5 cm -1 .
1H NMR( 300 MHz,CDCl3 ) δ: 8. 30-8. 26( d,2H,H-Ar-3,5) ;
8. 21-8. 17( d,2H,H-Ar-2,6) ; 5. 02-4. 94 ( m,1H,H-3α) ;
4. 77-4. 69 ( m,1H,H-16α) ; 3. 24 ( dd,1H,J1 = 5. 7 Hz,J2 =
12. 0 Hz,H-26) ; 3. 10 ( dd,1H,J1 = 7. 0 Hz,J2 = 12. 0 Hz,H-
26) ; 2. 47 ( d,J = 10. 1 Hz,H-17α) ; 1. 59 ( s,3H,Me-21) ;
0. 97 ( d,3H,J = 6. 7 Hz,Me-27) ; 0. 90 ( s,3H,Me-19) ; 0. 68
( s,3H,Me-18) . 13C NMR ( 75 MHz,CDCl3 ) δ: 164. 2,151. 3,
136. 3, 130. 6, 130. 6, 129. 3, 123. 5, 123. 5, 104. 0, 84. 4,
75. 5,64. 3,57. 7,55. 5,54. 8,54. 3,44. 7,43. 6,39. 7,36. 8,
35. 7,35. 0,34. 1,33. 1,32. 4,31. 5,28. 5,27. 6,23. 2,21. 2,
17. 6,14. 2,12. 3,11. 6. ESI-MS: m/z613. 3[M + Na] + .
( 3β,5α,25R) -26-Azidofurost-20( 22) -ene-3-yl 3-methoxy-
benzoate ( 8) According to the preparation procedure of 3,2
( 0. 44 g,1 mmol) was converted to 8 ( 0. 33 g,57% ) as off-
white solid. Data for 8: mp 46-48 °C. IR ( KBr,νmax ) : 2 918. 9,
2 850. 0,2 096. 4,1 714. 6,1 277. 6 cm -1 . 1 H NMR ( 300
MHz,CDCl3 ) δ: 7. 64-7. 61 ( m,1H,H-Ar-6) ; 7. 56-7. 54 ( m,
1H,H-Ar-2) ; 7. 33 ( t,J = 7. 9 Hz,H-Ar-5) ; 7. 09-7. 06 ( m,
1H,H-Ar-4) ; 4. 97-4. 90 ( m,1H,H-32) ; 4. 76-4. 69 ( m,1H,
H-16α) ; 3. 85 ( s,3H,OCH3 ) ; 3. 24 ( dd,1H,J
1 = 5. 8 Hz,J2
= 12. 0 Hz,H-26) ; 3. 10 ( dd,1H,J1 = 7. 0 Hz,J2 = 12. 0 Hz,
H-26) ; 2. 47 ( d,J = 10. 1 Hz,H-17α) ; 1. 58 ( s,3H,Me-21) ;
0. 97 ( d,J = 6. 6 Hz,Me-27) ; 0. 89 ( s,3H,Me-19) ; 0. 67 ( s,
3H,Me-18 ) . 13 C NMR ( 75 MHz, CDCl3 ) δ: 166. 0,159. 5,
151. 2, 132. 3, 129. 3, 121. 9, 119. 1, 114. 1, 104. 0, 84. 4,
74. 4,64. 3,57. 7,55. 4,54. 8,54. 3,44. 7,43. 6,39. 7,36. 8,
35. 7,35. 0,34. 1,34. 0,33. 1,32. 4,31. 5,28. 5,27. 6,23. 2,
21. 2,17. 5,14. 2,12. 3,11. 6. ESI-MS: m/z576. 4[M + H] + .
( 3β,5α,25R ) -26-Azidofurost-20 ( 22 ) -ene-3-yl p-tert-bu-
tylbenzoate ( 9) According to the preparation procedure of 3,2
594
学 报 Journal of China Pharmaceutical University Vol. 41
( 0. 22 g,0. 5 mmol) was converted to 9 ( 0. 23 g,76% ) as off-
white solid. Data for 9: mp 125-130 ° C. IR ( KBr, νmax ) :
3 405. 2,2 955. 3,2 097. 1,1 712. 1,1 279. 5 cm -1 . 1 H NMR
( 300 MHz,CDCl3 ) δ: 8. 10-8. 06 ( d,2H,H-Ar-2,6) ; 7. 55-
7. 52 ( d,2H,H-Ar-3,5) ; 4. 97-4. 89 ( m,1H,H-3α) ; 4. 75-
4. 71 ( m,1H,H-3α) ; 3. 24 ( dd,1H,J1 = 5. 6 Hz,J2 = 12. 0
Hz,H-26) ; 3. 10 ( dd,1H,J1 = 7. 0 Hz,J2 = 12. 0 Hz,H-26) ;
2. 47 ( d,1H, J = 10. 0 Hz,H-17α ) ; 1. 59 ( s,3H,Me-21 ) ;
0. 98-0. 96 ( d,3H,J = 6. 7 Hz,Me-27) ; 0. 93 ( s,3H,Me-19) .
ESI-MS: m/z602. 2[M + H] + .
( 3β,5α,22α,25R) -Spirosolan-3-ol ( soladulcidine,10)
To a solution of 2 ( 0. 44 g,1 mmol) in 10 mL of anhydrous
MeCN,NaI ( 300 mg,2 mmol ) was added, and the reaction
mixture was stirred for 30 min. To this suspension,a solution of
TMSCl ( 108 mg,2 mmol) in MeCN ( 2 mL) was added drop-
wise,and the mixture was stirred for another 30 min at room
temperature. After completion ( TLC ) , the reaction was
quenched with 10% Na2S2O3 aqueous solution,and 5% NaOH
aqueous solution was added to adjust the pH value to 10,keep-
ing stirring at room temperature for 1 h. The mixture was
extracted with Et2 O ( 40 mL × 3) ,and the organic layer was
washed with brine, dried ( Na2 SO4 ) , and concentrated under
vacuum to give the crude product,which was purified by flash
column chromatography ( SiO2 ; petroleum ether-AcOEt-Et3N,
1 ∶ 1 ∶ 0. 02) to afford 10 ( 290 mg,70% ) as off-white sol-
id. Data for 10[14] : mp 206-208 ° C; IR( KBr,νmax ) : 3 448. 5,
3 357. 8,2 941. 2,1 456. 2,1 070. 4,889. 1 cm -1 ; 1 H NMR
( 300 MHz,CDCl3 ) δ: 4. 29 ( 1H,m,H-16α) ,3. 58 ( 1H,m,H-
3α) ,2. 63 ( 2H,m,H-26) ,0. 94 ( 3H,d,J = 7. 0 Hz,Me-21) ,
0. 85 ( 3H,d,J = 6. 1 Hz,Me-27) ,0. 82 ( 3H,s,Me-18) ,0. 79
( 3H, s,Me-19 ) ; 13C NMR ( 75 MHz, CDCl3 ) δ: 98. 2,78. 9,
71. 2,62. 9,56. 3,54. 4,47. 6,44. 8,41. 2,41. 8,40. 2,38. 2,
37. 0,35. 6,35. 1,34. 0,32. 2,32. 1,31. 5,31. 2,30. 2,28. 6,
21. 1,19. 2,16. 5,15. 2,12. 3; ESI-MS: m/z416. 3[M + H] + .
( 3β,5α,22α,25R ) -26-Spirosolan-3-yl benzoate ( 11 )
According to the preparation procedure of 10,3 ( 0. 11 g,0. 2
mmol) was converted to 11 ( 71 mg,68% ) as off-white sol-
id. Data for 11: mp 195-197 °C. IR ( KBr, νmax ) : 3 415. 7,
2 931. 6,1 714. 6,1 276. 8,1 020. 3,715. 5 cm -1 . 1 H NMR
( 300 MHz,CDCl3 ) δ: 8. 04-8. 02 ( m,2H,H-Ar-2,6) ; 7. 57-
7. 51 ( m,1H, H-Ar-4) ; 7. 51-7. 40 ( m, 2H, H-Ar-3, 5) ;
4. 98-4. 93 ( m,1H,H-3α) ; 4. 89-4. 79 ( m,1H,H-16α) ; 2. 70-
2. 59 ( m,2H,H-26) ; 0. 96 ( d,3H,J = 6. 5 Hz,Me-21) ; 0. 91
( d,3H,J = 6. 5 Hz,Me-27) ; 0. 89 ( s,3H,Me-19) ; 0. 79 ( s,
3H,Me-18 ) . 13 C NMR ( 75 MHz, CDCl3 ) δ: 166. 1, 132. 6,
131. 0,129. 5,129. 5,128. 2,128. 2,99. 7,84. 2,74. 2,61. 3,
55. 8,54. 0,45. 9,44. 6,42. 2,41. 3,39. 3,36. 8,35. 6,35. 3,
34. 1,32. 2,32. 0,28. 5,27. 8,27. 6,27. 4,20. 9,18. 5,16. 3,
15. 9,12. 3. ESI-MS: m/z520. 2[M + H] + .
( 3β,5α,22α,25R ) -Spirosolan-3-yl acetate ( 12 ) Ac-
cording to the preparation procedure of 10,4 ( 145 mg,0. 3
mmol) was converted to 12 ( 110 mg,81% ) as off-white solid.
Data for 12: mp 207-209 ° C. IR ( KBr, νmax ) : 3 357. 9,
2 947. 2,1 725. 8,1 447. 0,1 256. 1,994. 8 cm -1 . 1H NMR
( 300 MHz,CDCl3 ) δ: 4. 72-4. 64 ( m,1H,H-3α) ; 4. 30-4. 22
( m,1H,H-16α) ; 2. 69-2. 56 ( m,2H,H-26) ; 2. 01 ( s,3H,CH3
COO-) ; 0. 94 ( d,3H,J = 7. 1 Hz,Me-21) ; 0. 85 ( d,3H,J =
4. 6 Hz, Me-27 ) ; 0. 84 ( s, 3H, Me-19 ) ; 0. 79 ( s, 3H, Me-
18) . 13C NMR ( 75 MHz,CDCl3 ) δ: 170. 6,98. 2,78. 7,73. 6,
63. 0,56. 2,54. 3,47. 7,44. 7,41. 2,40. 8,40. 2,36. 7,35. 6,
35. 1,34. 1,34. 0,32. 2,32. 1,31. 4,30. 3,28. 5,27. 5,21. 4,
21. 0,19. 3,16. 6,15. 2,12. 4. ESI-MS: m/z458. 4[M + H] + .
( 3β,5α,22α,25R) -Spirosolan-3-yl propionate ( 13) Ac-
cording to the preparation procedure of 10,5 ( 100 mg,0. 2
mmol) was converted to 13 ( 69 mg,73% ) as off-white sol-
id. Data for 13: mp 207-209 ° C. IR ( KBr, νmax ) : 3 354. 5,
2 946. 5,2 851. 2,2 098. 0,1 728. 6,1 447. 1,1 202. 4 cm -1 .
1H NMR ( 300 MHz,CDCl3 ) δ: 4. 75-4. 64 ( m,1H,H-3α) ; 4. 29-
4. 27 ( m,1H,H-16α) ; 2. 69-2. 57 ( m,2H,H-26) ; 2. 29 ( q,2H,
J =7. 5 Hz,CH3 CH2 COO-) ; 1. 13 ( t,3H,J = 7. 5 Hz,CH3 CH2
COO-) ; 0. 93 ( d,3H,J = 8. 8 Hz,Me-21) ; 0. 86 ( d,3H,J = 5. 0
Hz,Me-27 ) ; 0. 85 ( s, 3H, Me-19 ) ; 0. 79 ( s, 3H, Me-18 ) .
13C NMR ( 75 MHz,CDCl3 ) δ: 174. 1; 98. 2; 77. 2; 73. 4; 62. 9;
56. 2; 54. 3; 47. 6; 44. 7; 41. 3; 40. 8; 40. 2; 36. 7; 35. 6; 35. 1;
34. 1; 34. 1; 32. 2; 32. 1; 31. 2; 30. 3; 28. 5; 28. 0; 27. 5; 21. 0;
19. 3; 16. 6; 15. 2; 12. 3; 9. 2. ESI-MS: m/z472. 4[M + H] + .
( 3β,5α,22α,25R) -Spirosolan-3-yl mesylate ( 14 ) Ac-
cording to the preparation procedure of 10,6 ( 100 mg,0. 19
mmol) was converted to 14 ( 67 mg,70% ) as off-white sol-
id. Data for 14: mp 180-182 ° C. IR ( KBr, νmax ) : 3 415. 7,
2 927. 7,2 854. 5,1 357. 8,1 176. 5,943. 1 cm -1 . 1 H NMR
( 300 MHz,CDCl3 ) δ: 4. 65-4. 57 ( m,1H,H-3α) ; 4. 31-4. 29
( m,1H,H-16α) ; 3. 00 ( s,3H,MsO) ; 2. 68-2. 61 ( m,2H,H-
26) ; 0. 98-0. 95 ( d,3H,J = 6. 8 Hz,Me-21) ; 0. 86-0. 84 ( d,
3H,J = 4. 6 Hz,Me-27) ; 0. 86 ( s,3H,Me-19) ; 0. 78 ( s,3H,
Me-18) . 13 C NMR ( 75 MHz, CDCl3 ) δ: 98. 2, 82. 0, 63. 0,
56. 2,54. 2,47. 6,44. 9,41. 4,40. 9,40. 1,38. 9,36. 8,35. 4,
35. 2,35. 1,34. 0,32. 1,31. 2,30. 2,28. 8,28. 4,21. 1,19. 2,
16. 6,15. 2,12. 2. ESI-MS: m/z494. 4[M + H] + .
( 3β,5α,22α,25R) -Spirosolan-3-yl p-nitrobenzoate ( 15 )
According to the preparation procedure of 10,7 ( 120 mg,
0. 20 mmol) was converted to 15 ( 75 mg,65% ) as light yellow
solid. Data for 15: mp 247-249 °C. IR ( KBr,νmax ) : 3 424. 1,
2 930. 2,1 720. 4,1 530. 1,1 279. 9 cm -1 . 1 H NMR ( 300
MHz,CDCl3 ) δ: 8. 29-8. 26 ( m,2H, H-Ar-3, 5) ; 8. 21-8. 18
( m,2H,H-Ar-2,6) ; 5. 02-4. 94 ( m,1H,H-3α ) ; 4. 29-4. 26
( m,1H,H-16α) ; 2. 64-2. 60 ( m,2H,H-26) ; 0. 95 ( d,3H,J =
6. 9 Hz,Me-21) ; 0. 90 ( s,3H,Me-19) ; 0. 85 ( d,3H,J =6. 1 Hz,
Me-27) ; 0. 80 ( s,3H,Me-18) . 13 C NMR ( 75 MHz,CDCl3 ) δ:
164. 2,150. 4,136. 3,130. 6,130. 6,123. 4,123. 4,98. 2,78. 7,
75. 5,62. 9,56. 2,54. 2,47. 7,44. 7,41. 3,40. 8,40. 2,36. 7,
35. 6,35. 1,34. 1,34. 0,32. 2,32. 1,31. 4,30. 3,28. 5,27. 5,
21. 1,19. 3,16. 6,15. 2,12. 3. ESI-MS: m/z565. 3[M + H] + .
(3β, 5α, 22α, 25R ) -Spirosolan-3-yl 3-methoxybenzoate
( 16) According to the preparation procedure of 10,8 ( 430
mg,0. 75 mmol) was converted to 16 ( 254 mg,62% ) as off-
694
No. 6 ZHA Xiao-ming et al: Synthesis of novel soladulcidine derivatives and their in vitro antitumor activities
white solid. Data for 16: mp 171-172 ° C. IR ( KBr, νmax ) :
3 422. 0,2 923. 3,1 719. 7,1 281. 9,1 103. 3,761. 7 cm -1 .
1H NMR ( 300 MHz,CDCl3 ) δ: 7. 63-7. 61 ( m,1H,H-Ar-6) ;
7. 55-7. 54 ( m,1H,H-Ar-2) ; 7. 35-7. 26 ( m,1H,H-Ar-5) ;
7. 10-7. 07 ( m, 1H, H-Ar-4) ; 4. 98-4. 87 ( m, 1H, H-3α ) ;
4. 31 ( m,1H,H-16α) ; 3. 84 ( s,3H,-OCH3 ) ; 2. 67-2. 58 ( m,
2H,H-26) ; 0. 97 ( d,3H,J = 6. 4 Hz,Me-21) ; 0. 89 ( s,3H,
Me-19) ; 0. 85 ( d,3H,J = 6. 2 Hz,Me-27) ; 0. 80 ( s,3H,Me-
18) . 13 C NMR ( 75 MHz, CDCl3 ) δ: 166. 0, 159. 6, 132. 4,
129. 2,122. 0,119. 1,114. 2,98. 2,74. 4,63. 0,56. 3,55. 5,
54. 4,47. 7,44. 8,41. 4,40. 9,40. 2,36. 9,35. 7,35. 2,34. 2,
34. 2,32. 4,32. 2,32. 1,30. 3,29. 7,28. 6,27. 6,21. 1,19. 2,
16. 6,15. 2,12. 4. ESI-MS: m/z550. 5[M + H] + .
( 3β, 5α, 22α, 25R ) -Spirosolan-3-yl p-tert-butylbenzoate
( 17) According to the preparation procedure of 10,9 ( 120
mg,0. 2 mmol) was converted to 17 ( 79 mg,69% ) as off-white
solid. Data for 17: mp 220-222 ° C. IR ( KBr,νmax ) : 2 928. 8,
2 849. 1,1 708. 9,1 281. 6,1 125. 3 cm -1 . 1 H NMR ( 300
MHz,CDCl3 ) δ: 7. 98-7. 93 ( m,2H,H-Ar-2,6) ; 7. 46-7. 26
( m,2H,H-Ar-3,5) ; 4. 97-4. 89 ( m,1H,H-3α) ; 4. 29-4. 27
( m,1H,H-16α) ; 2. 65-2. 57 ( m,2H,H-26) ; 1. 34 ( s,9H,-C
( CH3 ) 3 ) ; 0. 95 ( d,3H,J = 6. 8 Hz,Me-21) ; 0. 89 ( s,3H,Me-
19) ; 0. 85 ( d,3H, J = 6. 0 Hz, Me-27 ) ; 0. 80 ( s,3H,Me-
18) . 13 C NMR ( 75 MHz, CDCl3 ) δ: 166. 2, 156. 3, 129. 4,
129. 4,128. 3,125. 2,125. 2,98. 2,77. 2,74. 0,63. 1,56. 3,
54. 4,47. 7,44. 8,41. 3,40. 9,40. 3,36. 9,35. 7,35. 1,32. 3,
32. 2,31. 5,31. 2,31. 2,31. 2,30. 4,30. 4,29. 8,28. 6,27. 7,
21. 1,19. 3,16. 6,15. 2,12. 4. ESI-MS: m/z576. 5[M + H] + .
( 3β,5α,22S,25R) -N-Chloro-spirosolan-3-ol ( 18 ) To a
solution of 10 ( 123 mg,0. 3 mmol) in 8 mL of anhydrous CH2
Cl2,NCS( 88 mg,0. 66 mmol) was added in ice bath and stirred
for 1 h at room temperature. The reaction mixture was evaporat-
ed in vacuum and purified by flash column chromatography
( SiO2,petroleum ether-EtOAc,20 ∶ 2) to afford 18 ( 116 mg,
86% ) as off-white solid. Data for 18: mp 267-269 ° C. IR
( KBr,νmax ) : 3 318. 9, 2 926. 2, 2 848. 2, 1 451. 2, 1 047. 3
cm -1. 1H NMR ( 300 MHz,CDCl3 ) δ: 5. 13-5. 05 ( m,1H,H-
16α) ; 3. 64-3. 53 ( m,1H,H-3α) ; 3. 20 ( t,1H,J = 10. 4 Hz,
H-26) ; 3. 12 ( br dd,J1 = 4. 2 Hz,J2 = 10. 2 Hz,H-26) ; 1. 23
( d,3H,J = 5. 5 Hz,Me-21) ; 0. 88 ( d,3H,J = 6. 6 Hz,Me-
27) ; 0. 82 ( s,3H,Me-19) ; 0. 76 ( s,3H,Me-18) . 13C NMR ( 75
MHz,CDCl3 ) δ: 105. 5,86. 2,71. 3,65. 7,62. 9,55. 4,54. 6,
45. 0,44. 3,41. 2,40. 5,38. 8,38. 3,37. 0,35. 7,34. 9,33. 7,
33. 5, 32. 4, 31. 6, 29. 7, 29. 1, 28. 7, 21. 3, 18. 7, 16. 8,
12. 4. ESI-MS: m/z450. 4[M + H] + .
( 3β,5α,16β,22S,25R) -22,26-Epiminocholest-16-hydrox-
y-3-yl p-nitrobenzoate ( 19 ) To a solution of 15 ( 0. 11 g,
0. 2 mmol) in CH2 Cl2-MeOH( 12 mL,CH2 Cl2 : MeOH 5 ∶ 1) ,
NaBH4(30. 8 mg,0. 8 mmol) was added in two portions in ice
bath. The reaction mixture was stirred for 1 h and quenched
with iced water. The mixture was extracted with CH2Cl2(50 mL
× 3) and the organic layer was washed with brine,dried over
anhydrous Na2 SO4 and concentrated in vacuum. The crude
product was purified by flash column chromatography ( SiO2,
petroleum ether-EtOAc-Et3 N,20∶ 1. 5 ∶ 0. 05) to afford 19 ( 85
mg,75% ) as off-white solid. Data for 19: mp 222-225 ° C. IR
( KBr,νmax ) : 3 417. 2,2 926. 8,2 851. 0,1 725. 2,1 528. 9,
1 278. 3,717. 9 cm -1 . 1 H NMR ( 300 MHz,CDCl3 ) δ: 8. 28-
8. 25 ( m,2H,H-Ar-3,5) ; 8. 21-8. 17 ( m,2H,H-Ar-2,6) ;
5. 01-4. 92 ( m,1H,H-3α) ; 4. 47-4. 40 ( m,1H,H-16α) ; 3. 08
( br. d,1H,J = 11. 0 Hz,H-26) ; 2. 66 ( br. d,1H,J = 10. 2 Hz,
H-22) ; 1. 08 ( d,3H,J = 7. 2 Hz,Me-21) ; 0. 90 ( s,3H,Me-
19) ; 0. 89 ( s,3H,Me-18) ; 0. 85 ( d,3H,J = 6. 5 Hz,Me-27) .
13C NMR ( 75 MHz,CDCl3 ) δ: 164. 2,150. 5,136. 4,130. 6,
130. 6,123. 4, 123. 4, 75. 6, 71. 3, 62. 6, 59. 5, 54. 3, 54. 1,
54. 0,44. 8,43. 1,40. 4,36. 8,36. 1,35. 6,35. 1,34. 1,33. 4,
31. 9,31. 0,29. 7,28. 6,27. 5,27. 2,21. 1,19. 3,18. 6,13. 7,
12. 3. TOF-HRMS: m/z calcd for C34 H51 N2 O5 [M + H]
+
567. 379 8,found 567. 381 6.
( 3β,5α, 16β, 22S, 25R ) -22, 26- Epiminocholest-16-hy-
droxy-3-yl p-tert-butylbenzoate( 20) According to the prepara-
tion procedure of 19,17 ( 120 mg,0. 21 mmol) was converted
to 20 ( 92 mg,77% ) as off-white solid. Data for 20: mp 251-
253 °C. IR ( KBr,νmax ) : 3 413. 9,2947. 0,2 866. 8,1 712. 6,
1 277. 3,1 120. 1 cm -1. 1 H NMR ( 300 MHz,CDCl3 ) δ: 7. 97-
7. 94 ( m,2H,H-Ar-2,6) ; 7. 45-7. 42 ( m,2H,H-Ar-3,5) ;
4. 98-4. 87 ( m,1H,H-3α) ; 4. 46-4. 40 ( m,1H,H-16α) ; 3. 04
( brd, 1H, H-26 ) ; 2. 60 ( brd, 1H, H-22 ) ; 1. 33 ( s, 9H,
C( CH3 ) 3 ) ,1. 06 ( d,3H,J = 7. 1 Hz,Me-21) ; 0. 91 ( s,3H,Me-
19) ; 0. 88 ( s,3H,Me-18) ; 0. 84 ( d,3H,J = 6. 5 Hz,Me-27) .
13C NMR ( 75 MHz, CDCl3 ) δ: 166. 2, 156. 3, 129. 4, 129. 4,
128. 4,125. 2,125. 2,74. 1,71. 3,62. 7,59. 9,54. 5,54. 4,54. 2,
44. 9,43. 1,40. 5,36. 9,36. 0,35. 8,35. 6,35. 2,35. 0,34. 2,
33. 7,32. 0,31. 4,31. 2,31. 2,31. 2,28. 7,27. 9,27. 5,21. 1,
19. 3,18. 7,13. 8,12. 3. ESI-MS: m/z578. 4[M + H] + .
3 Results and Discussion
Prostate gland adenocarcinoma ( PC-3) cell lines
were obtained from ATCC and were cultured in RPMI
medium,being supplemented with 10% FBS and 50
units /mL penicillin plus 50 mg /mL streptomycin.
Cells were grown in a humidified incubator at 37 °C
in an atmosphere of 5% CO2 . In cell proliferation
analysis,cultured PC-3 cells were seeded into 96-well
plates before treatment with drug for 28 h. 0. 5 μCi
[ 3H]-thymidine was added for the last 6 h before
cells were trypsinized and harvested by Cell Harvester
( Tomtech,CT) . The scintillation counts from the iso-
tope incorporated in the newly synthesized DNA were
read by Beta-Counter ( Perkin-Elmer) . Data were col-
lected and analyzed by GraphPad Prism ( La Jolla,
CA) 4. 0 software.
The cellular activities of compounds 10-20 ( each
with a purity of above 98% ) were evaluated in a PC-3
794
学 报 Journal of China Pharmaceutical University Vol. 41
cell line proliferation assay. As shown in Table 1,so-
ladulcidine 10 could inhibit the proliferation of PC-3
cell line with an IC50 value of ( 10. 8 ± 2. 1) μmol /L.
The esterization of soladulcidine at C-3 position ( 11-
17 ) did not enhance the inhibitory activities. The
modification on NH of ring F 18 has an IC50 value of
( 8. 2 ± 1. 4 ) μmol /L. More modifications on NH
group of soladulcidine are going on. In particular,the
ring E opening product 19 ( 3β-p-nitrobenzoyloxy )
showed the most potent inhibitory effect ( IC50 = 4. 8 ±
0. 9 μmol /L) among these derivatives investigated.
Strangely, similar analog 20 ( 3β-p-tert-butylbenzoy-
loxy) was much less active,suggesting that substitu-
ents at the C-3 position are related in anticancer ac-
tivities in vitro. Further synthesis of the ring E opening
analogs of soladulcidine was carried out.
Table 1 Inhibitory effects of soladulcidine 10 and its derivatives 11-20
on the proliferation of a prostate gland adenocarcinoma ( PC-3) cell line
Compd. IC50 a / ( μmol /L)
10 10. 8 ± 2. 1
11 > 33. 3
12 > 33. 3
13 > 33. 3
14 > 25
15 > 33. 3
16 > 20
17 NDb
18 8. 2 ± 1. 4
19 4. 8 ± 0. 9
20 > 20
aValues represent mean ± SD of two experiments ( n = 3) ; bNot deter-
mined
4 Conclusion
In summary, ten soladulcidine derivatives were
synthesized and evaluated for their activities against
the proliferation of PC-3 cell line in vitro. Among
these compounds investigated,compound 19 exhibited
the most potent anticancer activity. This work affords
some useful information for the further modification of
soladulcidine derivatives as novel inhibitors of prostate
cancer cell proliferation.
References
[1] Kupchan SM,Barboutis SJ,Knox JR,et al. Beta-solamarine: tumor
inhibitor isolated from Solanum dulcamara[J]. Science,1965,150
( 705) : 1 827 - 1 828.
[2] Lee KR,Kozukue N,Han JS,et al. Glycoalkaloids and metabolites
inhibit the growth of human colon ( HT29) and liver ( HepG2 )
cancer cells [J]. J Agric Food Chem,2004,52 ( 10 ) : 2 832 -
2 839.
[3] Daunter B,Cham BE. Solasodine glycosides. in vitro preferential
cytotoxicity for human cancer cells[J]. Cancer Lett,1990,55( 3) :
209 - 220; Cham BE,Daunter B. Solasodine glycosides. selective
cytotoxicity for cancer cells and inhibition of cytotoxicity by rham-
nose in mice with sarcoma 180[J]. Cancer Lett,1990,55( 3) : 221
- 225.
[4] Wang LD,Guo DA,Yuan L,et al. Antifungal effect of three natu-
ral products on genetic substance of Saccharomyces cerevisiae GL7
and Prototheca wickerhamii[J]. Acta Pharm Sin,2000,35 ( 11 ) :
860 - 863.
[5] Emmanuel S,Ignacimuthu S,Perumalsamy R,et al. Antiinflamma-
tory activity of Solanum trilobatum[J]. Fitoterapia,2006,77 ( 7 /
8) : 611 - 612.
[6] Gaffield W,Keeler RF. Induction of terata in hamsters by solani-
dane alkaloids derived from Solanum tuberosum [J]. Chem Res
Toxicol,1996,9( 2) : 426 - 433.
[7] Thorne HV,Clarke GF,Skuce R. The inactivation of herpes sim-
plex virus by some Solanaceae glycoalkaloids[J]. Antiviral Res,
1985,5( 6) : 335 - 343.
[8] Chang LC,Bhat KPL,Pisha E,et al. Activity-guided isolation of
steroidal alkaloid antiestrogen-binding site inhibitors from Pachy-
sandra procumbens[J]. J Nat Prod,1998,61( 10) : 1 257 - 1 262.
[9] ( a) Liu L,Liu XC,Cui SH. Preparation of solanine and its use in
medicine: CN,200310115856. 5[P]. 2004-12-08; ( b) Liu L,Liu
XC, Cui SH. Method for preparing solasodine HCl: CN,
200410011187[P]. 2005-06-22.
[10] Burno W. Antimicrobiol activity of plant steroids and triterpenes
[J]. Planta Med,1996,14( 4) : 392 - 401.
[11 ] Gaffield W, Keeler RF. Craniofacial malformations induced in
hamsters by steroidal alkaloids[J]. J Nat Toxins,1990,5 ( 1 ) : 25
- 38.
[12] Corbiere C,Liagre B,Bianchi A, et al. Different contribution of
apoptosis to the antiproliferative effects of diosgenin and other
plant steroids,hecogenin and tigogenin,on human 1547 osteosar-
coma cells[J]. Int J Oncol,2003,22( 4) : 899 - 905.
[13] Li YJ,Zhou GF,Wei SX,et al. The pharmcological studies of tigo-
genin[J]. Lishizhen Med Materia Medica Res,2006,17 ( 10 ) :
1 958- 1 959.
[14] Zha XM,Sun HB,Hao J,et al. Efficient synthesis of solasodine,
o-acetylsolasodine,and soladulcidine as anticancer steroidal alka-
loids[J]. Chem Biodivers,2007,4( 1) : 25 - 31.
[15] Zha XM,Zhang FR,Shan JQ,et al. Synthesis and evaluation of in
vitro anticancer activity of novel solasodine derivatives[J]. Chin
Chem Lett,2010,21( 9) : 1 087 - 1 090.
[16] Boll PM. Preliminary note on the configuration at C22 of solanum
alkaloids[J]. Acta Chem Scand,1960,14( 3) : 783 - 784.
894